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. Diabetes is a major health challenge that affects millions of people worldwide. Managing diabetes
. effectively requires monitoring blood glucose levels continuously, typically through invasive
. sensing devices such as continuous glucose monitors (CGMs). Blood glucose excursions have

been shown to induce changes in several physiological signals such as electrocardiography (ECG),
. photoplethysmography (PPG) and electrodermal activity (EDA) that can be measured non-invasively
. with consumer-grade wearable sensors. These physiological changes can be mapped into glucose
. levels using machine-learning models trained on comprehensive multimodal datasets of physiological
. signals. However, most existing datasets lack ground-truth measurements from CGMs and often only
: include aggregated physiological data (e.g. heart rate) at low sampling rates. To address these gaps,
. weintroduce PhysioCGM, an open-source dataset that contains raw physiological recordings from
. multiple sensors including ECG, PPG, EDA, skin temperature, accelerometry and ground-truth CGM
: data collected for up to 17 days from 10 participants with Type 1 Diabetes in ambulatory settings. This
. dataset aims to promote the development of non-invasive methods for glucose monitoring and improve
. diabetes management.

: Background & Summary

. Diabetes affects over 38 million people in the United States and is the eighth leading cause of death, with over
: $400 billion (about $1,200 per person in the US) in direct medical costs incurred in 2022 alone!. Furthermore,
. approximately 1.2 million new cases of diabetes are diagnosed each year, which amounts to one American being
: diagnosed with diabetes every 30 seconds. The most common condition (~90% of all cases) is Type 2 Diabetes
: (T2D), a metabolic disease commonly associated with lifestyle factors (diet, physical inactivity), which can
. reduce the body’s ability to absorb glucose (insulin resistance). The other condition (~10% of all cases) is Type
. 1 Diabetes (T1D), an autoimmune disease often diagnosed in childhood or adolescence that destroys beta-cells
: in the pancreas, which are responsible for producing insulin. Regardless of the condition, elevated blood glu-
. cose levels (hyperglycemia) can lead to serious long-term complications, including heart disease, kidney failure,
: blindness, amputation, and stroke?>. Conversely, low glucose levels (hypoglycemia) can be life-threating in the
: short-term, as it leads to confusion, irritability, impaired attention and coma if left untreated*.

: Thus, effective management of diabetes relies heavily on carefully monitoring and maintaining blood glucose
. levels. Continuous glucose monitors (CGMs) can be used for this purpose, but they are invasive and can be
. costly since sensors must be replaced every 7-14 days. Non-invasive sensing alternatives, such as electrocardiog-
. raphy (ECG) and photoplethysmography (PPG), have been shown to correlate with glucose levels®. Specifically,
. changes in cardiac signals, such as a lengthened QT interval and reduced heart rate variability (HRV), have
. long been known to be associated with hypoglycemia®’. Additionally, studies have shown that sensor fusion of
: multiple physiological signals can improve predictive accuracy®. Key to the development of these data-driven
: approaches is access to multimodal datasets to train machine-learning (ML) models.

: Various datasets have been proposed to advance research in non-invasive glucose estimation, as summa-
: rized in Table 1. The MIMIC II dataset'” available on PhysioNet (https://physionet.org/) contains comprehensive

1Texas A&M University, College Station, TX, 77843, USA. 2Baylor College of Medicine, Houston, TX, 77030, USA.
. ®e-mail: rgutier@tamu.edu

SCIENTIFICDATA|  (2025) 12:1822 | https://doi.org/10.1038/s41597-025-06090-6 1


https://doi.org/10.1038/s41597-025-06090-6
https://physionet.org/
mailto:rgutier@tamu.edu
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-025-06090-6&domain=pdf

www.nature.com/scientificdata/

Dataset EDA Glucose | ECG | PPG | Conditions

PhysioNet MIMICII'® | No Limited |Yes |No | UCI patients
PhysioNet MIT-NIH" | No No Yes |No | Ambulatory

UCI MHEALTH?Y No No Yes | No Everyday life
UCI Diabetes'? No Yes No |No | Everyday life
DICARDIA™ No Limited |Yes |No | Everyday life
OhioT1DM" Yes Yes No |No | Everyday life
Warwick!” No Yes Yes |No | Everyday life
DINAMO'™® No Yes Yes |No | Everyday life
PhysioCGM*! Yes Yes Yes | Yes | Everydaylife

Table 1. Publicly available datasets with physiological recordings for diabetes management.

clinical and waveform data from intensive care unit (ICU) patients, recorded with medical-grade devices in
stationary conditions. While this dataset offers high-quality signals, it is not representative of everyday data
collected from wearable devices, and glucose levels were only recorded as needed for patient care. PhysioNet
hosts numerous physiological databases, such as the MIT-NIH arrhythmia dataset!'!, which provides ambulatory
ECG data, but none include continuous glucose level time series. The UC Irvine Machine Learning Repository
(https://archive.ics.uci.edu/) also contains related datasets, including the MHEALTH dataset'?, containing phys-
ical activity and 2-lead ECG recordings, and the Diabetes dataset!® containing manual measurements of pre- and
post-prandial glucose with limited meal information. However, these datasets either lack ground-truth glucose
measurements to evaluate glucose estimation or they do not include synchronized ECG data. The Diabetic
Cardiac Neuropathy Diagnostic and Modeling (DICARDIA) dataset' offers ECG data from patients with dia-
betes, with one measurement of glucose and HbAlc per patient, so it cannot be used to provide continuous
estimates of glucose from ECG. The OhioT1DM dataset'* includes eight weeks of continuous glucose monitor-
ing, insulin dosing data, physiological recordings (accelerometry and skin conductance), and self-reported life
events for 12 individuals with T1D. However, the dataset lacks data from other physiological sensors such as
ECG or PPG. To our knowledge, the only publicly available dataset containing both ECG and CGM recordings
is DINAMO dataset'®. The DINAMO dataset includes other relevant data such as accelerometry recordings
for activity recognition and annotated food images for 20 healthy and 9 participants with T1D. However, this
dataset lacks PPG and EDA information and only contains data for up to four days per participant. Other studies
requiring data from multiple modalities such as ECG, PPG, skin conductance and glucose data have been con-
ducted, but such datasets are not publicly available®!”.

To address this gap, we present PhysioCGM, an open-source dataset that integrates information from three
wearable physiological sensors: (1) a Zephyr Bioharness!® chest strap that records raw ECG and respiratory
signals, (2) an Empatica E4" watch that records raw PPG and EDA, and (3) a Dexcom G6 CGM that records
interstitial glucose. Currently, our PhysioCGM dataset contains recordings of 10 participants with T1D who
wore the three sensing devices in ambulatory settings for up to 17 days. This unique dataset provides continuous,
multi-modal physiological data that can be used to develop models that predict glycemic excursions and related
complications. PhysioCGM aims to facilitate the development of innovative, non-invasive monitoring solutions
that improve the quality of life for individuals with diabetes.

Methods

The dataset was collected at Baylor College of Medicine under IRB protocol H-49867. Participants were eli-
gible to participate in the study if they had a clinical diagnosis of T1D with a duration greater than 1 year
and were 13 years or older. All participants were verified to have >80% CGM use in the month before enroll-
ment. Participants consented to having their demographic information and deidentified sensor data released.
Ten subjects were enrolled between ages 29-41 years and Body Mass Index (BMI) in the range 21.8-34.1kg/
m?. Participant demographics are included in Table 2. All participants were recruited between 2021 and 2022.
During the study period, participants were equipped with two non-invasive devices: a Zephyr Bioharness and
an Empatica E4 watch. In addition, participants wore a Dexcom G6 CGM and an insulin pump as part of their
standard diabetes management routine. The Zephyr Bioharness?® is worn just below the chest and measures
ECG at 250 Hz, thoracic expansion at 25 Hz, accelerometry at 100 Hz (3-axis), heart rate (HR) at 1 Hz and HR
confidence (HRC) at 1 Hz. The Empatica E4' is worn on the wrist and captures PPG at 64 Hz and EDA at 4 Hz.
The Dexcom G6 CGM sensor is attached to the skin over the arm and provides subcutaneous glucose reading
every 5 minutes (0.0033 Hz).

Participants were trained in-person by the clinical team on how to wear and charge the devices and were
provided with a user manual and a Windows laptop. They were instructed to wear the devices continuously
throughout the study, encompassing both day and night periods, except during times allocated for charging
them each day, typically prior to bedtime. While the devices were being charged, participants uploaded raw
sensor data from the previous 24 hours to cloud services using the laptop. Participants uploaded raw sensor data
from the E4 watch to Empatica’s cloud service using an Empatica PC application (E4 Manager). Participants
downloaded raw sensor data from the BioHarness to a local drive on the laptop using a Zephyr PC application
(Zephyr Downloader) and then uploaded the data to a Google Drive set up by the engineering team. Whenever
the engineering team identified missing data or data quality issues, participants were contacted by the clinical
team to troubleshoot the process and/or adjust how the devices were worn. CGM data from each patient was
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Hypoglycemia Euglycemia (70

(g<70mg/dL) <g<180mg/dL) Data completeness (%)
ID Age | Gender |BMI |Alc | Avg.glucose | Negy Avg. glucose | Negy CGM ECG PPG | EDA
cls01 41 M 21.8 5.5 58.0+8.9 455 113.1£26.0 4,685 92.3 44.7 49.3 49.3
cls02 24 M 24.4 6.9 63.8+5.3 34 133.4+£259 3,318 93.4 63.4 84.7 84.7
c1s03 34 M 34.1 6.9 60.7+£7.2 109 123.2+£29.1 2,809 94.9 84.0 82.0 82.0
cls04 34 F 26.9 6.4 654+29 10 132.0£27.1 3,127 87.2 59.8 72.3 72.3
cls05 35 F 23.7 54 63.4+5.0 119 109.3+23.9 4,283 90.5 76.9 69.5 69.6
c2s01 30 M 243 5.9 56.4+9.7 219 116.9£25.0 4,638 93.5 57.8 64.1 64.1
c2s02 31 F 24.1 5.8 58.9+8.3 373 106.3+23.8 4,081 95.1 62.7 78.2 78.2
c2s03 30 M 23.0 6.5 57.3+9.3 99 127.3+26.0 3,644 86.4 67.2 62.5 62.5
c2s04 30 F 294 5.8 56.5+9.4 182 123.2426.5 4,119 93.15 69.41 70.1 70.1
c2s05 29 M 235 6.0 62.3+6.4 271 109.8+25.4 3,733 91.19 80.56 81.7 81.7

Table 2. Overview of the PhysioCGM dataset?': N, is the number of CGM readings (5-minute windows)
within the target (hypoglycemic/euglycemic) range. Data completeness, measured as a percentage of time where
data from each sensing modality is available.

Folder | Filename Description
CGM cgm.csv Glucose value (mg/dL) with corresponding timestamp.
_Accel.csv Triaxial accelerometry as three separate columns
Zephyr _Breathing.csv Uncalibrated breathing waveform at 25 Hz (24-bit)
_ECG.csv Raw ECG signals at 250 Hz (12-bit) and their corresponding timestamps
_Summary.csv Heart rate, breathing rate, ECG noise, HR confidence, and other metrics
BVP.csv Data from photoplethysmography
ACC.csv Triaxial accelerometry as separate columns in the range [—2g, 2 g]. Therefore, the unit in this file is 1/64 g
4 TEMP.csv Temperature in Celsius (°C) scale
EDA.csv Electrodermal activity sensor in micro-Siemens (1S)
HR.csv Average heart rate from BVP. The first row is the initial time of the session expressed as UNIX timestamp
in UTC. The second row is the sample rate in Hz.

Table 3. Overview of the data records.

downloaded to Google Drive by the clinical team. The PhysioCGM dataset includes human-readable raw sen-
sor data without any preprocessing/curation steps, as well as pkl binary files for ease of use; please refer to Data
Records. There was variability in the available data across the 24-hour window for each participant —see Table 2.
This indicates that participants may have removed their devices during activities such as showering or other
circumstances where device removal was necessary.

Data Records

All data records in the dataset are included in this submission and are accessible via FigShare?!. Table 3 and
Fig. 1 provides a detailed overview of these records and the hierarchical structure of the dataset. The dataset is
organized into two cohort folders, each containing data from five participants. Each subject is identified by a
de-identified code, e.g. c1s02 represents the second subject from cohort 1. Within each subject’s folder, there are
three subfolders: zephyr, e4, and CGM, each storing the data from respective sensors. The zephyr folder contains
session folders of recordings, with each session folder including seven CSV files that capture various data types,
including ECG, acceleration, and breathing waveforms. The e4 folder stores data from the Empatica E4 watch,
including PPG, EDA and accelerometry. Lastly, the CGM folder contains a file that stores glucose values. Each
data record includes a time-stamp field, which allows time alignment of signals from different sensors.

To streamline data access and training, we preprocess the raw data records from all sensors and align them
based on their corresponding timestamps. They are then split at the CGM level and packed into pkl binary files for
ease of use. The processed data is organized by subjects. Within each subject’s folder, there are multiple subfolders
corresponding to different days, each of which contain multiple pkl files. Each pkl file contains 5-minute signal
clips and metadata that are synchronized with CGM timestamps. A detailed schema outlining this structure is
included as a readme file on figshare. Figure 2 shows an example of the signals contained within each pkl file.

Technical Validation

To establish the validity of the dataset, we report an analysis of CGM recordings, signal quality for each sensing
modality and results on hypoglycemia predictions from individual sensors and joint models that combine pre-
dictions from multiple sensors.

CGMreadings. For each patient in the dataset, we divided CGM data into five clinically relevant categories?:
very low (<54 mg/dL), low (54-69 mg/dL), target range (70-180 mg/dL), high (181-250mg/dL), and very high
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Fig. 1 Hierarchical graph of the dataset.
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Fig. 2 One-minute clips of various signals in a pkl file including acceleration, EDA, BVP, HR, and temperature
data from E4 (left column) and acceleration, breathing, ECG, HR, and BR data from Zephyr (right column).

(>250mg/dL); see Fig. 3. These results indicate that blood glucose for all patients meet the clinical target of main-
taining blood glucose within the target range of 70-180 mg/dL for more than 70% of the time?. Additionally,
Fig. 4 presents the hourly average of glucose levels from the CGM throughout the collection days for all subjects.
White cells indicate time blocks with missing CGM recordings, likely due to loss of connectivity between the
CGM device and the patient’s smartphone.

Physiological signal quality. To validate the physiological recordings, we analyzed the signal quality for
ECG, PPG and EDA. In a first step, we examined the average number of “clean” ECG beats, as defined by the HR
confidence (HRC; the percentage for level of confidence the BioHarness device is able to detect heart rate during
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Fig. 3 Percentage of times each subject had glucose levels in five clinically-relevant categories: very low
(<54 mg/dL), low (54-69 mg/dL), target range (70-180 mg/dL), high (181-250 mg/dL), and very high
(>250 mg/dL).
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activity) and ECG noise (ECG-N) diagnostic values in the Bioharness recording, as described in the manufactur-
er’s Log Data Descriptions®. Specifically, we considered a beat to be “clean” if the corresponding HRC = 100 and
ECG-N < 0.001. To segment heart beats from the raw ECG signal, we used the Neurokit library** to extract the
R-peak in the QRS complex. Then, we extracted an analysis window as a function of the R-R period (inverse of the
instantaneous heart rate), keeping RR/3 samples prior to the R-peak and RR/2 samples after the R-peak. Figure 5
shows the number of clean ECG beats at 15-min intervals for one data collection day for participant c2502, along
with the vector magnitude unit (VMU) of the BioHarness accelerometer. The figure shows a large difference in the
number of clean ECG beats between daytime (approximately 90%) and nighttime (40%). This difference is likely
attributed to the effect of motion artifacts, which increase as the participant performed activities of daily living.

We also analyzed 17-day PPG recordings from one of the participants and computed the skewness of the
signal. The skew is a measure of the symmetry (or lack of it) of the distribution of the data. Figure 6b shows
a heatmap of the skewness, a signal quality index (SQI) commonly used?, with each column representing a
15-min period (from midnight to midnight), averaged across the 17 study days. In turn, each row in the heatmap
represents the number of 30-sec analysis windows with a given skewness value. Notice that nocturnal skewness
hovers in the range [—0.6, —0.8], indicative of high SQI. In contrast, the diurnal skewness is distributed over a
broader range, indicating poor quality —as we would expect due to motion artifacts. Figure 6¢ shows the number
of 30-sec analysis windows over the 24-hour period with high SQI (skewness in the range [—0.6, —0.8]). Though
the number of windows with high SQI is significantly larger at night, approximately 100 analysis windows with
high SQI are available during the day, thus still allowing prediction of glycemic excursions at any time in a
24-hour period®.
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Fig. 5 Number of clean (dark blue) and total (light blue) ECG beats (HRC =100; ECG-N < 0.001) for subject
2502 over a 24-hour period. The number of clean beats is substantially higher at nighttime (~90%) compared to
daytime (~40%), likely due to motion artifacts.
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Fig. 6 (a) Examples of PPG signals considered Excellent, Acceptable and Unfit for diagnosis; adapted from?*
(b) Distribution of skewness over a 24-hour period for PPG signals recorded over a 17-day period. (c) Average
number of analysis windows per 15-minute interval with skewness in the range [—0.6, —0.8].

Finally, to assess the quality of EDA recordings, we implemented an automated assessment methodology
as originally described by?’, with adjustments to accommodate differences in our dataset, mainly the sampling
rate of the EDA recordings on the Empatica E4 (4 Hz). The original procedure” used a low-pass finite impulse
response (FIR) “de-spiking” filter with a cutoff of 0.35 Hz (sampling rate: 32 Hz) to remove noise while pre-
serving low-frequency changes associated with skin conductance level (SCL) and skin conductance responses
(SCRs). It applied four rules for data validity: (1) EDA range between 0.05-60 4S, (2) maximum slope of £10
uS/sec, (3) temperature range of 30-40°C, and (4) surrounding invalid data transitions. This approach showed
excellent sensitivity (91%) and specificity (99%) when tested against expert-annotated EDA data. We adjusted
the FIR filter cutoff frequency proportionally to 0.04 Hz to reflect the lower Nyquist frequency and scaled the
slope threshold to £2.5 uS/sample. Transition effects were recalibrated to 20 samples surrounding invalid data
points (equivalent to 5seconds). The EDA range check was modified to a maximum value of 100 1S, the largest
value reported by the Empatica E4. We retained the remaining rules, including temperature range checks, as
originally described by Kleckner et al.?’.

Figure 7 shows the percentage of valid EDA data points in 5-minute intervals across a 24-hour period, aver-
aged over 17 days for subject ¢2s02. During the night until early morning, the percentage of valid data points
remains consistent and approaches or exceeds 95%. This trend likely reflects minimal movement and physiolog-
ical changes during sleep or reduced physical activity, which reduce artifacts such as abrupt EDA fluctuations or
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Fig. 7 Percentage of valid EDA data points across a 24-hour period, averaged in 5-minute intervals over 17
days for subject c2s02. Data validity is highest during early morning hours and late afternoon, coinciding with
periods of reduced activity. Significant drops in validity are observed during midday (10:00-14:00) and late
evening, likely due to increased movement or environmental transitions introducing artifacts.
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temperature variability. In contrast, significant drops in data validity occur between 10:00 and 14:00, with values
dipping below 70% in some intervals. These declines may coincide with periods of increased physical activity or
transitions, such as meals, tasks, or environmental changes, which introduce noise or cause data to fall outside
predefined validity thresholds like rapid slope changes or extreme values. A noticeable decline is observed again
in the late evening hours, around 20:00, though validity largely remains above 80%.

Hypoglycemia detection from physiological signals. In a final analysis, we illustrate the potential use
of PhysioCGM for detecting hypoglycemia non-invasively. Hypoglycemia is a critical challenge for individuals
with diabetes and needs timely detection because the symptoms are hard to notice and can impact various bodily
functions®. Traditional methods typically rely on CGM or ECG data alone'”*, but integrating additional physi-
ological signals has been shown to enhance prediction accuracy®®. We explore the use of multiple sensors—ECG,
PPG, and EDA— to predict hypoglycemia individually and in combination.

We used CGM data as ground truth and classified CGM segments with glucose levels below 70 mg/dL as hypo-
glycemic, and glucose levels at or above 70 mg/dL as euglycemic. We used a hierarchical approach to integrate infor-
mation from each modality at different levels of granularity. ECG signals were analyzed using 3-second windows
centered around R-peaks, capturing morphological changes and heart rate information. PPG signals were segmented
into 30-second intervals, providing a balance between capturing temporal changes and mitigating noise. Finally,
EDA signals were analyzed over 5-minute windows to integrate macro-level patterns of autonomic arousal that may
be indicative of hypoglycemic episodes. The data preprocessing steps, model design and results are detailed below.

Data preprocessing. ECG signals. We used a fixed 3-second window centered around the R-peak (see
Physiological signal quality), as ECG signals are generally cleaner for extracting individual beats. This approach
avoids relying on the RR-interval and instead ensures consistent data length while capturing both the morphol-
ogy of the ECG waveform and instantaneous HR (i.e., distance between R-peaks). Typically, a 3-second window
contains two to three R-peaks, depending on heart rate. To maintain quality, we only included clean ECG beats,
i.e., HRC=100 and ECG-N < 0.001, as described in Physiological signal quality.

PPG signals. We extracted 30-second intervals with a stride of 50% to ensure sufficient overlap between con-
secutive windows. A longer window is preferred for PPG to mitigate the impact of motion artifacts, which can
compromise beat-level robustness. This window length enables the model to capture temporal trends more
effectively without requiring explicit beat extraction. Additionally, we preprocess the raw PPG signal using the
‘ppg_clean’ function from NeuroKit2, which implements the method described in Elgendi et al.*® This method
applies a second-order Butterworth bandpass filter (0.5-8 Hz) to remove baseline wander and high-frequency
noise while preserving the physiological morphology of the PPG waveform.

EDA Signals. 'We process EDA signals using a 5-minute window, which matches the CGM sampling period.
This macro-level analysis captures broader autonomic arousal patterns over time. For segments where the EDA
data does not span the full 5-minute duration, we replace missing data with the average EDA value over that
segment.

Model design and training.  For this analysis, we only considered CGM segments that contained signals for
the three sensors (ECG, PPG, and EDA), which amounts to an average of 81% of all CGM recordings for which
the ECG signal is available. To predict hypoglycemia from multiple sensing modalities, we follow a “late-fusion”
approach in which we train separate models for each modality (ECG, PPG, EDA), and then combine their pre-
dictions to obtain a final hypoglycemia prediction; see Fig. 8. Details of the architecture for each modality and the
fusion model, as well as the training configuration, are described below.

ECG and PPG. 'We used InceptionTime® as the backbone architecture for ECG and PPG. InceptionTime is
well-suited for time-series data due to its ability to capture features at multiple temporal scales through parallel
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Fig. 8 Multimodal architecture for hypoglycemia detection using ECG, PPG, and EDA. Predictions from
modality-specific models (InceptionTime for ECG and PPG, Conv1D-BiLSTM for EDA) are averaged and
combined using logistic regression for final classification. N denotes the number of analysis windows for each
sensing modality over the 5-minute period between CGM readings.
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Fig. 9 Accuracy at EER for individual sensors vs. joint ECG + PPG + EDA.

convolutional filters of varying kernel sizes. The model comprises six InceptionBlockPlus modules. In each of
them, the input tensor passes through a bottleneck layer (1 x 1 convolution) that maps input channels to 32 out-
puts. Subsequently, it undergoes three parallel convolutional operations with kernel sizes 40, 20, and 10, all using
padding to maintain the size of the temporal dimension. Additionally, the input tensor is processed through
a max pooling layer with (kernel size, stride, padding) = (3, 1, 1) followed by a 1 x 1 convolution layer. The
outputs of these four paths (three convolutions and max pooling) are concatenated along the channel dimen-
sion, resulting in an output channel size of 128 (32 X 4) followed by a dropout layer with a rate of 0.1. ReLU
activation is applied in layers 1, 2, 4, and 5 within each InceptionBlockPlus. There is a residual connection every
three Inception modules, specifically at layers 3 and 6. After the 6 Inception blocks, the model output is passed
through an AdaptiveAvgPoolld layer, which reduces the temporal dimension to 1, followed by a fully connected
layer that maps the output to a single value (with dropout rate of 0.1). To ensure the model predicts probabilities,
a sigmoid layer is added at last. For ECG, the InceptionTime model consumes 3-second windows, whereas for
PPG a separate InceptionTime model consumes 30-second windows. For each signal, the model generates the
probability of hypoglycemia for the corresponding analysis window as a single output. In a final step, we com-
pute an average probability pg; across all ECG 3-second windows associated with a CGM reading (5 minutes),
and separate average probability pyp; across all PPG 30-second windows associated with the same CGM reading.

EDA. Given the non-pulsatile nature of electrodermal activity, we developed a custom model that consumes
the 5 minutes of EDA recordings prior to each CGM reading. The model consists of two 1D convolutional layers
followed by a Bidirectional Long-Short-Term Memory (Bi-LSTM), a recurrent neural network architecture that
combines forward and backward predictions to improve predictions®'. We use the output of the BiLSTM at the
last timestamp as an embedding and pass it through a fully connected (FC) layer to generate the probability
of hypoglycemia pyp,,. The first convolutional layer has 4 output channels, a kernel size of 12, a stride of 6, and
padding of 3, while the second layer has 8 output channels, a kernel size of 8, a stride of 5, and padding of 2.
Each convolutional layer is followed by ReLU activation and Batch Normalization®?. These convolutional layers
effectively down-samples an input sequence of length by a factor of 30: from 1,200 samples (5 minutes at 4 Hz)
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to 40 samples. The resulting feature map is reshaped and passed through a one-layer Bi-LSTM, which captures
temporal dependencies in the EDA signal. We also evaluated a model that decomposed EDA signals into phasic
(skin conductance responses) and tonic (skin conductance levels) channels®® and fed the two channels to the
CNN-BiLSTM network. Results for both approaches were comparable, so we are reporting the simpler of the two.

Multimodal integration. Once hypoglycemia predictions are obtained from each modality (pzce, Ppre> PEpA)>
we feed them to a logistic regression model that is trained to produce a final estimate of the probability of hypo-
glycemia for each 5-minute interval; see Fig. 8.

Training protocol.  Models for each individual modality and multimodal integration are trained using stratified
5-fold cross-validation to ensure that the euglycemic-to-hypoglycemic ratio is preserved across training and
validation splits. For optimization, we use Stochastic Gradient Descent (SGD) with a learning rate of 0.0005.
Given the significant class imbalance in the dataset, where euglycemic samples dominate, we employ a weighted
binary cross-entropy (BCE) loss, as follows:

w X BCE (yp
BCE (yp

red Vot = 1) for hypoglycemic instances

e Vot = 0) otherwise

where w represents the ratio of euglycemic to hypoglycemic CGM readings. This weighting ensures that hypo-
glycemic instances receive greater emphasis during training, addressing the imbalance and improving the mod-
el’s ability to detect rare hypoglycemic events.

Experimental results. We evaluate model performance using predicted accuracy at Equal Error Rate (EER) as
the primary evaluation metric, as it balances false positives and false negatives, ensuring fair comparison across
modalities. Results for each individual modality (ECG, PPG, EDA) and the joint model are shown in Fig. 9. ECG
consistently achieves the best accuracy at EER across all subjects, outperforming both PPG and EDA. PPG shows
moderate performance but with notable variability within and between subjects, as expected given that PPG has
higher susceptibility to motion artifacts. The EDA signal provides accuracy close to chance level, suggesting that
this modality alone is unsuitable for the task. Finally, the joint model (logistic regression) outperforms the indi-
vidual models, though differences with the ECG model are only significant at ov=0.05 for 5 out of the 8 subjects.

Limitations. The main limitation of the PhysioCGM dataset is the relatively small number of partici-
pants in the study and the narrow age range (24-41 years). For this reason, we focused the validation studies
on subject-dependent models. Given the large interindividual differences in physiology relative to the subtler
changes in physiological variables due to hypoglycemia, we did not consider developing subject-independent
models. Several strategies could be used to validate the generalization properties of our models, including
leave-one-subject-out cross-validation (i.e., train on N-1 subjects, validate on the held-out subject), as we have
done in previous work on CGM analytics*, or donor-receptor studies, where data from test subjects is evalu-
ated on personalized models from training subjects matched for age (or age groups), gender and other relevant
descriptors (e.g., BMI, Alc).

The study was conducted on patients with T1D because of the higher incidence of hypoglycemia, which can
have life-threating consequences in the short term. Hypoglycemia is less common in patients with T2D unless
they are being treated with insulin or sulfonylureas®*. Hypoglycemia can lead to similar physiological changes
(e.g., elevated heart rate, sweating) in both conditions, so our approach could in principle be used with T2D
patients, though this will need further research.

Data availability

The complete dataset is available at figshare?!.

Code availability
The preprocessing and validation code is available at https://github.com/PSI-TAMU/PhysioCGM. Please refer to
the readme.md file included in this repository.
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