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OPEN ' Haplotype-resolved genome
DATA DESCRIPTOR assembly of the leading cultivar
of jujube (Ziziphus jujuba Mill.
‘Huizao’)

YihanYang?, Shufeng Zhang?, Yunxin Lan?, Zhongchen Zhang?, Donghui Lin?, Jiao Li?,
- Jingjing Guo?, Jian Shen?, Qing Hao?, Meng Yang (> & Mengjun Liu*3%

© ‘Huizao'isa leading jujube (Ziziphus jujuba Mill.) variety valued for its high-quality dry fruit. Using

. PacBio HiFi long reads and Hi-C data, we generated a high-quality, chromosome-level, haplotype-
resolved genome assembly for this cultivar, with genome sizes of 371.22 Mb and 385.42 Mb for the two

. haplotypes, and corresponding N50 values of 30.69 Mb and 31.26 Mb. Over 99.9% of the assembled

. sequences were anchored to 12 chromosomes. Genome annotation identified 32,065 protein-coding

: genesinHapland 33,004 in Hap2, with 29,874 allelic gene pairs supported by collinearity and sequence

: similarity. Comparative analyses revealed extensive structural variants and allelic differences between

. the two haplotypes. This high-quality assembly addresses a critical gap in genomic resources for the

. “Huizao’ cultivar and provides a valuable foundation for allele-aware analyses, molecular breeding, and

. genetic diversity researchin jujube.

: Background & Summary

. Jujube (Ziziphus jujuba Mill.), the most important cultivated species of both genus Ziziphus Mill and family
 Rhamnaceae, is a major fruit tree native to China, renowned for its tolerance to drought, poor soil, salinity, and
. alkalinity. These tolerances make it increasingly important globally'. Jujube fruit is rich in sugars and vitamins
: and can be consumed fresh, dried, or processed into various products>*. Additionally, jujube fruit has significant
: medicinal value, with polysaccharides, cyclic nucleotides, and flavones exhibiting antioxidant, anti-tumor, and
* immunomodulatory properties*”’. ‘Huizao, a leading variety of jujube for dry fruit with excellent fruit quality,
. covers approximately 210,000 hectares and produces over 3 million tons annually, accounting for nearly 30%
. of global jujube production. Originating from the lower reaches of the Yellow River, the mother river of China,
. ‘Huizao is now predominantly cultivated in the oases surrounding the Taklamakan Desert, the second-largest
. desert in the world®°.

: In 2014 and 2023, our group published the first genome sequence and the first telomere-to-telomere
. (T2T) genome of jujube, using second- and third-generation sequencing technology, respectively, based on
© the cultivar ‘Dongzaco’ (Z. jujuba Mill. Dongzao’)!%!L. In addition, chromosome-level genome assemblies have
- also been reported for the multi use jujube cultivar ‘Junzao’ (Z. jujuba Mill. ‘Junzao’)!?, the wild sour jujube
. (Z. jujuba var. spinosa)"?, and the table cultivar ‘Lingwuchangzao’ (Z. jujuba Mill. ‘Lingwuchangzao’) and ‘Shiguang’
. (Z. jujuba Mill. ‘Shiguang’)'*. However, a haplotype-resolved, chromosome-level genome assembly for dried
* jujube ‘Huizao’ is still lacking.

: In this study, we report a high-quality, haplotype-resolved genome of ‘Huizao, the leading jujube cultivar
. for dry fruit. The genome consists of two haplotypes: Hapl1 (371,219,385 bp) and Hap2 (385,424,944 bp), with
: contig N50 values of 12.70 Mb and 10.68 Mb, and scaffold N50 values of 30.69 Mb and 31.26 Mb, respectively.
: This genome provides a valuable resource for studying functional genes related to key economic traits in jujube,
. accelerates the application of genomics in jujube molecular breeding, and facilitates studies on genomic diver-
. sity, allele-specific expression and the evolution of the Ziziphus genus.
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Fig. 1 Overview of the ‘Huizao’ plant and genome estimation using PacBio Hifi reads. (a) Leaves, flowers and
fruits of ‘Huizao’ jujube. (b) Estimation of genome ploidy, size, and heterozygosity using GenomeScope2.

Methods & Results

Sample preparation. Young leaves were collected from ‘Huizao’ jujube grown at the experimental base of
Hebei Agricultural University (115.43°E, 38.83°N, 79.8 m altitude). A total of 15g of healthy young leaf tissues
was sampled. The leaves were immediately frozen in liquid nitrogen for subsequent PacBio HiFi and Hi-C library
preparation and sequencing (Fig. 1a).

HiFi SMRTbell library construction and sequencing. High-quality DNA was extracted using the SDS
method and purified with the QIAGEN® Genomic Kit (Cat# 13343, QIAGEN). DNA purity was assessed using
a NanoDrop One UV-Vis spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA), and integrity was
verified via agarose gel electrophoresis. The PacBio HiFi SMRTbell library was prepared using the SMRTbell
Express Template Prep Kit 2.0 (PacBio, CA, USA). Long DNA fragments were sheared to 15-18 kb using a
g-TUBE (Covaris, MA, USA), then concentrated and purified with AMPure PB beads (PacBio, CA, USA). Size
selection for SMRTbell templates greater than 15 kb was performed using BluePippin (SageScience, MA, USA) to
obtain large-insert SMRTbell libraries for sequencing. After data download, MD5 checksums were generated for
the files to ensure data integrity.

Hi-C library construction and sequencing. For Hi-C library construction, approximately 2 grams of
fresh leaves from the ‘Huizao’ jujube cultivar were used. Sample cells were fixed with formaldehyde to crosslink
DNA with proteins, as well as proteins with each other. After crosslinking, the cells were lysed, and DNA qual-
ity was evaluated through sampling. Upon confirmation of sufficient quality, Hi-C fragment preparation was
initiated.

Chromatin was digested using the restriction enzyme DpnlI, which recognizes the GATC motif. The primer
index used was CGCTCATT. The efficiency of enzymatic digestion was assessed by sampling. Following diges-
tion, the DNA underwent biotin labeling, blunt-end ligation, and purification. DNA quality was re-evaluated at
this stage, and upon meeting quality requirements, standard library construction proceeded.

Library construction included the removal of biotin from unligated DNA ends, ultrasonic fragmentation,
end repair, A-tailing, and adapter ligation to generate sequencing-ready fragments. PCR amplification was then
optimized and performed. The amplified products underwent quality control to assess enrichment for Hi-C
junctions. Libraries that passed QC were sequenced on the Illumina NovaSeq platform using a paired-end
150bp (PE150) sequencing strategy.

In total, Hi-C sequencing generated approximately 54.3 Gb of data, consisting of 181 million paired-end
reads, which were used for chromosome-level genome scaffolding.

Genome size and ploidy estimation. The genome size and ploidy of the ‘Huizao’ jujube were estimated
using 4.8 Gb of high-quality PacBio HiFi sequencing data (Table 1). To accurately assess genome size and hete-
rozygosity, we performed GenomeScope modeling based on a series of odd-numbered k-mer sizes (k=17 to 31).
Among these, the 17-mer model yielded the best performance for our dataset, showing the lowest model error
(0.116%), clear separation between homozygous and heterozygous peaks, and a more consistent estimation of
repetitive content. Consequently, k=17 was selected as the optimal parameter for k-mer analysis in this study,
using K-Mer Counter (KMC, v3.0.0)*® (Fig. S1). The resulting k-mer frequency distribution was further analyzed
with GenomeScope (v2.0)'° to estimate genome size, ploidy, and heterozygosity, with the parameters “-m64 -cil
-¢s10000 -cx10000 -p 2”. The analysis indicated that ‘Huizao’ jujube is diploid, with an estimated haploid genome
size of approximately 361.46 Mb and a heterozygosity rate of 1.54% (Fig. 1b).
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Data PacBio Hifi data
Number of Reads 477,249

Number of Bases (bp) 7,992,448,168
Coverage 22

Mean (bp) 16,746.9
Minimum (bp) 234

Maximum (bp) 48,953

Table 1. Statistics of genomic sequencing data.

Genome assembly.  De novo assembly of PacBio HiFi reads was performed using Hifiasm (v0.19.6-r595)"7,
with the following parameters: -0 04-HZ -t 80—ul-cut 20000 -D10-hom-cov 20. Both PacBio HiFi reads and Hi-C
paired-end sequencing data were used to generate the initial assembly, resulting in two haplotype-resolved contig
sequences.

The preliminary assemblies of Hapl and Hap2 were 389.01 Mb and 393.82 Mb in size, containing 161 and
123 contigs, with contig N50 values of 11.77 Mb and 10.45 Mb, respectively. To eliminate haplotypic duplications
and enhance assembly quality, we applied Purge_dups (v1.2.6) (https://github.com/dfguan/purge_dups). This
refinement step produced final assemblies with improved contiguity: Hap1 was 371.65 Mb in size with 47 contigs
and a contig N50 of 12.70 Mb, while Hap2 measured 385.33 Mb with 49 contigs and a contig N50 of 10.68 Mb.

Chromosome anchoring by Hi-C.  To evaluate the quality of the Hi-C libraries, we conducted align-
ment and statistical analysis for both haplotypes (Hap1 and Hap2) using Hicup (v0.9.2)'® with the parameter
“--rel AGATC,DpnlII”. The results demonstrated high valid-pair percentages and reasonable ratios of intra- and
inter-chromosomal interactions in both datasets (Table S1), indicating that the Hi-C libraries were of high quality
and suitable for downstream chromosome-level genome assembly and analysis (Fig. S2). Raw Hi-C reads were
first quality-filtered using fastp (v0.21.0)" with default parameters, resulting 54.3 Gb of clean data, comprising
181 million paired-end reads. These reads were then aligned to the preliminary genome assembly using BWA
(v0.7.19-r1273)* with the -5SP parameter to accommodate Hi-C-specific split reads. The alignment output was
processed with samblaster (v0.1.26)*! using default parameters to remove PCR duplicates. Low-quality and inva-
lid alignments were filtered using samtools (v1.21)* with the -F 3340 parameter. To further refine the data, we
applied the filter_bam script from the HapHiC toolkit (v1.0.5)%, using the -nm 3 parameter to allow a maximum
of three mismatches. The resulting filtered alignments were used for subsequent scaffolding analysis.

Scaffolding was performed using the HapHiC pipeline, with the restriction enzyme set to DpnlI (recognition
sequence: GATC), the chromosome number specified as 12, and the —processes 5 parameter enabled. The result-
ing scaffold structures were manually curated and refined using JuiceBox (v1.11.08)* to adjust chromosome
boundaries, resolve misjoins, and correct structural variations such as inversions and translocations (Fig. 2a).
Subsequently, the juicer post tool was used to generate the final chromosome sequences and the correspond-
ing agp file. To assess the quality of the chromosome-level assembly, the Hi-C contact matrix was visualized
using the HapHiC plot tool.

Both haplotypes were successfully clustered into 12 groups and ordered according to the reference genome!*.
The final assemblies anchored 371.65 Mb of contigs in Hap1l and 385.33 Mb in Hap2 to the chromosomes,
achieving scaffold N50 values of 30.69 Mb and 31.26 Mb, respectively, with L50 values of 6 (Table 2). The com-
pleteness of single-copy genes was assessed using BUSCO (v5.8.2)% with the embryophyta_odb10 database
using default parameters. In Hapl1, 2,326 genes were identified, of which 97.6% were complete and 0.5% were
partial. Similarly, Hap2 also contained 2,326 genes, with 98.4% complete and 0.6% partial (Fig. 2b). These results
demonstrate the successful assembly of a high-quality, haplotype-resolved, chromosome-scale genome for the
‘Huizao’ jujube cultivar (Fig. 3).

PacBio HiFi reads were mapped to the genome, achieving coverage of 99.90% for Hap1l and 99.98% for Hap2.
The BUSCO scores and mapping statistics confirmed the high completeness and accuracy of the assemblies
(Table 2).

Genome annotation. Repetitive sequences in the ‘Huizao’ genome were annotated using both de novo
and homology-based methods. A custom repeat library was built with RepeatModeler (v2.0.2a)%, RepeatScout
(v1.0.6)%, and LTR_retriever (v2.9.0)?® and used by RepeatMasker (v4.1.2-p1)% to annotate repeats in GFF
format. Repetitive sequences at both the DNA and protein levels were identified by mapping to the Repbase
database®® using RepeatMasker and RepeatProteinMask. Tandem repeats were annotated de novo with TRF
(v4.10.0)*L. In total, repetitive elements spanned 203.4 Mb (54.79%) of Hap1 and 215.3 Mb (55.87%) of Hap2,
with LTRs being predominant (26.01% in Hap1, 26.77% in Hap2) (Table 3).

Protein-coding gene prediction was performed through a combination of de novo, homology-based, and
transcriptome-based approaches. RNA-seq reads from leaf tissue were quality controlled and aligned to the
assembled genome using STAR (v2.7.9a)*?, followed by transcript assembly with StringTie (v2.1.7b)* and
structural annotation via PASA (v2.5.3)%. Protein sequences from six representative species® (Malus domes-
tica, Arabidopsis thaliana, Ziziphus jujuba, Prunus armeniaca, Populus, and Prunus persica) were retrieved from
public NCBI databases and annotated with GeMoMa (v1.9)*. De novo gene prediction was performed using
Augustus (v3.5.0)%.
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Fig. 2 Interaction heatmap of the two haplotype genomes and synteny between haplotypes. (a) Hi-C interaction
heatmaps of the two haplotypes. (b) Collinearity relationship between the two haplotypes.

Data Chr Chr
Sequence 12 12
Sequence (bp) 371,219,385 385,424,944
Shortest (bp) 24,613,415 26,457,032
Longest (bp) 46,948,823 48,294,064
Average (bp) 30,934,948 32,118,745
N50 (bp) 30,686,137 31,256,555
L50 6 6

N90 (bp) 25,551,353 28,538,583
L90 11 11

GC content (%) 32.95% 32.98%
Complete BUSCOs (%) 97.6% 98.4%
Complete and single-copy BUSCOs (%) | 96.0% 96.8%
Complete and duplicated BUSCOs (%) | 1.6% 1.6%
Mapping ratio(PacBio%) 99.90% 99.98%

Table 2. Genome assembly statistics of the two haplotypes of ‘Huizao’ jujube.

The results were integrated using EVM (v2.1.0)*® with the parameters “~segmentSize 100000 —overlapSize
10000%, resulting in 32,065 protein-coding genes in Hap1 and 33,004 in Hap2. Functional annotation was carried
out using InterProScan (v5.57-90.0)*° and eggNOG-mapper (v2.1.8)*°, with data from TrEMBL, Swiss-Prot,
InterPro, the NCBI Non-Redundant Protein Database (nr), eukaryotic orthologous groups, and Gene Ontology
for comprehensive functional classification (Table 4). Except for EVM (v2.1.0), all other software were used with
their default parameters.
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Fig. 3 Circular maps of the two haplotypes of ‘Huizao’ jujube. (a) Chromosome name and size (b) Gene density.
(c) GC skew. (d) GC content. (e) Repeat sequence density. (f) Collinearity of CDS genes.

Hap1l Hap2

Length (bp) | % in genome | Length (bp) | % in genome
DNA 27,006,928 | 7.28 28,494,608 | 7.39
LINE 4,191,657 113 4,341,941 1.13
SINE 17,363 0.00 17,375 0.00
LTR/Copia 27,785,634 | 7.48 29,831,170 | 7.74
LTR/Gypsy 60,709,017 | 16.35 65,287,729 | 16.94
Rolling-circles 4,669,087 1.26 5,053,122 1.31
Unclassified 57,169,592 | 15.40 59,837,417 | 15.53
Small RNA 3,029,258 0.82 3,526,587 0.91
Satellites 57,505 0.02 60,257 0.02
Simple repeats 8,817,084 2.38 8,926,939 2.32
Low complexity 1,880,891 0.51 1,904,836 0.49
Total 203,396,803 | 54.79 215,339,572 | 55.87

Table 3. Transposable element (TE) information from genome annotation.

Data Hapl Hap2

Gene number 32,065 33,004
Gene total length (bp) 110,672,134 113,989,558
Gene density (gene/Mb) 86.38 85.63

Gene average length (bp) 3451.49 3453.81
CDS average length (bp) 1323.81 1319.39
Average exon length (bp) 250.93 251.11
Exon GC content (%) 43.48 43.48
Average intron length (bp) | 497.64 501.72
Intron GC content (%) 34.38 31.38

Table 4. Assembly metrics of the two haplotypes of ‘Huizao.

Genome collinearity analysis. MCScan (v1.0)*! was used with default parameters to examine the col-
linearity between the two haplotype genomes of ‘Huizao’ jujube, with plots generated using the option ‘~min-
span =30’ A total of 50 collinear blocks were identified, encompassing 25,826 gene pairs. Of these, 78.67% of the
genes were from Hapl and 76.65% from Hap2. The genome collinearity analysis demonstrated a high degree of
synteny between the two haplotype genomes (Fig. 2b).
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Fig. 4 Comparative analysis. (a) Structural variations between the two haplotype genomes of ‘Huizao. (b)
Collinearity and structural variations between the two haplotypes of ‘Huizao and the reference genome of
‘Dongzao.

Structural variation detection. Intra-species structural variations between the two haplotype genomes
were identified using the SyRI (v1.7.0)** pipeline with default parameters. Minimap2 (v2.28)** was used to align
the two haplotype genomes with the parameters “~eqx -ax asm5 -c —secondary=no.” The resulting SAM files
were converted to BAM format, sorted, and analyzed for structural variations using the SyRI pipeline with default
settings. The identified variations were classified into two categories: genomic rearrangements and sequence var-
iations. Seven types of structural variation sites were detected, including 329 collinear regions, 48 inversions, 333
translocations, 182,766 insertions, and 182,368 deletions (Fig. 4a).
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Data Records

The genome assembly and associated raw sequencing data are available at the National Genomics Data
Center (NGDC) under GSA accession numbers CRA021913* and CRA021947%, with BioProject number
PRJCA036471. The haplotype genomes of ‘Huizao’ jujube have been uploaded to the GWH database, with the
assembly number GWHFIKR00000000.1 for Hapl and GWHFIKS00000000.1% for Hap2. The annotation files
have been deposited in Figshare*’. In addition, the raw data have also been deposited in the National Center for
Biotechnology Information (NCBI) under BioProject accession number PRJCA036471, with the sequencing
data available in the SRA*® and the genome assembly in GenBank***.

Technical Validation

The completeness of the genome was assessed from both the assembled genome sequence and the annotated
protein sequence perspectives. For genome sequence validation, we compared the two haplotype assemblies
with the published T2T genome assembly of ‘Dongzac’ jujube using MUMMER (v4.0.0beta2)*! to evaluate col-
linearity and identify differences (Fig. 4b). Coverage was calculated using a custom Python script, yielding 99.0%
for haplotype 1 and 99.8% for haplotype 2 (Table 2). Various assembly metrics, including contig N50, scaffold
N50, and GC content, were also computed to assess the quality of the assembled genomes. Combined with the
BUSCO results, both haplotype genomes exhibited high completeness.

Additionally, MUMMER (v4.0.0beta2) was used to compare the ‘Huizao” haplotypes with the T2T genome
assemblies of ‘Junzao™ and ‘Dongzao’ jujube as reference genomes. The alignment was performed using nucmer
with parameters (-1 100 -c 100). The resulting files were processed with delta-filter using parameters (—1 -i 98 -1
500), and the plots were generated with mummerplot (Fig. $3). These comparisons confirmed the high quality
and completeness of the ‘Huizao’ genome assemblies.

Data availability

All data generated in this study, including the haplotype-resolved genome assembly, annotations, and raw
sequencing reads, have been deposited in public repositories. The genome assembly and associated raw
sequencing data are available at the National Genomics Data Center (NGDC) under BioProject number
PRJCA036471, with GSA accession numbers CRA021913 and CRA021947. The haplotype genomes of ‘Huizao’
jujube have been deposited in the Genome Warehouse (GWH) with assembly numbers GWHFIKR00000000.1
(Hapl) and GWHFIKS00000000.1 (Hap2). The annotation files are available in Figshare (https://doi.org/10.6084/
m9.figshare.29617400). In addition, the raw sequencing data have also been deposited in the National Center
for Biotechnology Information (NCBI) under BioProject accession number PRJCA036471, with sequencing
data available in the SRA, and the genome assemblies available in GenBank under accession numbers
GCA_052692825.1 and GCA_052692835.1.

Code availability
No unpublished code was used in this study. All data processing commands were executed following the
respective software manuals for the bioinformatics tools utilized.
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