

scientific data

OPEN

DATA DESCRIPTOR

The chromosome-level genome assembly and annotation of *Salvelinus malma*

Xiangbing Zeng^{1,3}, Lijun Hu^{1,3}, Jiahao Zhang^{1,3}, Yuan Yao², Hancheng Bao¹, Dan Li¹, Qinfeng Gao¹✉ & Yuan Tian¹✉

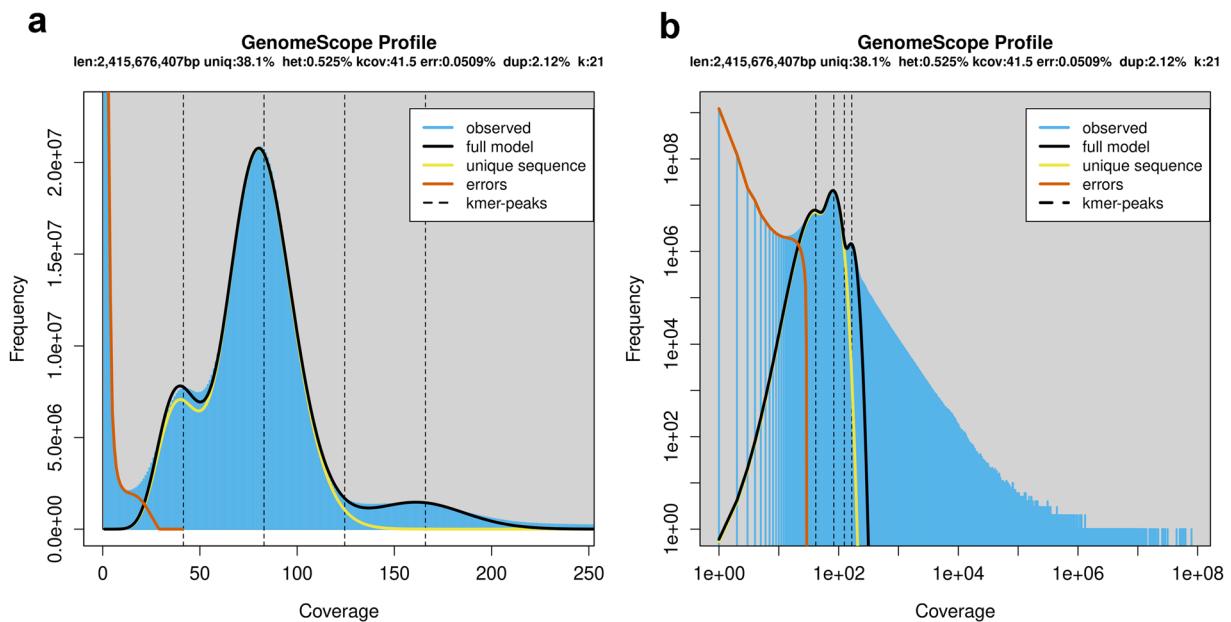
Salvelinus malma, belonging to the Salmonidae family, is a critically endangered species in China. To support genetic research and strengthen the protection of wild fish resources, the first chromosome-level reference genome of *S. malma* was generated through the integrated technologies of PacBio and Hi-C sequencing. The genome assembly has a total length of 2.52 Gb with contigs assigned to 42 chromosomes. A total of 45,385 protein-coding genes were annotated with excellent 98.8% BUSCOs completeness. The chromosome-level genome of *S. malma* will serve as a valuable resource for functional genomics research and greatly facilitate the ecological conservation in the future.

Background & Summary

Salvelinus malma belongs to the genus *Salvelinus* (family Salmonidae, order Salmoniformes, class Osteichthyes) with ecological and economic importance¹. It usually inhabits in freshwater or marine ecosystems within northwest America and northeast Asia^{2,3}. Characterized by its vibrant pigmentation and superior flesh quality⁴, *S. malma* has earned the epithet of “King of Cold-Water Fishes” in the high-altitude aquatic systems. The substantial market value have positioned it to become the premium aquaculture product in international trade^{5,6}.

In recent decades, it has witnessed the alarming population declines of wild landlocked *S. malma* populations, primarily driven by anthropogenic disturbances and habitat alterations^{2,7,8}. Together with the exceptionally slow growth rate, the wild population of *S. malma* gradually becomes scarce in freshwater systems of China⁹. Conserving such endangered species presents a significant challenge for biologists and ecologists. In this context, genomics has emerged as a powerful tool in conservation biology, offering insights into the genetic diversity of threatened species. Meanwhile, the genomic resources provide critical information on current and historical demography trends, phylogenetic relationships, and the molecular mechanisms that underpin interactions between genetics and environmental factors. Moreover, they enable the development of rapid monitoring tools and inform conservation strategies grounded in genetic evidence. To fill this knowledge gap, we present the first chromosome-level genome assembly of *S. malma* through the integration of PacBio long-read sequencing and Hi-C scaffolding technologies. This genomic blueprint will serve as a foundational resource for facilitating the marker-assisted selection and informing the evidence-based conservation management. Our work will establish the crucial genomic infrastructure for advancing fundamental research for this ecologically vulnerable species (Fig. 1).

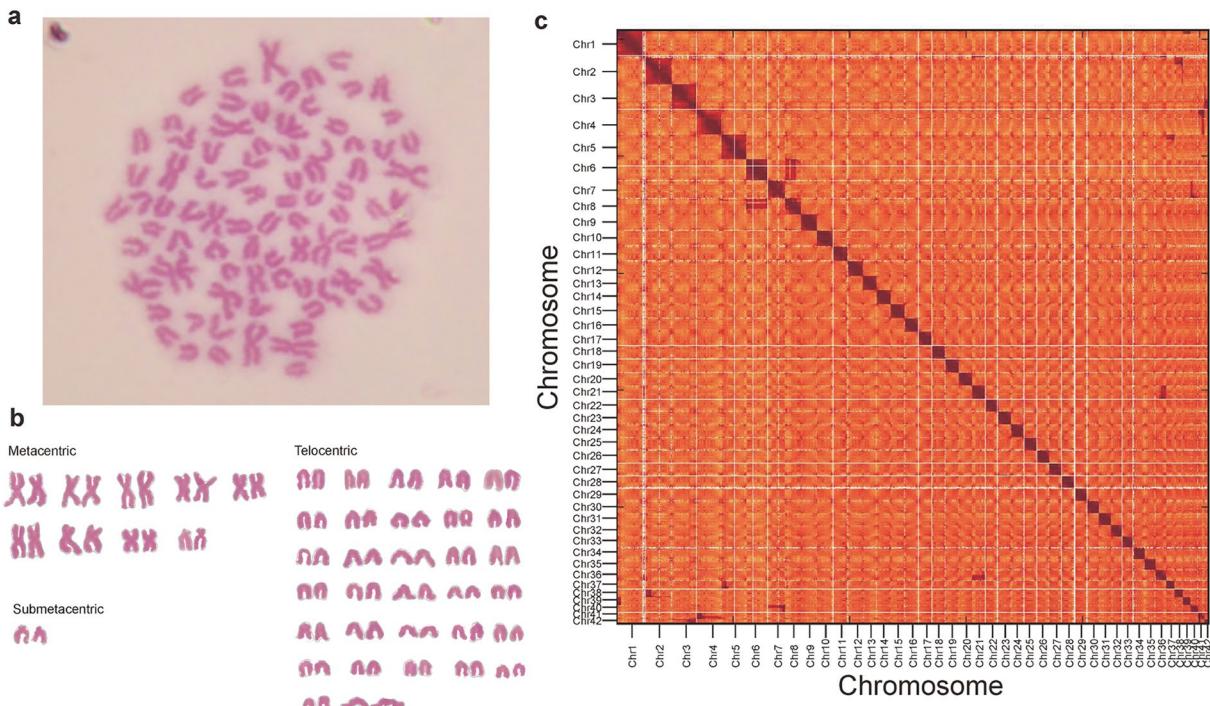
Methods


Samples and sequencing. All procedures involving animals conformed to ethical standards set by the Institutional Review Board at Ocean University of China (Permit Number: 20141201). The male adult *S. malma* (body length: 33.25 cm and body weight: 0.71 kg) was collected and obtained from the Sifeng salmonid aquaculture farm in Yanji, Jilin Province, China. Following the anaesthesia with 100 mg/L tricaine methanesulfonate (MS-222, Sigma-Aldrich), the dorsal muscle tissue was aseptically collected, flash-frozen in liquid nitrogen, and stored at -80°C . Genomic DNA was extracted using the QIAamp DNA Mini Kit (QIAGEN). DNA integrity was verified by electrophoresis and Agilent 4200 Bioanalyzer analysis (DNA Integrity number >7.0 ; OD260/280 = 1.8–2.0). High-quality DNA samples were applied for the construction of three different sequence libraries: (1) Illumina library for genome survey: libraries (350-bp insert size) were constructed using the TruSeq Nano DNA Kit and

¹Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.

²Molecular Bioscience-Genetics and Genomics, Duke Kunshan University, Kunshan, 215316, China. ³These authors contributed equally: Xiangbing Zeng, Lijun Hu, Jiahao Zhang. ✉e-mail: qfgao@ouc.edu.cn; tianyuan@ouc.edu.cn

Fig. 1 The full-body view of *S. malma*.

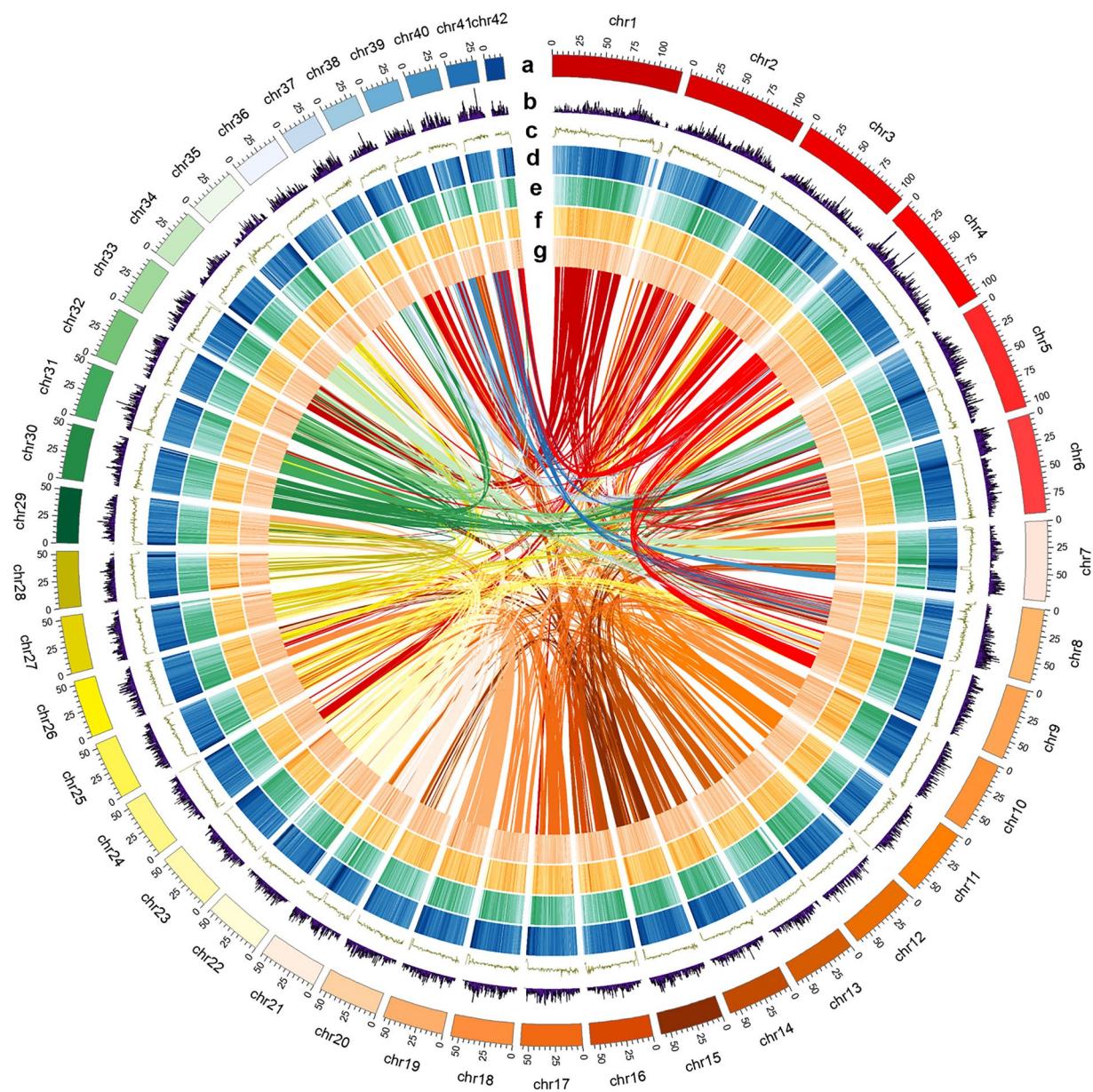

Fig. 2 The 21-mer analysis for genome survey of *S. malma*. **(a)** Linear scale. **(b)** Exponential scale. The estimated genome sizes (len), unique k-mer ratios (uniq), heterozygosity (het) ratios, k-mer coverage values (kcov), read errors (err), and duplication (dup) rates are displayed on the top side of each panel.

Libraries	Read sizes	Reads number	Data	Sequencing coverage
Illumina	150 bp	1.58 Gb	237.52 Gb	94.33 \times
PacBio	10–25 kb	4.35 Mb	78.21 Gb	31.06 \times
Hi-C	150 bp	2.38 Gb	372.50 Gb	147.93 \times

Table 1. Statistics of sequencing data in *S. malma* genome assembly.

sequenced on NovaSeq 6000 platform (150-bp paired-end). It totally generated 237.52 Gb (94.33 \times genome coverage) raw data. Raw reads were quality-controlled using Fastp (v0.23.2)¹⁰ with the following thresholds: adapter contamination \leq 5 bp, ambiguous bases \leq 5%, Q20 \geq 90%. (2) SMRTbell library for *de novo* assembly: PacBio Sequel II with SMRTbell libraries were prepared using the Template Prep Kit 1.0 with size selection (15–20 kb fragments) via BluePippinTM (Sage Science). PacBio Sequel II sequencing generated 78.21 Gb (31 \times genome coverage) circular consensus sequencing (CCS) reads (\geq 99% accuracy) over 30-hour movie captures. (3) Hi-C library for chromosome anchoring: Muscle samples were initially crosslinked with formaldehyde to preserve chromatin spatial interactions, followed by quenching with glycine. Crosslinked chromatin was digested with restriction enzyme to generate cohesive ends. The digested DNA fragments underwent end repair and biotin labelling. Blunt-end fragments were proximity-ligated with T4 DNA ligase under diluted conditions to prioritize intramolecular ligation events. Purified DNA was randomly sheared via ultrasonication into 300–500 bp fragments. Biotinylated DNA fragments were enriched by streptavidin magnetic bead capture to selectively retain proximity-ligated junctions. Sequencing libraries were constructed using the Illumina TruSeq Nano DNA Library Prep Kit. The spatial chromatin organization was interrogated through 150 bp paired-end sequencing on the Illumina NovaSeq 6000 platform, generating 372.50 Gb data (147.93 \times genome coverage) for chromosome anchoring (Table 1).

Genome assembly. The genome assembly workflow began with genome survey analysis. The 21-kmer frequency matrix was constructed using the Jellyfish (v2.3.0)¹¹ software based on Illumina sequencing data. GenomeScope (v2.0)¹² online tool was performed for the evaluation of *S. malma* genome, showing the 2.42 Gb genome size with 0.35% heterozygosity and 42.7% repetitive content (Fig. 2). Subsequently, PacBio HiFi reads were submitted for the *de novo* assembly via Hifiasm (v0.19.6)^{13,14} software, yielding 7,979 primary contigs


Fig. 3 Chromosome number and morphology of *S. malma* revealed by cytogenetic and Hi-C analyses. (a) Metaphase chromosome spread showing the diploid chromosomal morphology. (b) Karyotype arrangement based on and centromeric position. (c) Hi-C contact map and chromosome anchoring of *S. malma* genome.

Genome features	
Genome size before polish	2,517,882,438 bp
Genome size after polish	2,518,966,877 bp
Gaps before filling	4,536
Gaps after filling	3,256
GC	43.43%
Contigs	7,979
Anchored contigs chromosome	3,558
Contig N50	1.29 Mb
Number of chromosomes	42

Table 2. Summary statistics of *S. malma* genome assembly.

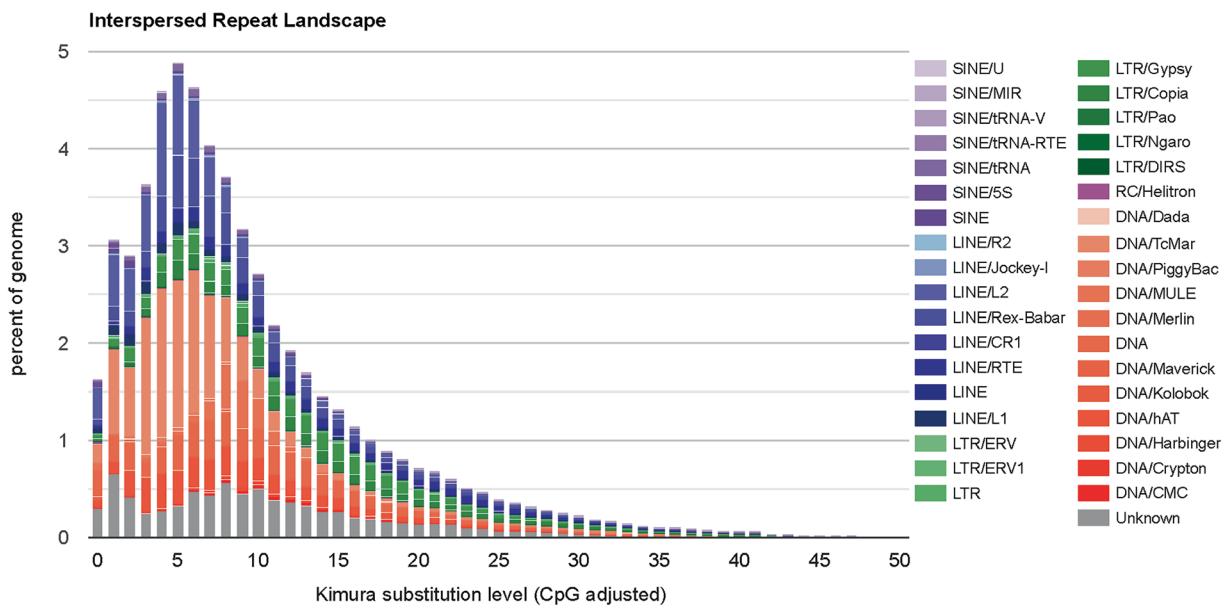
(N50 = 1.29 Mb). Hi-C scaffolding was performed using the traditional Juicer and 3D-DNA pipelines¹⁵, followed by manual curation in Juicebox (v1.11.08)¹⁶ tool to generate the chromosome-level scaffolds. A total of 3,558 contigs were anchored to 42 chromosomes (Fig. 3c, Table 2). Then, all the contigs and HiFi reads were used to fill gaps for initial assembly using夸尔TeT (v1.2.5) software¹⁷. The assembly genome was further polished with HiFi reads using the T2T-Polish workflow (<https://github.com/arangrhe/T2T-Polish>)¹⁸. The final genome assembly size was 2.52 Gb with a GC content of 43.43% (Fig. 4, Tables 2, 3). Additionally, the assembly achieved 98.6% BUSCO completeness based on the Actinopterygii_db12 gene set.

Repetitive sequence annotation. Firstly, RepeatModeler (v2.06)¹⁹ software was employed to construct the *de novo* repeat sequence database for the *S. malma* genome. Subsequently, it was merged with the salmonid-specific repeat library from RepBase²⁰, working as the reference for repetitive sequence annotation of *S. malma* genome via RepeatMasker (v4.1.3)²¹. The results revealed 1.66 Gb of repetitive sequences, accounting for 55.55% of *S. malma* genome. Among these, the DNA transposons dominated at 23.60%, followed by long interspersed nuclear elements (LINEs) at 14.04%, and long terminal repeats (LTRs) at 6.50% (Fig. 4, Table 4). The repetitive sequences were processed using the calcDivergenceFromAlign.pl script from the RepeatMasker package to calculate Kimura substitution levels. The plot of repeat landscape generated by the createRepeatLandscape.pl script was employed to visualize the genomic distribution and evolutionary dynamics of repetitive elements in *S. malma* (Fig. 5).

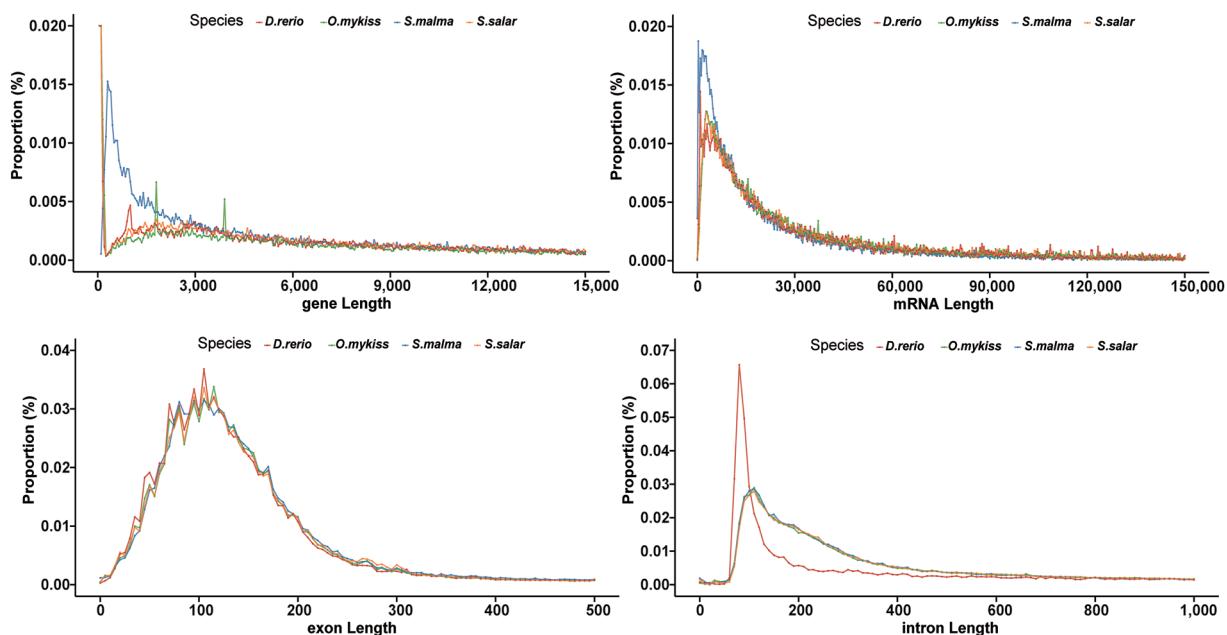
Fig. 4 Statistics of genome assembly of *S. malma*. (a) Physical map of *S. malma* chromosomes (Mb scale), different colour represents different chromosome. (b) Gene density represented by number of genes in 1 Mb window. (c) GC content represented by percentage of G/C bases in 1 Mb window. (d) Distribution of repeated sequences in 1 Mb window. (e) Distribution of DNA transposons sequences in 1 Mb window. (f) Distribution of LINE transposons sequences in 1 Mb window. (g) Distribution of LTR transposons sequences in 1 Mb window.

Genome annotation. Protein-coding genes in *S. malma* genome were annotated through a comprehensive strategy that integrated the RNA evidence, homology protein, *ab initio* prediction and NCBI Eukaryotic Genome Annotation Pipeline (EGAPx). For the RNA evidence, we collected a series of RNA-seq datasets in various tissues of *Salvelinus sp.*, including liver, gonad, gill, stomach, head kidney, hind kidney, brain, muscle, gut, heart, and eye with the accession number of SRS2043860-SRS2043871. Then, these RNA-seq datasets were aligned to the *S. malma* genome by HISAT2 (v2.1.0)²² with default parameter. The SAM files generated from alignments were sorted using Samtools (v1.12)²³. StringTie (v2.2.1)²⁴ was employed to perform *de novo* transcript assembly on the merged BAM file. The LongOrfs module of TransDecoder (v5.7.1, <https://github.com/TransDecoder/TransDecoder>) was utilized to predict potential open reading frames in the cDNA sequences. For homology protein evidence, the protein sequences of homologous species including *Oncorhynchus keta* (GCA_023373465.1)²⁵, *O. mykiss* (GCA_013265735.3)²⁶, *Coregonus clupeaformis* (GCA_020615455.1)²⁷, *O. nerka* (GCA_034236695.1)²⁸, *O. kisutch* (GCA_002021735.2)²⁹, *O. gorbuscha* (GCA_021184085.1)³⁰, and *Salmo trutta* (GCA_901001165.2)³¹ were downloaded from the public NCBI database and aligned against the *S. malma* genome using miniprot (v0.13)³². For *ab initio* prediction, Helixer (v0.3.3)³³ software was also used to predict structure based on the Deep Learning and a Hidden Markov Model. Predictions from RNA evidence, homology protein and *ab initio*

Chromosome	Length (bp)	Chromosome	Length (bp)
1	121,929,495	22	55,011,756
2	113,791,673	23	54,948,139
3	107,467,233	24	54,918,496
4	106,292,885	25	54,342,823
5	103,885,780	26	53,543,088
6	92,031,621	27	53,463,245
7	74,969,312	28	53,208,494
8	68,792,867	29	52,262,346
9	67,089,139	30	51,793,532
10	66,503,583	31	50,615,112
11	63,842,206	32	48,022,215
12	63,619,472	33	47,229,961
13	60,469,526	34	46,609,724
14	59,866,668	35	46,165,309
15	59,032,869	36	45,321,591
16	58,282,513	37	35,250,594
17	57,624,824	38	33,692,928
18	57,587,736	39	33,688,326
19	56,743,431	40	31,312,287
20	55,885,288	41	28,744,412
21	55,795,102	42	17,319,276

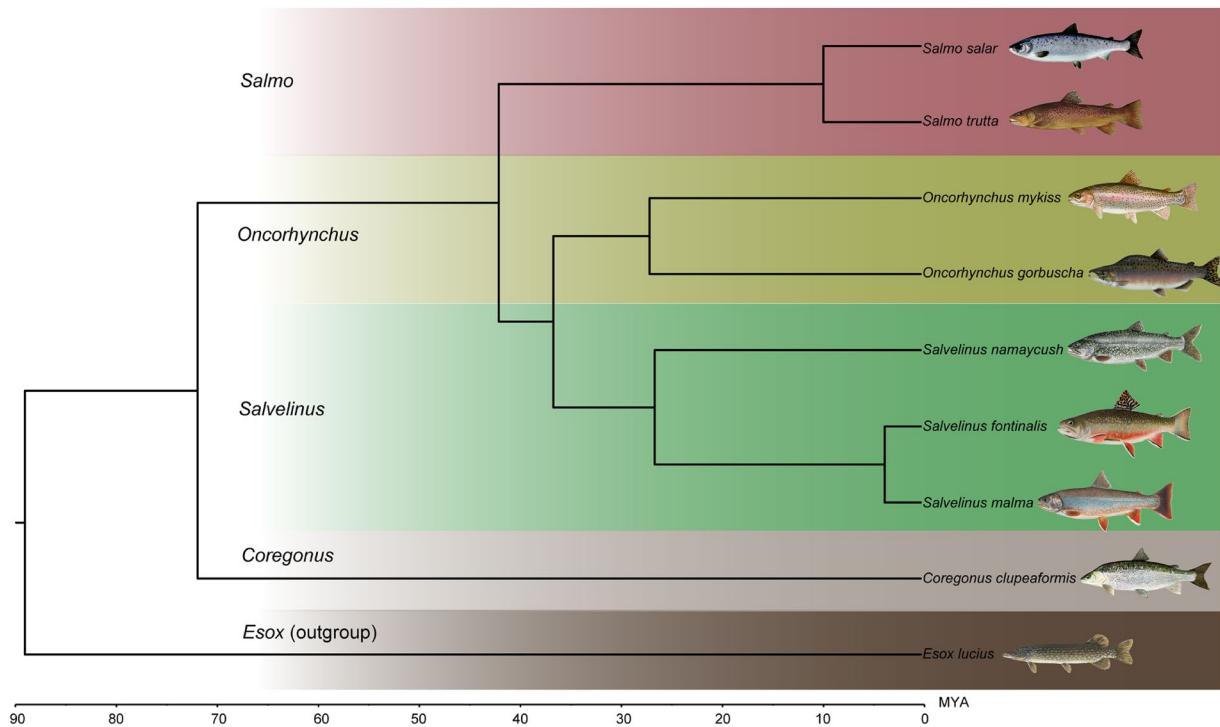

Table 3. Statistics of length of chromosome in *S. malma* genome.

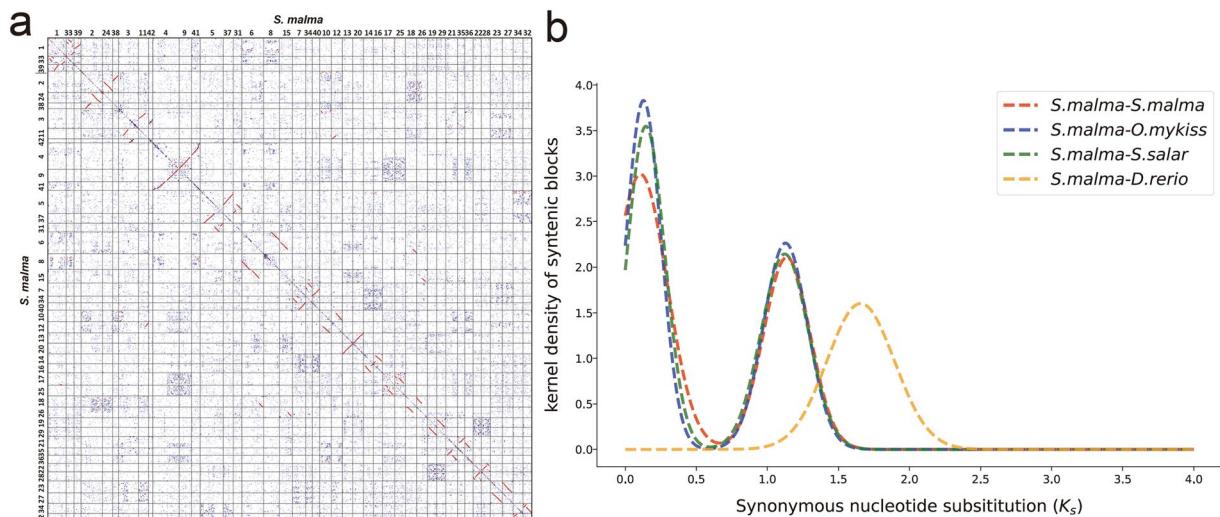
Repeat types	Number	Length (bp)	Percentage (%)
SINEs	221,636	32,305,624	1.28
LINEs	745,722	353,760,871	14.04
LTR elements	326,203	163,625,133	6.50
DNA transposons	1,632,557	594,457,101	23.60
Unclassified	930,033	162,135,392	6.44
Small RNA	0	0	0
Satellites	48,420	84,528,559	3.36
Simple repeats	19,431	6,625,851	0.26
Low complexity	0	0	0
Total	3,252,802	1,399,386,926	55.55


Table 4. Classification statistics of repeated sequences in *S. malma* genome.

prediction at the ratio of 5:1:1 were consolidated with EVidenceModeler (v2.1.0) software³⁴. In addition, the NCBI EGAPx (v0.3.2) pipeline from (<https://github.com/ncbi/egapx>) was also executed for gene prediction using Nextflow (v24.10.5). Evidences from NCBI and EVM were integrated, which yielded 45,385 high-confidence protein-coding genes. These genes displayed an average gene length of 28,448 bp and an average coding sequence (CDS) length of 1,814 bp. Furthermore, the similarities in distributions of mRNA lengths, exon lengths, and intron lengths between the *S. malma* genome and the closely related species indicated conservation of gene structure patterns in evolution (Fig. 6).

Phylogeny analysis. A total of 7 Salmonidae species were selected and downloaded their reference genome from NCBI database (*O. mykiss*: GCA_013265735.3²⁶, *O. gorbuscha*: GCA_021184085.1³⁰, *S. namaycush*: GCA_016432855.1³⁵, *S. fontinalis*: GCA_029448725.1³⁶, *S. salar*: GCA_905237065.2³⁷, *S. trutta*: GCA_901001165.2³¹, *C. clupeaformis*: GCA_020615455.1²⁷). The *Esox lucius* (GCA_011004845.1)³⁸ was set as the outgroup for the construction of phylogenetic tree. Single-copy orthologous genes were identified and obtained from the sequence similar cluster analysis of genes using OrthoFinder (v2.3.11)³⁹ pipeline. The protein sequences encoded by the single-copy orthologous genes were conducted with multiple alignment with MUSCLE (v3.8.1551)⁴⁰, and non-conserved sites were filtered using GBLOCKS (v0.91b). Then, the single-copy orthologous genes were concatenated into a “supergene” using Perl scripts. The best-fitting model for construction of phylogenetic tree was determined with ModelTest-NG (v0.1.7). And the PROTGAMMAIJTTF was considered as optimal model. The phylogenetic tree was constructed based on the maximum likelihood method using RAxML (v8.2.12)⁴¹ software. Then, the divergence time among species was estimated via the MCMCTree software in PAML (v4.9)⁴² program with two fossil calibration points acquired from TimeTree⁴³ (<https://timetree.org/>): *E.*


Fig. 5 Evolutionary dynamics of transposable elements in the *S. malma* genome. The repeat landscape, generated through Kimura substitution analysis of transposable element copy divergence, reflected the historical transposable element accumulation phases.


Fig. 6 The comparative patterns of protein-coding genes among *S. malma*, *O. mykiss*, *S. salar* and *D. rerio*, including gene length, mRNA length, exon length, and intron length.

lucius and *S. salar* (61–121.5 MYA); *S. trutta* and *S. salar* (74.4–96.5 MYA). The species tree was further visualized using FigTree (v1.4.4) (Fig. 7). The topology revealed that *S. malma* clustered within the *Salvelinus* clade, showing divergence from *Oncorhynchus*, *Salmo*, and *Coregonus* lineages.

Synteny analysis. The synteny analysis of *S. malma* genome was performed using WGDI (v0.74)⁴⁴. Self-alignment of protein sequence was conducted using BLASTp (v2.2.31+) with an E-value cutoff of 1e-5. Syntenic dot plots were generated by integrating the BLASTp outputs, genome annotations, and chromosome lengths into a WGDI configuration file (default parameters; maximum of 5 homologous genes per locus). Subsequently, WGDI was used to identify syntenic blocks, calculate synonymous substitution rate (Ks value), integrate block information, and visualize Ks distributions among *S. salar* (GCA_905237065.2)³⁷, *danio rerio* (GCA_049306965.1)⁴⁵, and *S. malma*. It revealed the conserved synteny and chromosome inversions in *S. malma*.

Fig. 7 Phylogeny and time scale of *S. malma* compared with other species. The split between *S. malma* and its sister species *S. fontinalis* occurred about 3.5 Mya, and the split between *Salvelinus* and *Oncorhynchus* occurred about 22.2 Mya.

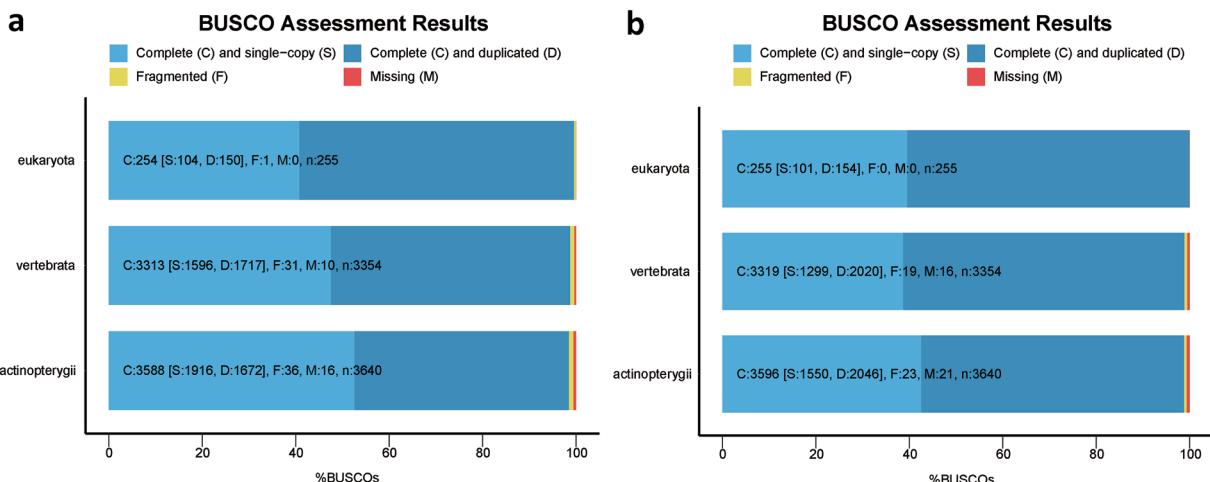


Fig. 8 Detection of whole genome duplication (WGD) and genomic synteny analysis in *S. malma* genome. (a) Synteny blocks of the *S. malma* genome. The axes refer to different chromosomes. (b) Distribution of K_s value in *S. malma* and *S. salar*, *O. mykiss*, *D. rerio*, which represents the Gaussian fit of the raw K_s counts.

genome (Fig. 8a). Additionally, two distinct K_s peaks were observed between *S. malma* and *D. rerio* suggesting salmonid-specific fourth vertebrate whole-genome duplication event (Fig. 8b).

Data Records

All sequencing data have been uploaded to the NCBI SRA database under the BioProject accession number of PRJNA1248052. Specifically, the Illumina sequencing data for genomic survey has been deposited in the NCBI SRA with accession number of SRR33069232⁴⁶. The genomic PacBio sequencing data has been deposited in the NCBI SRA with accession number of SRR33069233⁴⁷. The Hi-C data has been deposited in the NCBI SRA with accession number of SRR35364755⁴⁸ and SRR35364756⁴⁹. The genome assembly has been deposited in

Fig. 9 BUSCO statistical results of the *S. malma* genome assembly and annotation using three reference datasets. (a) The BUSCO completeness of the genome assembly was 99.6%, 98.8%, and 98.6% at the Eukaryota, Vertebrata, and Actinopterygii datasets, respectively. (b) The BUSCO completeness of the genome annotation was 100.0%, 99.0%, and 98.8% at the Eukaryota, Vertebrata, and Actinopterygii datasets, respectively.

the GenBank with accession number [JBQVVI000000000](#)⁵⁰ and the genome annotation have been deposited to *figshare* database (<https://doi.org/10.6084/m9.figshare.28788059.v1>)⁵¹.

Technical Validation

Genome assembly and annotation assessment. BUSCO (v3.0.2) analysis was performed to evaluate the completeness of the *S. malma* genome assembly and annotation, using three reference datasets: Eukaryota_db12, Vertebrata_db12, and Actinopterygii_db12⁵². The final genome assembly achieved BUSCO completeness scores of 99.6% (Eukaryota: 52.6% single-copy, 45.9% duplicated, 1.0% fragmented, 0.4% missing), 98.8% (Vertebrata: 47.6% single-copy, 51.2% duplicated, 0.9% fragmented, 0.3% missing), and 98.6% (Actinopterygii: 52.6% single-copy, 45.9% duplicated, 1.0% fragmented, 0.4% missing). Similarly, the annotated protein-coding genes showed BUSCO completeness of 100% (Eukaryota: 39.6% single-copy, 60.4% duplicated), 99.0% (Vertebrata: 38.7% single-copy, 60.2% duplicated, 0.6% fragmented, 0.5% missing), and 98.8% (Actinopterygii: 42.6% single-copy, 56.2% duplicated, 0.6% fragmented, 0.5% missing), collectively confirming the high quality of the *S. malma* genome (Fig. 9a,b).

Karyotype analysis of *S. malma*. To validate the accuracy of *S. malma* genome assembly using Hi-C data, chromosome karyotyping was conducted through Giemsa staining method. Initially, phytohemagglutinin (PHA, 10 µg/g fish weight) was administered, followed by colchicine injection (5 mg/g) in 24 h later. Head kidney tissues were collected at 5 h post-colchicine treatment, rinsed with saline (85% NaCl), mechanically dissociated, and filtered through 100-mesh gauze. The cell suspension was centrifuged (1200 rpm, 8 min), treated with 6 mL hypotonic KCl solution (0.075 mol/L) for 50 min, and fixed three times with methanol: glacial acetic acid (3:1) via centrifugation (1200 rpm, 8 min each). Cell suspensions were then dropped onto slides, air-dried over an alcohol lamp, stained with Giemsa for 30 min, and microscopically Karyotype analysis revealed 42 chromosome pairs ($2n = 84$), consistent with Hi-C assembly results, thereby confirming the genomic integrity (Fig. 3a,b).

Data availability

All data supporting this study are publicly available. Raw sequencing reads are deposited in the NCBI Sequence Read Archive (SRA) under BioProject PRJNA1248052: Illumina genome survey reads, [SRR33069232](#); PacBio long-read data, [SRR33069233](#); Hi-C reads, [SRR35364755](#) and [SRR35364756](#). The genome assembly is available in GenBank under accession [JBQVVI000000000](#). The genome annotation file is available on *figshare* database (<https://doi.org/10.6084/m9.figshare.28788059.v1>).

Code availability

No specific code was used in this study. The data analyses used standard bioinformatic tools specified in the methods.

Received: 21 April 2025; Accepted: 21 October 2025;

Published online: 28 November 2025

References

1. Balakirev, E. S., Romanov, N. S. & Ayala, F. J. Complete mitochondrial genomes of the Northern (*Salvelinus malma*) and Southern (*Salvelinus curilis*) Dolly Varden chars (*Salmoniformes, Salmonidae*). *Mitochondrial DNA Part A* (2016).
2. Gallagher, C. P., Morrison, C. M., Lea, E. V., Halden, N. M. & Howland, K. L. Growth and reproductive characteristics of rarely observed resident female Dolly Varden (*Salvelinus malma malma*) in North America. *Hydrobiologia* **840**, 189–205 (2019).

3. Yang, L., Meng, F., Wang, R. & Shi, G. Complete mitochondrial genome of the *Salvelinus malma* sp. (Salmoniformes, Salmonidae) with phylogenetic consideration. *Mitochondrial DNA Part B* **2**, 889–890 (2017).
4. Liu, P. *et al.* Differences in intestinal microbial community between Dolly varden trout *Salvelinus malma* and lenok *Brachymystax lenok* with different ages. *Journal of Dalian Ocean University* **37**, 568–573 (2022).
5. Meng, F., Li, B., Xie, Y., Li, M. & Wang, R. Substituting fishmeal with extruded soybean meal in diets did not affect the growth performance, hepatic enzyme activities, but hypoxia tolerance of Dolly Varden (*Salvelinus malma*) juveniles. *Aquaculture Research* **51**, 379–388 (2020).
6. Meng, F. *et al.* Do the toll-like receptors and complement systems play equally important roles in freshwater adapted Dolly Varden char (*Salvelinus malma*)? *Fish & Shellfish Immunology* **86**, 581–598 (2019).
7. Zhu, X., Li, M. & Liu, B. Acute ammonia poisoning in dolly varden char (*Salvelinus malma*) and effect of methionine sulfoximine. *Fish & Shellfish Immunology* **101**, 198–204 (2020).
8. Esin, E. V. *et al.* Unspecific histological and hematological alterations in anadromous and resident *Salvelinus malma* induced by volcanicogenic pollution. *Hydrobiologia* **822**, 237–257 (2018).
9. Guo, Z. *et al.* Effect of feeding frequency on growth performance, antioxidant status, immune response and resistance to hypoxia stress challenge on juvenile dolly varden char *Salvelinus malma*. *Aquaculture* **486**, 197–201 (2018).
10. Chen, S. Ultrafast one-pass FASTQ data preprocessing, quality control, and deduplication using fastp. *iMeta* **2**, e107 (2023).
11. Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. *Bioinformatics* **27**, 764–770 (2011).
12. Vurture, G. W. *et al.* GenomeScope: fast reference-free genome profiling from short reads. *Bioinformatics* **33**, 2202–2204 (2017).
13. Cheng, H., Asri, M., Lucas, J., Koren, S. & Li, H. Scalable telomere-to-telomere assembly for diploid and polyploid genomes with double graph. *Nat Methods* **21**, 967–970 (2024).
14. Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. *Nat Methods* **18**, 170–175 (2021).
15. Dudchenko, O. *et al.* De novo assembly of the *Aedes aegypti* genome using Hi-C yields chromosome-length scaffolds. *Science* **356**, 92–95 (2017).
16. Durand, N. C. *et al.* Juicebox Provides a Visualization System for Hi-C Contact Maps with Unlimited Zoom. *cel5* **3**, 99–101 (2016).
17. Lin, Y. *et al.* quarTeT: a telomere-to-telomere toolkit for gap-free genome assembly and centromeric repeat identification. *Horticulture research* **10**, p.uhad127 (2023).
18. Mc Cartney, A. M. *et al.* Chasing perfection: validation and polishing strategies for telomere-to-telomere genome assemblies. *Nat Methods* **19**, 687–695 (2022).
19. Flynn, J. M. *et al.* RepeatModeler2 for automated genomic discovery of transposable element families. *Proceedings of the National Academy of Sciences* **117**, 9451–9457 (2020).
20. Jurka, J. *et al.* Repbase Update, a database of eukaryotic repetitive elements. *Cytogenetic and Genome Research* **110**, 462–467 (2005).
21. Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to Identify Repetitive Elements in Genomic Sequences. *Current Protocols in Bioinformatics* **25**, 4.10.1–4.10.14 (2009).
22. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. *Nat Biotechnol* **37**, 907–915 (2019).
23. Danecák, P. *et al.* Twelve years of SAMtools and BCFTools. *GigaScience* **10**, giab008 (2021).
24. Shumate, A., Wong, B., Pertea, G. & Pertea, M. Improved transcriptome assembly using a hybrid of long and short reads with StringTie. *PLOS Computational Biology* **18**, e1009730 (2022).
25. Christensen, K. A. *et al.* Oncorhynchus keta strain PuntledgeMale-10-30-2019, whole genome shotgun sequencing project. *GenBank* <https://identifiers.org/ncbi/insdc:JAJNGS000000000> (2022).
26. Gao, G. *et al.* *Oncorhynchus mykiss* isolate Arlee, whole genome shotgun sequencing project. *GenBank* <https://identifiers.org/ncbi/insdc:JAAXML000000000> (2021).
27. Normandeau, E. *Coregonus clupeaformis* isolate EN_2021a, whole genome shotgun sequencing project. *GenBank* <https://identifiers.org/ncbi/insdc:JAJAF000000000> (2021).
28. Christensen, K. A. *et al.* *Oncorhynchus nerka* isolate Pitt River, whole genome shotgun sequencing project. *GenBank* <https://identifiers.org/ncbi/insdc:JAUDZ000000000> (2024).
29. Rondeau, E. B. *et al.* *Oncorhynchus kisutch* isolate 150728-3, whole genome shotgun sequencing project. *GenBank* <https://identifiers.org/ncbi/insdc:MPKV00000000> (2019).
30. Christensen, K. A. *et al.* *Oncorhynchus gorbuscha* isolate QuinsamMale2020, whole genome shotgun sequencing project. (2021). *GenBank* <https://identifiers.org/ncbi/insdc:JAGYUW000000000> (2019).
31. Salmo trutta, whole genome shotgun sequencing project. *GenBank* <https://identifiers.org/ncbi/insdc:CAAJIE000000000> (2021).
32. Li, H. Protein-to-genome alignment with miniprot. *Bioinformatics* **39**, btad014 (2023).
33. Holst, F. *et al.* Helixer-de novo Prediction of Primary Eukaryotic Gene Models Combining Deep Learning and a Hidden Markov Model. 2023.02.06.527280 Preprint at <https://doi.org/10.1101/2023.02.06.527280> (2023).
34. Haas, B. J. *et al.* Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. *Genome Biol* **9**, R7 (2008).
35. Smith, S. *et al.* *Salvelinus namaycush* isolate Seneca, whole genome shotgun sequencing project. *GenBank* <https://identifiers.org/ncbi/insdc:JAEAGN000000000> (2021).
36. Normandeau, E. *Salvelinus fontinalis* isolate EN_2023a, whole genome shotgun sequencing project. <https://identifiers.org/ncbi/insdc:JAQYZX000000000> (2023).
37. Nome, T. & Gillard, G. *Salmo* *salar*, whole genome shotgun sequencing project. *GenBank* <https://identifiers.org/ncbi/insdc:CAJNNT000000000> (2022).
38. Myers, G. *et al.* *Esox lucius* isolate fEsoLuc1, whole genome shotgun sequencing project. *GenBank* <https://identifiers.org/ncbi/insdc:JAAIYR000000000> (2020).
39. Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. *Genome Biol* **20**, 238 (2019).
40. Edgar, R. C. Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. *Nat Commun* **13**, 6968 (2022).
41. Koberl, K., Flouri, T., Aberer, A. & Stamatakis, A. The Divisible Load Balance Problem and Its Application to Phylogenetic Inference. in *Algorithms in Bioinformatics* (eds. Brown, D. & Morgenstern, B.) 204–216, https://doi.org/10.1007/978-3-662-44753-6_16 (Springer, Berlin, Heidelberg, 2014).
42. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. *Mol Biol Evol* **24**, 1586–1591 (2007).
43. Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. *Molecular Biology and Evolution* **34**, 1812–1819 (2017).
44. Sun, P. *et al.* WGDI: A user-friendly toolkit for evolutionary analyses of whole-genome duplications and ancestral karyotypes. *Molecular Plant* **15**, 1841–1851 (2022).
45. Okendo, J. *et al.* *Danio rerio* strain Tuebingen, whole genome shotgun sequencing project. *GenBank* <https://identifiers.org/ncbi/insdc:JBMGRA000000000> (2025).
46. NCBI Sequence Read Archive, <https://identifiers.org/ncbi/insdc.sra:SRR33069232> (2025).
47. NCBI Sequence Read Archive. <https://identifiers.org/ncbi/insdc.sra:SRR33069233> (2025).

48. NCBI Sequence Read Archive. <https://identifiers.org/ncbi/insdc.sra:SRR35364755> (2025).
49. NCBI Sequence Read Archive. <https://identifiers.org/ncbi/insdc.sra:SRR35364756> (2025).
50. NCBI Sequence Read Archive. <https://identifiers.org/ncbi/insdc:JBQVVI000000000> (2025).
51. The chromosome-level genome assembly and annotation of *Salvelinus malma*. *figshare* <https://doi.org/10.6084/m9.figshare.28788059.v1> (2025).
52. Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics* 31, 3210–3212 (2015).

Acknowledgements

This research was funded by the Key R&D Project of Shandong Province (2022ZLGX01), the Taishan Industrial Program (tsls20241102), the Key R&D Project of China (2024YFD2400901; 2024YFD2400300), the China National Postdoctoral Program for Innovative Talents (BX20240343), the National Natural Science Foundation of China (32202896; 32373104), the China Postdoctoral Science Foundation (2022M713001), the Shandong Provincial Natural Science Foundation (ZR2022QC086), the Marine Science and Technology Innovation Demonstration Project of Qingdao (23-1-3-hysf-2-hy), the Technology plan project of Tangshan (23130233E).

Author contributions

Zeng X.B., Hu L.J., Zhang J.H. and Tian Y. conceived the research and collected materials. Tian Y. assembled the sequences. Zeng X.B., Hu L.J., Zhang J.H. and Bao H.C. analysed the data. Zeng X.B. and Li D. prepared the manuscript. Zeng X.B., Yao Y. and Tian Y. revised the manuscript. Gao Q.F. and Tian Y. supervised the study and acquired funding. All authors read, edited and approved the final manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to Q.G. or Y.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2025