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Data-driven fault detection and diagnosis (FDD) for buildings’ heating, ventilating, and air conditioning
© (HVACQ) systems has gained popularity in recent years. However, the scarcity of well-labeled data

. that represents true fault symptoms presents a challenge for developing new FDD methods.

. Furthermore, there is growing interest in applying transfer learning (TL) for building applications,

. where well-labeled data from one building is used to diagnose faults in a related but different building.
Successful evaluation of TL algorithms requires at least two datasets that share similarities yet exhibit
differences in some operational conditions. Unfortunately, the lack of comparative studies to identify
suitable dataset pairs has slowed the progress of TL or other inter-dataset studies. To address these

. challenges, this paper focuses on the air handling unit (AHU), a key HVAC subsystem, and 1) presents

. the publication of eight new datasets, operating under fault-free and various faulty conditions; and 2)

: conducts a comprehensive study on AHU fault datasets to identify dataset pairs and their associated

. faults that are most suitable for evaluating TL algorithms.

Background & Summary
© The building sector accounts for approximately 40% of global energy consumption’, highlighting a great poten-
: tial to reduce energy use and carbon emissions through improving building operation efficiency. The concept of
. smart buildings has therefore emerged, which integrates advanced data-driven technologies to optimize energy
. performance and maintain occupant comfort in real time?. Among the key applications of data-driven smart
. buildings, data-driven fault detection and diagnosis (FDD) of heating, ventilation, and air conditioning (HVAC)
- systems plays a critical role due to its significant impact on building energy use and carbon emission?, equip-
. ment life, occupant comfort*, and indoor air quality’. In addition, the growing emphasis on grid-interactive
* buildings, which can reliably provide load-flexibility services to the grid, underscores the importance of having
fault-free HVAC systems, providing further motivation for FDD technology development®.
Compared to traditional rule-based FDD approaches, data-driven methods for HVAC FDD have
. gained much popularity in recent decades due to their potential for improved performance while being less
© time-consuming or dependent on experts”®. In these methods, operational data collected from building auto-
. mation systems (BAS) and sensors are employed by FDD software tools to automatically detect equipment
issues and degrading performance’. Overall, support vector machine (SVM), Bayesian networks, and principal
: component analysis (PCA) have been the most popular algorithms for data-driven HVAC FDD in the litera-
© ture®. Apart from them, deep learning-based models have attracted much attention in recent years due to their
advanced feature extraction ability, where convolutional neural networks (CNN), and recurrent neural networks
(RNN) have been the most popular ones!°.
: Although the results of such algorithms are promising, many papers have declared that the lack of
. well-labeled data, representing the true fault symptoms, is the main barrier to testing the effectiveness of
data-driven algorithms and developing new ones®!!. While large volumes of operational data can be exported
from today’s building control and automation systems, much of them are unsuitable for algorithm training due
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to data quality issues, the presence of unknown and unlabeled faults, and extreme difficulty in assembling a
large-scale dataset that captures climate, HVAC configuration, and operational diversities. This makes the devel-
opment of well-labeled and validated data, especially for less-investigated faults and building operation modes,
a crucial task and challenge.

Furthermore, many studies'>"'* have documented a decline in models’ diagnosis performance when the
operational conditions (such as building load or equipment size) and, consequently, the distribution of the
testing data differ from the training data. Thus, a growing body of literature has started to focus on the applica-
tion of transfer learning (TL) in HVAC FDD, where researchers deal with distribution discrepancies between
datasets'® by leveraging rich labeled data from one dataset, known as the source domain, to solve a new but
related task in the shifted dataset, referred to as the target domain'?. TL for fault diagnosis using limited labeled
target domain'®'’, completely unlabeled target domain'®-*°, and multiple source domains?' are the most popular
research areas in this field.

However, a successful evaluation of the proposed TL methods is only possible by having at least two datasets
with the same main characteristics, such as control strategy or operating season, but different to some extent in
other disturbances, such as occupancy load, system design (e.g., variable air volume (VAV) vs. constant air vol-
ume (CAV) systems), and equipment size. Nevertheless, the scarcity of well-labeled HVAC fault data, as well as
the lack of a comprehensive study on existing datasets to identify appropriate dataset pairs and their associated
faults that meet the above-mentioned TL criteria (i.e., sharing similarities in some aspects while differing in
others) place a huge hurdle in successfully developing and testing new TL algorithms for the HVAC FDD field.

Prior works, such as the LBNL FDD datasets**?* and NISTIR-6964 project®, represent foundational contri-
butions to AHU fault data, and provide case studies demonstrating how these datasets can be utilized for FDD
purposes. This research builds upon those early efforts through the following key advancements: (1) Expanding
the collection of datasets with enhanced features, longer fault durations, and diverse building configurations,
making them valuable complements to existing public AHU fault data, especially for data-intensive FDD algo-
rithms. (2) Incorporating under-investigated faults, including gradual faults (especially relevant for fault prog-
nosis) and cyber-attacks. (3) Conducting a comprehensive study of existing datasets to identify suitable dataset
pairs and corresponding faults to facilitate data preparation for TL algorithms. Beyond FDD applications, this
work broadens the applicability of these datasets for TL algorithm development and performance evaluation.

To achieve the above-mentioned objectives, this paper firstly documents eight new air handling unit
(AHU) fault datasets, covering various building configurations, control strategies, seasons, and injected faults
with expanded duration and feature sets. AHU is specifically investigated in this study since it is the most
commonly-used secondary HVAC equipment in commercial buildings, significantly impacting building energy
use (accounting for nearly 35% of total HVAC energy consumption in commercial buildings®) as well as occu-
pant comfort compared to many other HVAC components**-2. Figure 1 schematically illustrates the major
components of a typical single-duct AHU, including supply and return fans for air circulation, heating and
cooling coils for air conditioning, three dampers for regulating airflow between AHU and outdoor environment,
various sensors and actuators, and a controller that processes sensor measurements to generate control signals®.
Various faults may occur in any AHU component, disrupting its normal operation and leading to performance
degradation. Some common faults include stuck or leaking dampers or valves, biased temperature sensors, and
fan failures®. Although the main AHU components (e.g., cooling coil, fans, and dampers) are the same among
the datasets introduced in this paper, the detailed diagrams may differ. Thus, the detailed schematic for each
AHU is provided in the corresponding dataset folder in the shared repository.

Table 1 illustrates the eight AHU datasets described in this paper. Notice that the control strategies used
for the AHUs can be categorized as either: (1) rule-based control (RBC) or traditional control or (2) ASHRAE
Guideline 36-based control®! (G36 hereinafter). G36 provides high-performance sequences of operation for
HVAC systems, offering standardized control sequences that enhance energy efficiency, system stability, and
code compliance compared to conventional control strategies. Due to high interconnectivity of components
under G36 control, fault symptoms at the component level may propagate through the whole system, leading to
cascading fault impacts®>. Consequently, G36 responds to faults in a different and more sophisticated manner
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Control strategy | Dataset name ‘Weather condition System type (real /simulated) | No. of faults | No. of features | Sampling rate | Fault duration
RBC-ASHRAEI312 | Towa city, Towa, USA | Both 19 Real: 162 1-min
adelohi - 1day
RBC RBC-Nesbitt Philadelphia, PA, Real 20 540 5-min
USA
RBC-5wk Tuscaloosa, AL, USA 21 5-min 5 weeks
G36-1wk Chicago, IL, USA 359 1-min 1 week
G36-5wk Simulated 3 5 weeks
Tuscaloosa, AL, USA
G36-Degrad 12 114 1 year
G36 )
G36-Cyber 6 5-min
Chicago, IL, USA i i i 1da
G36-HIL g Slmulated,' integrated with 4 y
hardware-in-the-loop (HIL)

Table 1. Summary of datasets described in this study.

than RBC strategies®?. This difference in fault behavior motivated the categorization of datasets into RBC and
G36-based datasets.

Table 1 also provides key information for each dataset, including the system type (whether the data come
from a real building or a simulated environment), the number of features (measured or computed variables such
as sensor and control signals), the sampling rate (time interval between successive data points), and fault dura-
tion (the period over which faults were introduced or observed).

Additionally, a detailed comparative study of both publicly available AHU fault datasets and the datasets
presented in this paper is conducted to identify suitable dataset pairs and their corresponding faults, providing
researchers with resources for evaluating their TL algorithms. Notably, the results of this section can also be used
for other inter-class studies, such as cross-building fault-symptoms comparisons, but TL remains the primary
use case of this work.

The remaining sections of this paper are organized as follows: Methods section provides detailed informa-
tion on the facilities used for data generation, AHU specifications, the list of faults, and a comparative study
among datasets. Data Records presents a summary table of the datasets along with a link for public access to the
described datasets. Technical Validation includes examples of validation processes to ensure data accuracy. The
paper concludes with Usage Notes and Code Availability sections.

Methods

As illustrated in Table 1, the datasets presented in this study were generated using a diverse range of facilities,
system configurations, control strategies, weather conditions, and implemented faults. Detailed descriptions of
these facilities, HVAC system characteristics, and faults are described in Section 2.1. Additionally, a comparative
analysis of the FDD datasets is presented in Section 2.2 to facilitate cross-datasets studies and to enhance their
usability for various applications.

Datasets description. The eight datasets, as summarized in Table 1, are described in detail in this section.

RBC-ASHRAEI1312. 'This dataset, generated as part of the ASHRAE-1312 project®, has been a popular data-
set for examining FDD algorithms in the last two decades. It comprises (1) real data collected from the AHUs
located at the Iowa energy resource station (ERS), where the AHUs were operated under fault-free or various
faulted conditions; and (2) simulated data collected from a validated virtual testbed representing the AHUs at
the ERS. A shorter and limited version of this dataset is already publicized in the reference??. This study includes
the ASHRAE-1312 dataset with expanded features and a more completed list of faults. To avoid repetition, the
system configuration and control sequences is not provided in this paper, since a detailed description is already
available in ASHRAE RP-1312%. A more detailed description of the faults is provided below.

A total of 18, 12, and 19 faults were injected in the ERS testbed during the summer, winter, and spring
seasons, respectively. These faults were classified into four categories: controlled device, equipment, controller,
and sensor. Each fault scenario is paired with corresponding fault-free scenario for analyzing its symptoms. In
accordance with FDD terminology, the fault free scenario is also referred to as the as baseline scenario in this
paper, representing normal operation of the system*. Due to the extensive list of faults, only detailed descrip-
tions of two fault categories (controlled device and equipment) are provided in Table 2 to offer an overview of
the dataset.

RBC-Nesbitt. Nesbitt Hall, a seven-story mixed-use commercial building on Drexel University’s campus in
Philadelphia, PA, USA, was selected as the test building for faulted data generation from 2016 to 2018. The
HVAC system configuration in the building is depicted in Fig. 2, which consists of a water-cooled chiller system,
three AHU systems that supply several VAV terminal units, and a hydronic heating system. Detailed informa-
tion on the building is included in the reference™.

In total, 17 faults were injected into the HVAC system of the Nesbitt Hall. These faults were selected for
implementations based on safety considerations, facility capabilities, and minimizing impact on the indoor
environment. Additionally, three naturally occurred faults, observed during the data collection period, were
also included. This list of all 20 faults is presented in Table 3, and details on data collection are discussed in the
reference®.
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Fault injection date (yy/mm/dd)
Fault type Fault intensity | Summer | Winter Spring Method of fault imposition (for real building)
0% 07/08/26 | 08/02/12 | 08/05/07
Outdoor air damper stuck
40% — — 08/05/08
45% open 07/09/05 — —
52% open — 08/02/13 | —
Outdoor air damper leaking
55% open 07/09/06 | — — Manually controlling the damper at faulty positions.
62% open — 08/02/15 | —
0% 07/08/21 08/02/03 | 08/05/10
Exhaust damper stuck 40% — — 08/05/11
100% 07/08/20 08/02/02 | 08/05/27
Controlled device
0% 07/08/27 | — 08/05/06
15% 07/09/01 — —
20% — 08/02/11 —
Cooling coil valve stuck Manually controlling the valve at faulty positions.
50% — — 08/05/16
65% 07/09/02 — —
100% 07/08/31 | 08/02/10 | 08/05/15
0.4 GPM 07/08/28 — —
Heating coil valve leaking 1.0 GPM 07/08/29 | — — Manually opening the heating coil bypass valve.
2.0 GPM 07/08/30 — —
After supply fan 07/09/07 | — _
Supply duct leaking (SE) Removing the sealing from one access door.
Before SF 07/09/08 | — —
Stage 1 — 08/02/05 | —
Heating coil fouling Partially blocking the heating coil using a piece of cardboard.
Stage 2 — 08/02/06 | —
Equipment Stage 1 — 08/02/07 | —
Heating coil reduced capacity | Stage 2 — 08/02/08 | — Manually throttling the heating coil balancing valve.
Stage 3 — 08/02/09 | —
Return fan complete failure — 07/08/23 | — 08/05/12 Manually stopping the return fan.
10% — — 08/05/22
Air filter blockage Partially blocking air filter using a piece of cardboard.
25% — — 08/05/25

Table 2. Details of RBC-ASHRAE1312 ‘controlled device’ and ‘equipment’ fault scenarios. Faults were injected
throughout the whole day, but the system was occupied from 6 a.m. to 6 p.m. only (data sampling rate: 1-minute;
location: Iowa city, Iowa, USA).

()

{'>Cooling tower

»>Cooling water pump

v~ @&
AHU-1 yAV VAV VAV

To boiler >Chilled water pump

Heat exchanger >Hot water pump

Fig. 2 (a) HVAC system configuration at Nesbitt Hall; and (b) Nesbitt Hall at the campus of Drexel University
(adapted from**).

RBC-5wk. The remaining datasets (RBC-5wk and all datasets with G36 control strategy) were created using a
virtual testbed developed in Modelica, an object-oriented dynamic modeling solution, Buildings Library 7.0.0°¢.
This Modelica virtual testbed?’, referred to as the MedOffice virtual testbed hereafter, is based on and verified
against the medium-sized office prototype model developed by the U.S. Pacific Northwest National Lab* in
EnergyPlus®. The original EnergyPlus model has three floors, but only the middle floor, featuring five zones with
a VAV AHU, was simulated here for simplicity. Additionally, a chilled water plant system and a boiler hot water
system (conforming to ASHRAE RP-1711%') were added to the MedOffice virtual testbed, as depicted in Fig. 3.
As shown in Fig. 4, the MedOffice virtual testbed represents a single-duct multi-zone VAV AHU connected
with five VAV terminal boxes that serve five zones (four exterior and one interior zone) on one floor. It consists
of component models such as VAV system with terminal reheat unit model, building envelope model, and a
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model for air flow through building leakage and through open doors based on wind pressure and flow imbalance
of the HVAC system.

The chilled water is supplied by a central chiller plant which consists of a chiller, a waterside economizer, a
cooling tower, and associated one chilled water pump and one cooling water pump. The boiler, fed by natural
gas, supplies hot water to the AHU heating coil. The system was sized based on the location, which includes two
different ASHRAE climate zones: 3 A (Tuscaloosa, AL) and 5 A (Chicago, IL).

Traditional control sequence from the ASHRAE 2006 standard for common HVAC systems*’ was adopted
for the AHU in the MedOffice virtual testbed to develop the RBC-5wk dataset. As an example, the AHU supply
air temperature (SAT) control sequence is described here, since it provides both a representative overview of
the implemented control strategy and a reference point for comparison with G36-based datasets*!: The heating
coil valve, outside air damper, and cooling coil valve were modulated in sequence to maintain the SAT setpoint.
The SAT was maintained at a constant value depending on the operation models. For example, the SAT cooling
setpoint was set as 12 °C during occupied hours and 30 °C during unoccupied hours. SAT heating setpoint was
set at 10 °C for preheating purposes and worked in coordination with the reheat valve at the VAV terminal box to
meet the heating requirements. The controller of the terminal units tracked the room air temperature set point
based on a ‘dual maximum with constant volume heating’ logic*?. For the detailed implementation of this control
logic, please refer to the model ‘Buildings.Examples.VAVReheat. ASHRAE2006” of Modelica building library*.

Using the MedOffice virtual testbed with weather conditions for Tuscaloosa, AL, USA, data from multiple
fault scenarios were collected, as detailed in Table 4. The first week of each fault scenario was simulated under
the fault-free condition, and the following four weeks were simulated under the associated fault scenario.

G36-1wk. The G36 datasets were developed using the same MedOffice virtual testbed as RBC-5wKk, but
employed a different control sequence, namely G36, for the AHU section. A brief description of the SAT control
as an example of G36 control sequences is provided below to be compared with RBC-5wk section, explained in
section 2.1.3. A more detailed description of G36 is provided in references®*344,

As recommended by G36, the SAT control loop is to reset SAT setpoints based on the zone temperatures and
outdoor air temperature. The range of outdoor air temperatures (16-21 °C) was used to maximize airside econ-
omizer hours. The SAT setpoint was reset from its minimum value (e.g., 12 °C) when the outdoor air tempera-
ture reached its maximum value or above (e.g., 21 °C), proportionally up to the maximum SAT (e.g., 18 °C)
when the outdoor air temperature reached its lower bound (e.g., 16 °C). The SAT setpoint was reset using ‘trim
and response (T&R)’ logic, which is explicitly modeled in the Modelica models®'.

To develop the G36-1wk dataset, a total of 359 fault scenarios, distributed across the cooling, shoulder, and
heating seasons, were simulated using the MedOffice virtual testbed with Chicago, IL weather condition. These
faults were categorized into seven various types: sensor, duct & pipe, valve & damper, HVAC equipment, control,
schedule, and design & construction. Due to the extensive list of faults, detailed description of only sensor and
HVAC equipment categories for the heating season is provided in Table 5 to offer an example of the dataset. Each
fault scenario was simulated over a week and assumed to be active continuously throughout the week. All fault
scenarios have a one-minute interval sampling rate. Detailed information on fault impact analysis, fault injection
methods, and evaluated key performance indexes (KPIs) is available in*.

G36-5wk. The baseline (i.e., when the system is considered fault-free, as discussed in section 2.1.1) and three
specific fault scenarios of G36- 1wk were chosen to be simulated over an extended period of five weeks during
the cooling season. This longer simulation time aimed to capture a broader variation of influencing conditions
such as outdoor air and system load; thereby enhancing the generalization of FDD algorithms and increasing the
training samples for data-intrusive ones such as deep learning-based models. The three selected faults, detailed
in Table 6, occurred in three critical and fault-prone components, namely the cooling coil valve, outdoor air
damper, and supply duct.

G36-Degrad. Unlike instantaneous faults, gradually degrading faults must be simulated over an extended
period (e.g., one year) to accurately capture the progressive impact of the degrading component on system
performance®. Three types of commonly observed degrading faults, i.e. fouling (airside and waterside), duct
leaking, and sensor bias, were modeled by adding time-dependent degradation functions in the MedOffice
virtual testbed for the component that the fault affects. Table 7 summarizes the fouling faults and their method
of imposition, which was by modifying the component’s heat transfer behavior and pressure drop across it**.
Table 8 summarizes those for the non-fouling faults.

The weather profile for Tuscaloosa, AL was used to simulate the degradation faults. All fault scenarios were
conducted over a full year (from January 1* to December 31*'), with one exception: The condenser waterside
fouling fault was excluded until a specific hot day (the 170" day of the year), as the cooling plant was inactive
prior to that day. Further details about fault injection and evaluations are described in*s.

G36-Cyber. This dataset was designed to evaluate various cyber-attacks (active treats) for a typical building
HVAC system. Cyber-attack faults are increasingly critical in HVAC systems for two main reasons: Firstly, the
communication protocols for BAS are not designed with security as a primary requirement. Secondly, with more
connected devices, a vulnerability in one component can be used to access data, attack, and compromise other
components, or even worse, the larger power grid*->2.

Two primary types of cyber-attacks were modeled in this regard: the data-intrusion attack that corrupted the
data integrity, and the denial-of-service (DoS) attack that undermined communication between the controller
and the plant. The attacks were injected during peak load periods to analyze their impact on both building service
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Fault Date: yy/mm/dd
Fault type intensity (start-finish time) Method of fault imposition
System stopped working (Chiller off) — 16/07/06 (16:00-23:00) | Naturally occurred fault.
—4°F 16/08/08 (10:22-21:16)
AHU-1 supply air temperature bias Overriding demand adjust by 2.
+4°F 16/09/07 (10:30-22:09)
System stopped working (Chiller off) — 16/09/11 (18:30-20:30) | Turning off the chiller from 6:30 p.m. to 8:30 p.m.
90% open | 16/12/01 (10:00-20:45) Qver{idlngb thgeox.;HU-Z outdoor air damper control
AHU-2 outdoor air damper stuck higher signal® to be 90% open.
than normal position idi _ i i
p 80% open | 17/01/03 (10:00-20:30) Overriding the AHU-2 outdoor air damper control signal
to be 80% open.
Occupied durlAng the unoccupied- — 17/01/14 (1:30-7:00) Naturally occurred fault.
scheduled period
Chiller stopped earlier than scheduled — 17/07/09 (4:00-15:30) | Naturally occurred fault.
90% open 17/07/11 (10:00-20:01) ngrrld;ng the AHU-2 outdoor air damper control signal
AHU-2 outdoor air damper stuck higher to be 90% open.
than normal position 35 _ : :
P 100% open | 17/07/18 (11:00-20:01) Overriding the AHU-2 outdoor air damper control signal
to be 100% open.
Chiller supply chllleq water (CHWS) _4°F 17/08/03 (10:00-21:27) Ovsrriding the CHWS temperature setpoint from 44 °F to
temperature sensor bias 48°F on control panel.
HVAC system occupied earlier than _ 17/08/05 (4:00-8:00) Changing the system schedule to be occupied from 4:00
scheduled am.
AHU-2 cooling coil valve position 2 . . .
software override at higher-than-normal | 100% open | 17/08/11 (10:05-20:06) %‘:)e‘;rt)dlgf the cooling coil valve control signal to be
position o open.
Chiller chilled water d?fferential pressure | g 1 psi 17/09/15 (10:30-15:21) | Overriding the DP setpoint from 7.5 to 0.5.
(DP) sensor positive bias
AHU-Z supply air temperature sensor _35°F 18/07/09 (10:15-20:15) O\'/erryldm'g the supply air temperature ‘setpoint demand
bias adjust’ point by 1.75.
AHU-2 outdoor air damper stuck at . . Overriding outdoor air damper control signal to be 30%
higher than the normal position 30% open 18/07/10 (10:30-20:30) open (normal mode: 15% open).
AHU-2 cooling coil valve stuck at higher o 0090 Overriding the cooling coil control signal to be 80% open
than the normal position 80% 18/07/11 (10:00-20:00) (normal mode: 40-60% open).
AHU-2 outdoor air damper stuck at o . . Overriding the outdoor air damper signal to be 60% open
higher than the normal position 60% open 18/07/18 (9:30-19:30) (normal mode: 15% open).
Change weekend occupied schedule to 18/07/22 (20:20-21:40) | Turning off the HVAC system at 8:20 p.m.
end at 8:20 p.m.
CHWS temperature sensor bias —3.0°F 18/07/23 (8:00-18:00) g)h:;l ggéng the CHWS temperature setpoint from 44°F

Table 3. Details of RBC-Nesbitt fault scenarios. Fault injection time varied in each case (data sampling rate:
5-minute; location: Philadelphia, PA, USA). “All control signal overriding was performed within the BAS.

and grid service. As shown in Table 9, the timing of the attacks varied to demonstrate the flexibility of threat mod-
eling. The quantified impact assessment on the building’s operational performance can be found in*»*.

G36-HIL. Hardware-in-the-loop (HIL) testbed provides a cost-effective method to evaluate how a fault affects
certain perspectives of a real system. In this dataset, the MedOffice virtual testbed, described in section 2.1.4, was
integrated with a set of real BAS control system to form a HIL testbed>**, as depicted in Fig. 5. This HIL testbed,
referred to as the MedOffice-HIL testbed hereafter, comprised three main components: (1) a real-time dSPACE
machine, that emulated the virtual building modeled in Modelica. (2) A set of BAS controllers of chiller, boiler,
AHU and VAV box, which adopted G36 control logic for different HVAC equipment. Their control commands
were sent to the virtual building through the real-time HIL machine. (3) A computer server, which hosted the
software environment for all the hardware and customized services such as a master program that controlled
the experiments. The MedOffice-HIL testbed was capable of emulating both physical faults and cyber-attacks in
real-time without requiring actual building zones or HVAC equipment>¢, while able to emulate fault symptoms
in a real control system. The description of injected faults is included in Table 10.

Dataset limitations. While the datasets presented in this study offer controlled, well-labeled, and reproduc-
ible (for simulated cases) data for research purposes, several limitations should be noted:

1. No multi-fault scenarios: Each fault scenario includes only a single fault at a time. In real building op-
erations, multiple faults can occur concurrently and interact in complex ways, which may alter system
responses compared to the isolated-fault conditions represented here.

2. Simplified actuator and component failure modeling: The faults represented in this study capture common
HVAC component issues (e.g., valve stuck, damper leakage) through parameter changes or overrides.
However, they do not include full physical degradation or abrupt mechanical failures (e.g., motor burnout,
actuator linkage breakage), which may produce different symptom patterns.
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3. Absence of stochastic sensor noise and control feedback variability: For all simulated data, sensor measure-
ments are noise-free except for cases where a bias or scaling error is explicitly modeled. Likewise, control
system behavior is deterministic and idealized, without the small fluctuations and delays often present in
real BAS networks. For data collected from real systems, such as RBC-Nesbitt, real-world issues including
sensor noise and communication delays were present.

These limitations should be considered when applying the datasets to FDD, transfer learning, or other
smart building applications, particularly when adapting algorithms developed with these datasets to real-world
systems.

Comparative study and dataset pairs. Datasets pool. The datasets discussed above have broad applica-
tions in smart building technology development. However, given that one of the objectives of this paper is to facil-
itate the data preparation for TL algorithms, this section identifies suitable dataset pairs and corresponding faults
for TL purposes. To be consistent with TL nomenclature, a datasets is also referred to as a ‘domain’ in this section.
The domain pairs were chosen to satisfy the TL assumption, i.e., while there are some discrepancies between the
domains (such as simulation vs. real, different weather conditions, etc.), they share similarities in other aspects
(such as control strategy, operation season, etc.).

To broaden the scope of this section, we considered three other popular datasets for AHU fault diagnosis,
which are already publicized. These datasets are:

1. NISTIR-6964 dataset?, containing three faults (namely: supply air temperature sensor offset, recirculation
air damper stuck open, and heating coil valve leakage) that were injected into the ERS test facility. Since
the NIST-6964 dataset and the RBC-ASHRAE1312 dataset were generated from the same test facility with
similar principles, these two datasets are considered to belong to the same domain called ASHRAE-NIST.

2. LBNL 2019 dataset??: This dataset contains two main subsets: (a) MZVAV-1 (called LBNL-2019-1 herein-
after), containing six intensities of outdoor air temperature sensor bias injected to a simulated building in
Chicago, IL, USA. And (b) SZVAV and SZCAV (called LBNL-2019-2 hereinafter), containing data of seven
and 14 faults injected into a real building (FLEXLAB facility in Berkely, CA, USA), respectively.

3. LBNL 2022 dataset® (called LBNL-2022 hereinafter), containing 20 annual faults of a simulated office
building in Chicago, IL, USA.

Pairing principle. 'The process used to identify suitable domain pairs and corresponding faults is outlined
below. An example of this process is shown in Fig. 6 as well.

Step 1) Group domains by control strategy: Since control strategies strongly influence fault symptoms (see
Section 1), domains with different control strategies cannot be paired for TL applications. Accordingly, the
domains were divided into two groups:

a) RBC: ASHRAE-NIST, RBC-5wk, RBC-Nesbitt, and LBNL-2019-1
b) G36: G36-1wk, G36-5wk, G36-Degrad, G36-Cyber, G36-HIL, LBNL-2019-2, and LBNL-2022

Step 2) Identify candidate pairs within each group: A complete list of domain pairs was identified within
each group, resulting in 6 RBC pairs and 21 G36 pairs. For each pair, domains’ similarities and differences were
determined. For example, both ASHRAE-NIST and RBC-5WK domains represent medium-sized office build-
ings as their testbeds. However, ASHRAE-NIST is based on Iowa city, USA weather conditions, while RBC-5wk
simulated a building located in Chicago, USA.

Step 3) Match corresponding faults: Faults were matched across paired domains based on two criteria:

a) Seasonal alignment: Fault symptoms can vary significantly by season, so only faults occurring in the same
season were matched. For instance, ASHRAE-NIST includes faults from summer, transitional (spring and
autumn), and winter seasons. However, RBC-5wk includes only summer faults. Therefore, only summer
faults could be matched for this pair.

b) Match by fault type, not exact intensity: Within each season, faults were firstly categorized based on the
source component (e.g., malfunctioned cooling coil valve, return fan, etc.). Within each device category,
faults were then matched by the symptom rather than the exact fault intensity.

For example, consider the faults affecting the cooling coil valve. The CooCoiValStuck_0 and CooCoiValStuck_15
faults in ASHRAE-NIST, and CooCoiValStuck_0, CooCoiValStuck_5, and CooCoiValStuck_15 faults in RBC-5wk,
all correspond to the cooling coil valve being stuck at lower-than-normal position (stuck at either 0%, 5%, or 15%
open positions). Thus, these faults are expected to exhibit similar symptoms in the systems, although their inten-
sity (symptom magnitude) may be different. Figure 7 illustrates how these faults impacted three selected features,
showing each fault caused the features to have higher-than-normal values, though with different magnitudes.

Another example can be the TSup_p1.7 and TSup_p2.8 faults from the same domain pair, both affecting the
supply air temperature sensor with a positive bias (1.7 °F and 2.8 °F, respectively). As shown in Fig. 8, these faults
produced the same symptoms in the features, but differ in their intensity. This fault-matching approach allows
TL researchers to work with varying fault intensities among domain pairs, ensuring that their algorithms are
scalable, robust, and ready for real-world applications.
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Fault type Fault intensity Method of fault imposition

Cooling coil valve stuck 0%, 5%, 15% 65%, 100% Defining the leakage ratio as: | = %, where ku(y = 0) and
ku(y = 1) are the flow coefficient at the t)ully closed and fully open
positions, respectively.

Outdoor air damper stuck 0%, 5%, 15%, 45%, 55%, 65%, 100%

Implementing the mathematical expression as: sz, + 11, = k./Ap,
Supply duct leakage 20%, 45%, 55% where i1y, is the normal operation mass flow rate, 71, is the leakage mass
flow rate, k is the friction factor, and Ap is the pressure drop.

AHU supply air temperature sensor bias +2°K, -2°K

Overwriting the output (sensed variable) of the original sensor model by

i 0f — 0y
Outdoor air flow rate sensor scale error +30%, —30% the faulty value.

Chilled water differential pressure sensor bias +10,000 Pa, —10,000 Pa

Table 4. Details of RBC-5wk fault scenarios. Faults were injected during occupied mode duration, which was
weekdays (Mon-Fri) from 7a.m. to 7 p.m. (data sampling rate: 5-minute; location: Tuscaloosa, AL, USA).

Fault type Fault intensity Method of fault imposition
Hot water supply temperature sensor bias —4,-2,2,4°K
. . . —10000, —5000, 5000
H Jit 1 it ’ >
ot water differential pressure sensor bias 10000 Pa Sensor faults were decomposed into three parts: multiplicative errors,
bias, and noise, as defined below.
{Outdoor Al flow rate sensor scale error =30, ~15,15,30%
East zone air Vip= (14 m) - Vi + €400 + 4
Sensor
supply air ) 2 _1.1.2°K where Vypand Vi represent the error-presented and the error-free values,
mixajr temperature sensor bias 7 respectively. m is the multiplicative offset of the scaling error. £, and ¢,,;
return air denote the deviation caused by the bias errors and the noise.
- - - - The output of the original sensor model was overwritten by the faulty
Air loop differential pressure sensor bias —25,—15,15,25Pa value (V) when the fault mode was activated.
East zone a1‘r ) . temperature sensor bias -2,-1,1,2°K
discharging air
. . . Reducing the nominal overall heat transfer coefficient (UA) of the AHU
0
Heating coil fouling 10, 30, 50% heating coil by 10%, 30%, or 50% from the baseline.
Adjusting down the boiler efficiency curve (by 10% and 20%) since
Boiler fouling 10%, 20% deposits on the fireside and the waterside of the boiler tubes could impair
HVAC equipment the heat transfer and reduce the boiler efficiency.
Hot water pump cavitation & impeller fault —
Overwriting the fault-free pump curve by the faulty pump curves under
{Hot water pump motor degradation 15, 30% different fault types.
Fan motor

Table 5. Details of G36-1wk fault scenarios in the heating season. Faults were injected continuously for a total
of one week (data sampling rate: one-minute; location: Chicago, IL, USA).

Fault type Fault intensity Method of fault imposition

Cooling coil valve Fully dlosed =0

stuck position Defining the leakage ratio as: | = :fé — 1> Where ku(y = 0) and ku(y = 1) are the flow
Outdoor air damper Fully open coefficient at the fully closed and fully open positions, respectively.

stuck position

Implementing the mathematical expression as: ritg, + iy, = k.JAp, where riry, is the
Supply duct leakage | 20% normal operation mass flow rate, 11, is the leakage mass flow rate, k is the friction factor,
and Ap is the pressure drop.

Table 6. Details of G36-5wk fault scenarios. Faults were injected continuously, but the system was in occupied
mode on weekdays (Mon-Fri) from 7a.m. to 7 p.m. only (data sampling rate: five-minute; location: Tuscaloosa,
AL, USA).

Following this process, a comprehensive list of domain pairs and matched faults was generated. Due to the
extensive list of pairs, two example pairs are listed in Table 11 to offer an overview, while the complete list is
available in the data folder under ‘DomainPairs.pdf. Please note, in this table, faults names are shown in abbrevi-
ated form for clarity and brevity, with definitions provided in the accompanying PDF for each dataset.

Data Records

The datasets are stored on figshare®’. A summarized description of the datasets is provided in Table 12. For each
system, the FDD data are stored in individual comma-separated value (CSV) files, and each file contains one
fault type under one fault intensity. Datasets are recorded at intervals of either one or five minutes to reflect sys-
tem operations, which can be re-sampled to any higher interval to fit the needs of specific applications.
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Fault intensity
Heat transfer coefficient | Pressure drop
Fault type decrease rate increase rate | Method of fault imposition
7%lyr 30%/yr 1) Modifying the pressure drop equation fromrir = k. \/Ap t0 Ap = coef_f, . 1—2 #* by introducing a
Cooling coil time-dependent pressure drop coefficient (coef_fy,). vk
airside fouling 14%/yr 200%/yr 2) Modifying the convection heat transfer rate equation from Q = U,;. AT to Q = coef fy.- U . AT by
. . i . . arr
introducing a time-dependent heat transfer degradation coefficient (coef_f, ).
Cond 4%/30 days 250%/30 days | 1) The same pressure drop equation modification as above. ) )
w:gr:ir(liseer 2) Directly applying fouling effect on heat transfer to heat flux through Qeondensor,f = €0¢f, fon Qeondensor,c> where
fouling* 28%/30 days 50%/30 days | Quondensor sand Qcondensor,c Tepresent the heat transfer rates of the condenser under the fouled and the clean
conditions, respectively.
Table 7. Details of G36-Degrad fouling fault scenarios. Faults were injected during occupied mode duration,
which was weekdays (Mon-Fri) from 7a.m. to 7 p.m. (data sampling rate: five-minute; location: Tuscaloosa, AL,
USA). "Fault started on day 170.
Fault type Fault intensity Method of fault imposition
(starting rate, increase rate):
. (1%, 1.4%/yr), (1%, 7%/yr), Adding a time-dependent parameter to the AHU
AHU supply air duct leakage (10%, 1.4%/yr), (10%, 7%/yr) air volume model.
(25%, 1.4%/yr), (25%, 7%/yr),
. . o 1o Overwriting the temperature sensor with the faulty
Supply air temperature sensor bias +1°Clyr, —=1°Clyr measurement.
Table 8. Details of G36-Degrad non-fouling fault scenarios. Faults were injected during occupied mode
duration, which was weekdays (Mon-Fri) from 7 a.m. to 7 p.m. (data sampling rate: 5-minute; location:
Tuscaloosa, AL, USA).
Fault type Fault intensity Duration” Method of fault imposition
Corrupting the number of transmitted zone temperature reset
requests to 15 for five thermal zones (maximum allowed in G36)
T . . 12p.m. to 3 p.m. on one shoulder using the Max temporal model:
r:n&z:tr ature rese 15 temperature reset request | season day (with the next 2hours | ., . | y(), t ¢ A
q as the post-attack period). y) = Vo LEA
where j is the corrupted property value, y is the original value,
and A is the threat period
Using square pulse model with a period of one hour on chiller on/
off control signal:
12 p.m. to 3 p.m. on one cooling yo, e A
Chiller on/off Chlll.er cycles on/off every season day (with 3p.m.to 7p.m. | . fp O, teAandc €y, o0,
30 minutes h K period y(t) =
as the post-attack period). y. ,tcAandc<y_
Data-intrusion attack min min
Ipar LEAandc >y
Supply air fan speed at 7a.m. to 7 p.m. on one coolin; Using the max temporal model.
PPy P speed set to 100% . 1 7 p-m. 8
max value season day.
Using the constant temporal model, where property value was
overwritten to a user-defined constant value ¢ during the threat:
Zone temperature 1p.m. to 3 p.m. on one cooling y®),t¢ A
cooling setpoint to - season day (with the next 2hours | otE€Aandce(y .y ]
constant 22 °C as the post attack period). y@) = g t€Aandc<y
Ipar L EAandc >y o
Blocking the chiller from receiving its setpoints to use values from
The CHWS temperature was . the previous time step, by implementing the blocking temporal
. . . 12 p.m. to 6 p.m. on one cooling .
Blocking chilled water | continuously reset from a model:
. P ° season day (6 p.m. to 7p.m. as the
setpoint minimum value of 5°C toa k period N y(t), t ¢ A
. lue of 10 oC. post-attack period). () =
maximum va WE—1).teA
DoS attack
Transmitted signal was delayed to the receivers by the delaying
model:
Delaying chilled water | Fixed 10-minute delay in 12 p.m. to 6 p.m. on one cooling W)t g A
setpoint communication network season day. y(@t) = ’
Yt — At), t€A

Table 9. Details of G36-Cyber fault scenarios. Fault injection times varied in each case (data sampling rate:
5-minute; location: Chicago, IL, USA). “In this column, the cooling season day corresponds to the 207" day of
the year (July 26™), while the shoulder season day corresponds to the 83 day of the year (March 23'9).
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dSPACE Chiller + boiler

controllers
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Group) | Domains | | All domain pairs | | Matching by fault season |
ASHRAE-NIST| [Pair I ASHRAE-NIST & RBC-Swk |- »[ASHRAENIST] [ _RBCSWK___|
RBC | [RBC-5wk Pair 2 ASHRAE-NIST & RBC-Nesbitt | [ Summer faults j«>| Summer faults ] -
~>RBC-Nesbitt || Transitional faults|<>| X |
LBNL-2019-1 Pair 6: RBC-Nesbitt & LBNL-2019-1 Winter faults <>| X |
|
Matching by fault type [ Matching by affected device |<-'
ASHRAE-NIST RBC-5wk ‘ ASHRAE-NIST RBC-5WK
g stuck at 0% stuck at 63;0 I >Corresponding} < — — =i Cooling coil valve Cooling coil valvel:
%Stuck lower-than-normal stuck at 15% stmucﬁ a: ? 5/?’/ I faults T T %
B ST e =] Air filtler | | X \
o : tuck a 0
g hlgherjthan-normal bk ot 100%, [stuck at 100% L > Corresponding L :
s [Reverse action X faults doo P Lo
5 [Unstable control X <-|_Supply duct -

Duration (start
Fault type Fault intensity time-end time) Method of fault imposition

Adjusting the setpoint to its maximum
AHU supply air temperature | Fixed to maximum | 08:00-09:00, 12:00- | value, consistent with the actual bounds

setpoint value 13:00, 16:00-17:00 of the AHU controller defined in the
Physical faults BAS server.
Cooling coil valve stuck Stuck at minimum | 08:00-09:00, 12:00— Adj usting the valve p osition by
- S, : ; ; overriding the control signal through the
position position (i.e., 0%) 13:00, 16:00-17:00
BAS server.
08:00-08:20, 10:00-
Device reinitialization attack | 10:20, 12:00-12:20, _
on the AHU controller 14:00-14:20, 16:00—

16:20, 18:00-18:20

08:00-08:20, 10:00—
10:20, 12:00-12:20,
Network DoS attack on BAS | — 14:00-14:20, 16:00- | —

16:20, 18:00-18:20

Cyber-attack faults

Table 10. Details of G36-HIL fault scenarios. Fault injection times varied in each case, but all faults were
simulated using the weather data from August 1°** (data sampling rate: five-minute; location: Chicago, IL, USA).

Each dataset is accompanied by a pdf document (named ‘00_explanations.pdf’) containing essential details
including building and system information (model or experimental facility description, control strategy, data
sampling rate, etc.), fault cases (fault types, intensities, abbreviations, etc.), and any extra information, required
to better comprehend the datasets.

Technical Validation
Since various systems were utilized for datasets generation, the details of validation processes to ensure data
accuracy vary as well. For the sake of brevity, an example of validation process for a single dataset (i.e., G36-5wk)
is provided in this section, and readers are referred to the cited publications in each dataset folder for details on
experimental facility or simulated model validation.

Regarding the G36-5wk dataset, functional testing was conducted to validate the baseline (fault-free) behav-
ior of the model. This testing verified that system operation aligned with the designed control sequences and
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(a) ASHRAE-NIST cooling coil valve stuck lower than normal faults
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(b) RBC-5wk cooling coil valve stuck lower than normal faults
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Fig. 7 Impact of cooling coil stuck lower-than-normal faults on (a) ASHRAE-NIST domain and (b) RBC-5wk
domain. Arrows indicate the overall impact of faults on each feature. In (a), both faults resulted in higher-than-
normal values for all three features. In (b), all three faults similarly led to higher-than-normal values for all three

features.
(a) ASHRAE-NIST supply air temp. positive bias faults
Baseline (07/15) Tsup_pl.7 (07/12) Tsup_p2.8 (07/13) ‘
Return air flow rate (CFM) Chilled water coil discharge air temp. (°F) Supply fan power consumption (W)
N 2500 -\
0 \
2000 \' 2000 [\\
\ T o e 1500
"Nty i O 60 \\--‘ o
1000 ! 1000
Y
50 \J e s
0 \mm‘-‘v‘\\"’c) 0
0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600
time (min) time (min) time (min)
(b) RBC-5wk supply air temp. positive bias faults
‘ Baseline Tsup_p2 ‘
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Fig. 8 Impact of supply air temperature positive bias faults on (a) ASHRAE-NIST domain; and (b) RBC-5wk
domain. Arrows indicate the overall impact of faults on each feature. Both faults in (a) and the fault in (b)
resulted in lower-than-normal values for all three features.
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Domains Corresponding faults
1°* domain faults (followed by 2" domain faults (followed by injection | Similarities btw. | Discrepancies btw.
1% o injection date: mm/dd, if available) date: mm/dd, if available) domains domains
CooCoiValStuck_0 (08/27) CooCoiValStuck_0
CooCoiValStuck_15 (09/01) CooCoiValStuck_5
- CooCoiValStuck_15
- *Building type and
CooCoiValStuck_65 (09/02) . 8 type:
CooCoiValStuck_100 (08/31) CooCoiValStuck_100 *Same control wc;‘a (tiher c'or?clialggn
(09/05) OADamStuck_65 strategy (RBC) El ¢ fm'rﬁlyn" I
OADamLea_45 amStuck_ est facility in Iowa,
ASHRAE-NIST | RBC-5wk OADamLea_55 (09/06) OADamStuck_100 *Both represent | 5"
amedium-sized 21 domain:
SupDucLea_20 office building office buildine in
SupDucLea_AfterSF (09/07) SupDucLea_45 Chia s A
SupDucLea_55 80, 1
TSup_P1.7 (07/12)
TSup_P2.8 (07/13) TSup_p2
OADamStuck_0 OADamStuck_min (09/18) *Building type and
Summer OADamStuck_100 OADamStuck_100 (09/19) rii‘a (til:;;;ﬁ:_ldmon
CooCoiValStuck_100 CooCoiValStuck_100 (09/22) office building in
Chi , IL, USA.
HeaCoiValStuck_0 2"d1cclz§r(1)ain:
G36-1wk LBNL-2019-2 HeaCoiValStuck_5 HeaCoiValStuck_0 (03/24) *Same control FLEXLAB test
HeaCoiValStuck_15 strategy (G36) g;ﬂigsiz)B erkeley,
Wint . HeaCoiValStuck_100 >
inter HeaCoiValStuck_100 (03/25) *Data type (1%
domain: simulation
nd
OADamStuck_100 OADamStuck_100 (03/18) data, and 2
domain: real data)
Table 11. Two examples of AHU domain pairs, suitable for TL algorithms.
Number of | Sampling
Dataset name Faults description Data provenance | features rate Total data size
. . Simulated using .
RBC-ASHRAE1312 | 13 12.and 19 faults in summer, winter, | prys g, an | REE102 1 i 136 MB
and spring seasons, respectively. gl Sim.: 21
real building.
RBC N X :
RBC-Nesbitt 16and 4 faults in coolingand heating | ¢, ,yj1ding 540 5-min 152 MB
seasons, respectively.
RBC-5wk 21 faults in cooling season. 5-min 125 MB
127,127, and 105 faults in cooling,
G36-1wk shoulder and heating seasons, 1-min 4.7GB
respectively. Simulated building
G36-5wk 3 faults in cooling season. using Modelica 22.3MB
4 annual fouling faults and 8 annual non- 114
G3g | GI6Degrad fouling faults. 774 MB
G36-Cyber 4 data-intrusion attacks, 2 DoS attacks. 5-min 1.4 MB
Simulated building
G36-HIL 2 Phy51§al faulFs and 2 cyber-attack using Modelica 1.1 MB
threats in cooling season. and integrated
with HIL

Table 12. Detailed description of each file in the dataset.

reflected fault-free operational behaviors. For example, Fig. 9(a) shows simulated measurements of the zonal
temperature and cooling coil valve for the single-duct AHU system. The data trends were examined to confirm
that the system operates according to the defined schedule, with occupied hours from 7a.m. to 7 p.m., and a
cooling setpoint that modulates from 30 °C during unoccupied times to 24 °C during occupied times. The data
trends were further inspected to verify whether the modeled proportional-integral-derivative (PID) parameters
for the cooling valve controller were configured to output appropriate control signals, which was confirmed by
the smooth trend and absence of significant oscillations in the plotted signal for the cooling coil valve command.
Similar validation processes were conducted for other variables as well.

After verifications of the fault-free operational state, additional tests were conducted for each fault scenario.
These tests evaluated (a) whether the imposed fault condition was accurately reflected in the data, and (b)
whether the expected symptoms of the fault were reflected in other operational trends.

A single fault of G36-5wk dataset (outdoor air damper stuck fully open) is chosen to illustrate the fault
validation procedure. As shown in Fig. 9(b), the fault condition was confirmed by observing that outdoor air
damper position (black dashed line) was fixed at 1.0 (fully open position), while its control signal was mainly at
0.0 (black solid line) in the controller’s attempt to close it. The initial and main symptoms of this fault were an
increased outdoor air flow rate (see purple lines), leading to a reduction in return air flow rates (see green lines)
compared to those in the baseline. Similar verification steps were performed for all fault types and intensities in
the dataset for model validation.
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Fig. 9 Example of G36-5wk (a) baseline scenario; and (b) fault scenario (outdoor air damper stuck fully open)
and its comparison to baseline (only the second day of last week is plotted, but the same trends are seen for
other days as well).

Usage Notes

A complete inventory of the data was developed to assist users in comprehending the content and form of the
data, and the associated AHU systems, controls, and faults. The data itself consists of time-series that can be
analyzed with any software tools chosen by the user.

Data availability
The dataset is available at figshare https://doi.org/10.6084/m9.figshare.29297999.

Code availability

The Modelica buildings library is freely available for download*>. A Windows or Linux-based computer with
licensed Dymola software was used to run Modelica models to generate datasets presented in this paper. In
addition, free program such as OpenModelica®® can be used to run Modelica models as well. HVACSIM+ is freely
available, upon request from NIST, and has no operating system requirements. The Modelica simulation code and
workflow used to generate the G36-Cyber dataset are openly available on GitHub*.

This repository contains: (1) The complete Modelica models of the G36-controlled medium office building
testbed used for cyber-attack simulations. (2) Attack/fault injection modules implementing both data-intru-
sion and DoS§ attacks consistent with the described scenarios. (3) A simulation workflow for reproducing the
six cyber-attack scenarios. And (4) instructions for running the models in Dymola or OpenModelica, including
required library versions and simulation parameters.

The scripts and Modelica models in this repository can be directly used to regenerate the published G36-
Cyber dataset. This repository can also serve as a template for generating other fault types described in the simu-
lated datasets (i.e., G36-1wk, G36-5wk, G36-Degrad, G36-Cyber, and G36-HIL) by modifying the fault injection
modules, enabling broader fault simulation studies beyond cyber-attacks. For the RBC-ASHRAE1312 dataset,
related documentation and any available code can be obtained from the official ASHRAE Website®. Finally, the
RBC-Nesbitt dataset was collected from a real building system; therefore, no code was used for data collection or
generation.
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