

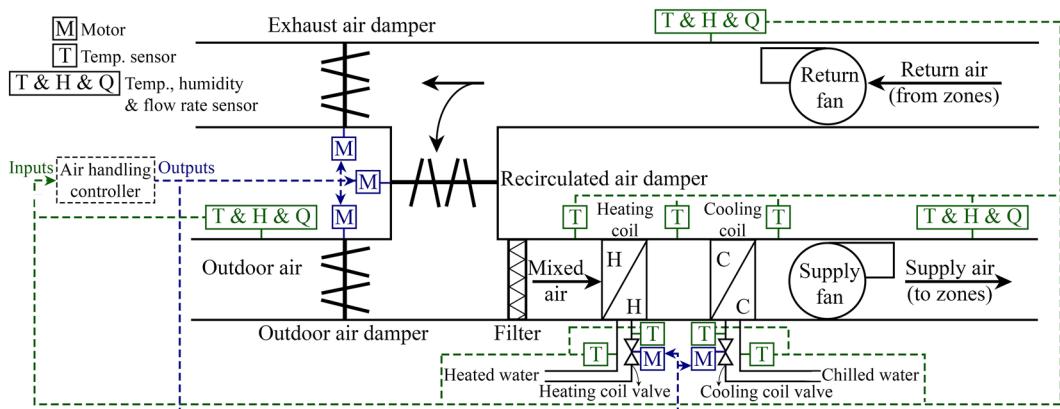
scientific data

OPEN
DATA DESCRIPTOR

Labeled Datasets for Air Handling Units Operating in Faulted and Fault-free States

Naghmeh Ghalamsiah¹, Jin Wen¹✉, Guowen Li², Yimin Chen³, Xing Lu^{2,4}, Yangyang Fu², Mengyuan Chu² & Zheng O'Neill²

Data-driven fault detection and diagnosis (FDD) for buildings' heating, ventilating, and air conditioning (HVAC) systems has gained popularity in recent years. However, the scarcity of well-labeled data that represents true fault symptoms presents a challenge for developing new FDD methods. Furthermore, there is growing interest in applying transfer learning (TL) for building applications, where well-labeled data from one building is used to diagnose faults in a related but different building. Successful evaluation of TL algorithms requires at least two datasets that share similarities yet exhibit differences in some operational conditions. Unfortunately, the lack of comparative studies to identify suitable dataset pairs has slowed the progress of TL or other inter-dataset studies. To address these challenges, this paper focuses on the air handling unit (AHU), a key HVAC subsystem, and 1) presents the publication of eight new datasets, operating under fault-free and various faulty conditions; and 2) conducts a comprehensive study on AHU fault datasets to identify dataset pairs and their associated faults that are most suitable for evaluating TL algorithms.


Background & Summary

The building sector accounts for approximately 40% of global energy consumption¹, highlighting a great potential to reduce energy use and carbon emissions through improving building operation efficiency. The concept of smart buildings has therefore emerged, which integrates advanced data-driven technologies to optimize energy performance and maintain occupant comfort in real time². Among the key applications of data-driven smart buildings, data-driven fault detection and diagnosis (FDD) of heating, ventilation, and air conditioning (HVAC) systems plays a critical role due to its significant impact on building energy use and carbon emission³, equipment life, occupant comfort⁴, and indoor air quality⁵. In addition, the growing emphasis on grid-interactive buildings, which can reliably provide load-flexibility services to the grid, underscores the importance of having fault-free HVAC systems, providing further motivation for FDD technology development⁶.

Compared to traditional rule-based FDD approaches, data-driven methods for HVAC FDD have gained much popularity in recent decades due to their potential for improved performance while being less time-consuming or dependent on experts^{7,8}. In these methods, operational data collected from building automation systems (BAS) and sensors are employed by FDD software tools to automatically detect equipment issues and degrading performance⁹. Overall, support vector machine (SVM), Bayesian networks, and principal component analysis (PCA) have been the most popular algorithms for data-driven HVAC FDD in the literature⁸. Apart from them, deep learning-based models have attracted much attention in recent years due to their advanced feature extraction ability, where convolutional neural networks (CNN), and recurrent neural networks (RNN) have been the most popular ones¹⁰.

Although the results of such algorithms are promising, many papers have declared that the lack of well-labeled data, representing the true fault symptoms, is the main barrier to testing the effectiveness of data-driven algorithms and developing new ones^{8,11}. While large volumes of operational data can be exported from today's building control and automation systems, much of them are unsuitable for algorithm training due

¹Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, PA, USA.
²J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA. ³Oak Ridge National Laboratory, Building Envelope Materials Research, Oak Ridge, TN, USA. ⁴Pacific Northwest National Laboratory, Electricity Infrastructure and Buildings Division, Optimization and Control Group, Richland, WA, USA.
✉e-mail: jw325@drexel.edu

Fig. 1 Schematic diagram of a single-duct AHU (adapted from²⁹).

to data quality issues, the presence of unknown and unlabeled faults, and extreme difficulty in assembling a large-scale dataset that captures climate, HVAC configuration, and operational diversities. This makes the development of well-labeled and validated data, especially for less-investigated faults and building operation modes, a crucial task and challenge.

Furthermore, many studies^{12–14} have documented a decline in models' diagnosis performance when the operational conditions (such as building load or equipment size) and, consequently, the distribution of the testing data differ from the training data. Thus, a growing body of literature has started to focus on the application of transfer learning (TL) in HVAC FDD, where researchers deal with distribution discrepancies between datasets¹⁵ by leveraging rich labeled data from one dataset, known as the source domain, to solve a new but related task in the shifted dataset, referred to as the target domain¹². TL for fault diagnosis using limited labeled target domain^{16,17}, completely unlabeled target domain^{18–20}, and multiple source domains²¹ are the most popular research areas in this field.

However, a successful evaluation of the proposed TL methods is only possible by having at least two datasets with the same main characteristics, such as control strategy or operating season, but different to some extent in other disturbances, such as occupancy load, system design (e.g., variable air volume (VAV) vs. constant air volume (CAV) systems), and equipment size. Nevertheless, the scarcity of well-labeled HVAC fault data, as well as the lack of a comprehensive study on existing datasets to identify appropriate dataset pairs and their associated faults that meet the above-mentioned TL criteria (i.e., sharing similarities in some aspects while differing in others) place a huge hurdle in successfully developing and testing new TL algorithms for the HVAC FDD field.

Prior works, such as the LBNL FDD datasets^{22,23} and NISTIR-6964 project²⁴, represent foundational contributions to AHU fault data, and provide case studies demonstrating how these datasets can be utilized for FDD purposes. This research builds upon those early efforts through the following key advancements: (1) Expanding the collection of datasets with enhanced features, longer fault durations, and diverse building configurations, making them valuable complements to existing public AHU fault data, especially for data-intensive FDD algorithms. (2) Incorporating under-investigated faults, including gradual faults (especially relevant for fault prognosis) and cyber-attacks. (3) Conducting a comprehensive study of existing datasets to identify suitable dataset pairs and corresponding faults to facilitate data preparation for TL algorithms. Beyond FDD applications, this work broadens the applicability of these datasets for TL algorithm development and performance evaluation.

To achieve the above-mentioned objectives, this paper firstly documents eight new air handling unit (AHU) fault datasets, covering various building configurations, control strategies, seasons, and injected faults with expanded duration and feature sets. AHU is specifically investigated in this study since it is the most commonly-used secondary HVAC equipment in commercial buildings, significantly impacting building energy use (accounting for nearly 35% of total HVAC energy consumption in commercial buildings²⁵) as well as occupant comfort compared to many other HVAC components^{26–28}. Figure 1 schematically illustrates the major components of a typical single-duct AHU, including supply and return fans for air circulation, heating and cooling coils for air conditioning, three dampers for regulating airflow between AHU and outdoor environment, various sensors and actuators, and a controller that processes sensor measurements to generate control signals²⁹. Various faults may occur in any AHU component, disrupting its normal operation and leading to performance degradation. Some common faults include stuck or leaking dampers or valves, biased temperature sensors, and fan failures³⁰. Although the main AHU components (e.g., cooling coil, fans, and dampers) are the same among the datasets introduced in this paper, the detailed diagrams may differ. Thus, the detailed schematic for each AHU is provided in the corresponding dataset folder in the shared repository.

Table 1 illustrates the eight AHU datasets described in this paper. Notice that the control strategies used for the AHUs can be categorized as either: (1) rule-based control (RBC) or traditional control or (2) ASHRAE Guideline 36-based control³¹ (G36 hereinafter). G36 provides high-performance sequences of operation for HVAC systems, offering standardized control sequences that enhance energy efficiency, system stability, and code compliance compared to conventional control strategies. Due to high interconnectivity of components under G36 control, fault symptoms at the component level may propagate through the whole system, leading to cascading fault impacts³². Consequently, G36 responds to faults in a different and more sophisticated manner

Control strategy	Dataset name	Weather condition	System type (real /simulated)	No. of faults	No. of features	Sampling rate	Fault duration	
RBC	RBC-ASHRAE1312	Iowa city, Iowa, USA	Both	49	Real: 162 Sim.: 21	1-min	1 day	
	RBC-Nesbitt	Philadelphia, PA, USA	Real	20	540	5-min		
	RBC-5wk	Tuscaloosa, AL, USA	Simulated	21	114	5-min	5 weeks	
G36	G36-1wk	Chicago, IL, USA		359		1-min	1 week	
	G36-5wk	Tuscaloosa, AL, USA		3		5-min	5 weeks	
	G36-Degrad			12			1 year	
	G36-Cyber	Chicago, IL, USA		6		5-min	1 day	
	G36-HIL			4				

Table 1. Summary of datasets described in this study.

than RBC strategies³². This difference in fault behavior motivated the categorization of datasets into RBC and G36-based datasets.

Table 1 also provides key information for each dataset, including the system type (whether the data come from a real building or a simulated environment), the number of features (measured or computed variables such as sensor and control signals), the sampling rate (time interval between successive data points), and fault duration (the period over which faults were introduced or observed).

Additionally, a detailed comparative study of both publicly available AHU fault datasets and the datasets presented in this paper is conducted to identify suitable dataset pairs and their corresponding faults, providing researchers with resources for evaluating their TL algorithms. Notably, the results of this section can also be used for other inter-class studies, such as cross-building fault-symptoms comparisons, but TL remains the primary use case of this work.

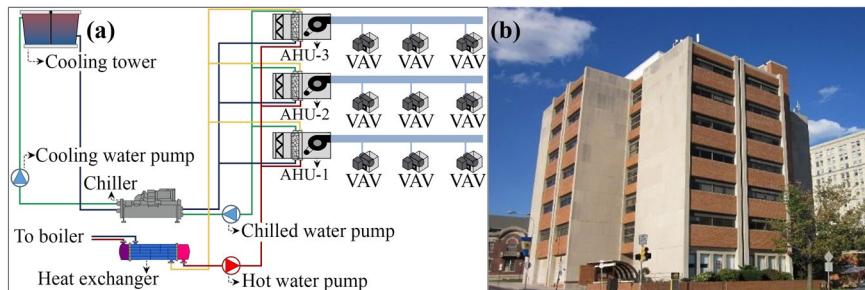
The remaining sections of this paper are organized as follows: Methods section provides detailed information on the facilities used for data generation, AHU specifications, the list of faults, and a comparative study among datasets. Data Records presents a summary table of the datasets along with a link for public access to the described datasets. Technical Validation includes examples of validation processes to ensure data accuracy. The paper concludes with Usage Notes and Code Availability sections.

Methods

As illustrated in Table 1, the datasets presented in this study were generated using a diverse range of facilities, system configurations, control strategies, weather conditions, and implemented faults. Detailed descriptions of these facilities, HVAC system characteristics, and faults are described in Section 2.1. Additionally, a comparative analysis of the FDD datasets is presented in Section 2.2 to facilitate cross-datasets studies and to enhance their usability for various applications.

Datasets description. The eight datasets, as summarized in Table 1, are described in detail in this section.

RBC-ASHRAE1312. This dataset, generated as part of the ASHRAE-1312 project³³, has been a popular dataset for examining FDD algorithms in the last two decades. It comprises (1) real data collected from the AHUs located at the Iowa energy resource station (ERS), where the AHUs were operated under fault-free or various faulted conditions; and (2) simulated data collected from a validated virtual testbed representing the AHUs at the ERS. A shorter and limited version of this dataset is already publicized in the reference²². This study includes the ASHRAE-1312 dataset with expanded features and a more completed list of faults. To avoid repetition, the system configuration and control sequences is not provided in this paper, since a detailed description is already available in ASHRAE RP-1312³³. A more detailed description of the faults is provided below.


A total of 18, 12, and 19 faults were injected in the ERS testbed during the summer, winter, and spring seasons, respectively. These faults were classified into four categories: controlled device, equipment, controller, and sensor. Each fault scenario is paired with corresponding fault-free scenario for analyzing its symptoms. In accordance with FDD terminology, the fault free scenario is also referred to as the baseline scenario in this paper, representing normal operation of the system³³. Due to the extensive list of faults, only detailed descriptions of two fault categories (controlled device and equipment) are provided in Table 2 to offer an overview of the dataset.

RBC-Nesbitt. Nesbitt Hall, a seven-story mixed-use commercial building on Drexel University's campus in Philadelphia, PA, USA, was selected as the test building for faulted data generation from 2016 to 2018. The HVAC system configuration in the building is depicted in Fig. 2, which consists of a water-cooled chiller system, three AHU systems that supply several VAV terminal units, and a hydronic heating system. Detailed information on the building is included in the reference³⁴.

In total, 17 faults were injected into the HVAC system of the Nesbitt Hall. These faults were selected for implementations based on safety considerations, facility capabilities, and minimizing impact on the indoor environment. Additionally, three naturally occurred faults, observed during the data collection period, were also included. This list of all 20 faults is presented in Table 3, and details on data collection are discussed in the reference³⁵.

Fault type		Fault intensity	Fault injection date (yy/mm/dd)			Method of fault imposition (for real building)
			Summer	Winter	Spring	
Controlled device	Outdoor air damper stuck	0%	07/08/26	08/02/12	08/05/07	Manually controlling the damper at faulty positions.
		40%	—	—	08/05/08	
	Outdoor air damper leaking	45% open	07/09/05	—	—	
		52% open	—	08/02/13	—	
		55% open	07/09/06	—	—	
		62% open	—	08/02/15	—	
	Exhaust damper stuck	0%	07/08/21	08/02/03	08/05/10	
		40%	—	—	08/05/11	
		100%	07/08/20	08/02/02	08/05/27	
	Cooling coil valve stuck	0%	07/08/27	—	08/05/06	
		15%	07/09/01	—	—	
		20%	—	08/02/11	—	
		50%	—	—	08/05/16	
		65%	07/09/02	—	—	
	Heating coil valve leaking	100%	07/08/31	08/02/10	08/05/15	
		0.4 GPM	07/08/28	—	—	
		1.0 GPM	07/08/29	—	—	
		2.0 GPM	07/08/30	—	—	
Equipment	Supply duct leaking	After supply fan (SF)	07/09/07	—	—	Removing the sealing from one access door.
		Before SF	07/09/08	—	—	
	Heating coil fouling	Stage 1	—	08/02/05	—	Partially blocking the heating coil using a piece of cardboard.
		Stage 2	—	08/02/06	—	
	Heating coil reduced capacity	Stage 1	—	08/02/07	—	Manually throttling the heating coil balancing valve.
		Stage 2	—	08/02/08	—	
		Stage 3	—	08/02/09	—	
	Return fan complete failure	—	07/08/23	—	08/05/12	Manually stopping the return fan.
	Air filter blockage	10%	—	—	08/05/22	Partially blocking air filter using a piece of cardboard.
		25%	—	—	08/05/25	

Table 2. Details of RBC-ASHRAE1312 ‘controlled device’ and ‘equipment’ fault scenarios. Faults were injected throughout the whole day, but the system was occupied from 6 a.m. to 6 p.m. only (data sampling rate: 1-minute; location: Iowa city, Iowa, USA).

Fig. 2 (a) HVAC system configuration at Nesbitt Hall; and (b) Nesbitt Hall at the campus of Drexel University (adapted from³⁴).

RBC-5wk. The remaining datasets (RBC-5wk and all datasets with G36 control strategy) were created using a virtual testbed developed in Modelica, an object-oriented dynamic modeling solution, Buildings Library 7.0.0³⁶. This Modelica virtual testbed³⁷, referred to as the MedOffice virtual testbed hereafter, is based on and verified against the medium-sized office prototype model developed by the U.S. Pacific Northwest National Lab³⁸ in EnergyPlus³⁹. The original EnergyPlus model has three floors, but only the middle floor, featuring five zones with a VAV AHU, was simulated here for simplicity. Additionally, a chilled water plant system and a boiler hot water system (conforming to ASHRAE RP-1711³¹) were added to the MedOffice virtual testbed, as depicted in Fig. 3.

As shown in Fig. 4, the MedOffice virtual testbed represents a single-duct multi-zone VAV AHU connected with five VAV terminal boxes that serve five zones (four exterior and one interior zone) on one floor. It consists of component models such as VAV system with terminal reheat unit model, building envelope model, and a

model for air flow through building leakage and through open doors based on wind pressure and flow imbalance of the HVAC system.

The chilled water is supplied by a central chiller plant which consists of a chiller, a waterside economizer, a cooling tower, and associated one chilled water pump and one cooling water pump. The boiler, fed by natural gas, supplies hot water to the AHU heating coil. The system was sized based on the location, which includes two different ASHRAE climate zones: 3 A (Tuscaloosa, AL) and 5 A (Chicago, IL).

Traditional control sequence from the ASHRAE 2006 standard for common HVAC systems⁴⁰ was adopted for the AHU in the MedOffice virtual testbed to develop the RBC-5wk dataset. As an example, the AHU supply air temperature (SAT) control sequence is described here, since it provides both a representative overview of the implemented control strategy and a reference point for comparison with G36-based datasets⁴¹. The heating coil valve, outside air damper, and cooling coil valve were modulated in sequence to maintain the SAT setpoint. The SAT was maintained at a constant value depending on the operation models. For example, the SAT cooling setpoint was set as 12 °C during occupied hours and 30 °C during unoccupied hours. SAT heating setpoint was set at 10 °C for preheating purposes and worked in coordination with the reheat valve at the VAV terminal box to meet the heating requirements. The controller of the terminal units tracked the room air temperature set point based on a ‘dual maximum with constant volume heating’ logic⁴². For the detailed implementation of this control logic, please refer to the model ‘Buildings.Examples.VAVReheat.ASHRAE2006’ of Modelica building library³⁶.

Using the MedOffice virtual testbed with weather conditions for Tuscaloosa, AL, USA, data from multiple fault scenarios were collected, as detailed in Table 4. The first week of each fault scenario was simulated under the fault-free condition, and the following four weeks were simulated under the associated fault scenario.

G36-1wk. The G36 datasets were developed using the same MedOffice virtual testbed as RBC-5wk, but employed a different control sequence, namely G36, for the AHU section. A brief description of the SAT control as an example of G36 control sequences is provided below to be compared with RBC-5wk section, explained in section 2.1.3. A more detailed description of G36 is provided in references^{31,43,44}.

As recommended by G36, the SAT control loop is to reset SAT setpoints based on the zone temperatures and outdoor air temperature. The range of outdoor air temperatures (16–21 °C) was used to maximize airside economizer hours. The SAT setpoint was reset from its minimum value (e.g., 12 °C) when the outdoor air temperature reached its maximum value or above (e.g., 21 °C), proportionally up to the maximum SAT (e.g., 18 °C) when the outdoor air temperature reached its lower bound (e.g., 16 °C). The SAT setpoint was reset using ‘trim and response (T&R)’ logic, which is explicitly modeled in the Modelica models³¹.

To develop the G36-1wk dataset, a total of 359 fault scenarios, distributed across the cooling, shoulder, and heating seasons, were simulated using the MedOffice virtual testbed with Chicago, IL weather condition. These faults were categorized into seven various types: sensor, duct & pipe, valve & damper, HVAC equipment, control, schedule, and design & construction. Due to the extensive list of faults, detailed description of only sensor and HVAC equipment categories for the heating season is provided in Table 5 to offer an example of the dataset. Each fault scenario was simulated over a week and assumed to be active continuously throughout the week. All fault scenarios have a one-minute interval sampling rate. Detailed information on fault impact analysis, fault injection methods, and evaluated key performance indexes (KPIs) is available in³².

G36-5wk. The baseline (i.e., when the system is considered fault-free, as discussed in section 2.1.1) and three specific fault scenarios of G36-1wk were chosen to be simulated over an extended period of five weeks during the cooling season. This longer simulation time aimed to capture a broader variation of influencing conditions such as outdoor air and system load; thereby enhancing the generalization of FDD algorithms and increasing the training samples for data-intrusive ones such as deep learning-based models. The three selected faults, detailed in Table 6, occurred in three critical and fault-prone components, namely the cooling coil valve, outdoor air damper, and supply duct.

G36-Degrad. Unlike instantaneous faults, gradually degrading faults must be simulated over an extended period (e.g., one year) to accurately capture the progressive impact of the degrading component on system performance⁴⁵. Three types of commonly observed degrading faults, i.e. fouling (airside and waterside), duct leaking, and sensor bias, were modeled by adding time-dependent degradation functions in the MedOffice virtual testbed for the component that the fault affects. Table 7 summarizes the fouling faults and their method of imposition, which was by modifying the component’s heat transfer behavior and pressure drop across it^{46,47}. Table 8 summarizes those for the non-fouling faults.

The weather profile for Tuscaloosa, AL was used to simulate the degradation faults. All fault scenarios were conducted over a full year (from January 1st to December 31st), with one exception: The condenser waterside fouling fault was excluded until a specific hot day (the 170th day of the year), as the cooling plant was inactive prior to that day. Further details about fault injection and evaluations are described in⁴⁸.

G36-Cyber. This dataset was designed to evaluate various cyber-attacks (active treats) for a typical building HVAC system. Cyber-attack faults are increasingly critical in HVAC systems for two main reasons: Firstly, the communication protocols for BAS are not designed with security as a primary requirement. Secondly, with more connected devices, a vulnerability in one component can be used to access data, attack, and compromise other components, or even worse, the larger power grid^{49–52}.

Two primary types of cyber-attacks were modeled in this regard: the data-intrusion attack that corrupted the data integrity, and the denial-of-service (DoS) attack that undermined communication between the controller and the plant. The attacks were injected during peak load periods to analyze their impact on both building service

Fault type	Fault intensity	Date: yy/mm/dd (start-finish time)	Method of fault imposition
System stopped working (Chiller off)	—	16/07/06 (16:00-23:00)	Naturally occurred fault.
AHU-1 supply air temperature bias	-4 °F	16/08/08 (10:22-21:16)	Overriding demand adjust by 2.
	+4 °F	16/09/07 (10:30-22:09)	
System stopped working (Chiller off)	—	16/09/11 (18:30-20:30)	Turning off the chiller from 6:30 p.m. to 8:30 p.m.
AHU-2 outdoor air damper stuck higher than normal position	90% open	16/12/01 (10:00-20:45)	Overriding the AHU-2 outdoor air damper control signal* to be 90% open.
	80% open	17/01/03 (10:00-20:30)	Overriding the AHU-2 outdoor air damper control signal to be 80% open.
Occupied during the unoccupied-scheduled period	—	17/01/14 (1:30-7:00)	Naturally occurred fault.
Chiller stopped earlier than scheduled	—	17/07/09 (4:00-15:30)	Naturally occurred fault.
AHU-2 outdoor air damper stuck higher than normal position	90% open	17/07/11 (10:00-20:01)	Overriding the AHU-2 outdoor air damper control signal to be 90% open.
	100% open	17/07/18 (11:00-20:01)	Overriding the AHU-2 outdoor air damper control signal to be 100% open.
Chiller supply chilled water (CHWS) temperature sensor bias	-4 °F	17/08/03 (10:00-21:27)	Overriding the CHWS temperature setpoint from 44 °F to 48 °F on control panel.
HVAC system occupied earlier than scheduled	—	17/08/05 (4:00-8:00)	Changing the system schedule to be occupied from 4:00 a.m.
AHU-2 cooling coil valve position software override at higher-than-normal position	100% open	17/08/11 (10:05-20:06)	Overriding the cooling coil valve control signal to be 100% open.
Chiller chilled water differential pressure (DP) sensor positive bias	0.1 psi	17/09/15 (10:30-15:21)	Overriding the DP setpoint from 7.5 to 0.5.
AHU-2 supply air temperature sensor bias	-3.5 °F	18/07/09 (10:15-20:15)	Overriding the supply air temperature 'setpoint demand adjust' point by 1.75.
AHU-2 outdoor air damper stuck at higher than the normal position	30% open	18/07/10 (10:30-20:30)	Overriding outdoor air damper control signal to be 30% open (normal mode: 15% open).
AHU-2 cooling coil valve stuck at higher than the normal position	80%	18/07/11 (10:00-20:00)	Overriding the cooling coil control signal to be 80% open (normal mode: 40-60% open).
AHU-2 outdoor air damper stuck at higher than the normal position	60% open	18/07/18 (9:30-19:30)	Overriding the outdoor air damper signal to be 60% open (normal mode: 15% open).
Change weekend occupied schedule to end at 8:20 p.m.	—	18/07/22 (20:20-21:40)	Turning off the HVAC system at 8:20 p.m.
CHWS temperature sensor bias	-3.0 °F	18/07/23 (8:00-18:00)	Changing the CHWS temperature setpoint from 44 °F to 47 °F.

Table 3. Details of *RBC-Nesbitt* fault scenarios. Fault injection time varied in each case (data sampling rate: 5-minute; location: Philadelphia, PA, USA). *All control signal overriding was performed within the BAS.

and grid service. As shown in Table 9, the timing of the attacks varied to demonstrate the flexibility of threat modeling. The quantified impact assessment on the building's operational performance can be found in^{43,53}.

G36-HIL. Hardware-in-the-loop (HIL) testbed provides a cost-effective method to evaluate how a fault affects certain perspectives of a real system. In this dataset, the MedOffice virtual testbed, described in section 2.1.4, was integrated with a set of real BAS control system to form a HIL testbed^{54–56}, as depicted in Fig. 5. This HIL testbed, referred to as the MedOffice-HIL testbed hereafter, comprised three main components: (1) a real-time dSPACE machine, that emulated the virtual building modeled in Modelica. (2) A set of BAS controllers of chiller, boiler, AHU and VAV box, which adopted G36 control logic for different HVAC equipment. Their control commands were sent to the virtual building through the real-time HIL machine. (3) A computer server, which hosted the software environment for all the hardware and customized services such as a master program that controlled the experiments. The MedOffice-HIL testbed was capable of emulating both physical faults and cyber-attacks in real-time without requiring actual building zones or HVAC equipment⁵⁶, while able to emulate fault symptoms in a real control system. The description of injected faults is included in Table 10.

Dataset limitations. While the datasets presented in this study offer controlled, well-labeled, and reproducible (for simulated cases) data for research purposes, several limitations should be noted:

1. No multi-fault scenarios: Each fault scenario includes only a single fault at a time. In real building operations, multiple faults can occur concurrently and interact in complex ways, which may alter system responses compared to the isolated-fault conditions represented here.
2. Simplified actuator and component failure modeling: The faults represented in this study capture common HVAC component issues (e.g., valve stuck, damper leakage) through parameter changes or overrides. However, they do not include full physical degradation or abrupt mechanical failures (e.g., motor burnout, actuator linkage breakage), which may produce different symptom patterns.

3. Absence of stochastic sensor noise and control feedback variability: For all simulated data, sensor measurements are noise-free except for cases where a bias or scaling error is explicitly modeled. Likewise, control system behavior is deterministic and idealized, without the small fluctuations and delays often present in real BAS networks. For data collected from real systems, such as *RBC-Nesbitt*, real-world issues including sensor noise and communication delays were present.

These limitations should be considered when applying the datasets to FDD, transfer learning, or other smart building applications, particularly when adapting algorithms developed with these datasets to real-world systems.

Comparative study and dataset pairs. *Datasets pool.* The datasets discussed above have broad applications in smart building technology development. However, given that one of the objectives of this paper is to facilitate the data preparation for TL algorithms, this section identifies suitable dataset pairs and corresponding faults for TL purposes. To be consistent with TL nomenclature, a datasets is also referred to as a ‘domain’ in this section. The domain pairs were chosen to satisfy the TL assumption, i.e., while there are some discrepancies between the domains (such as simulation vs. real, different weather conditions, etc.), they share similarities in other aspects (such as control strategy, operation season, etc.).

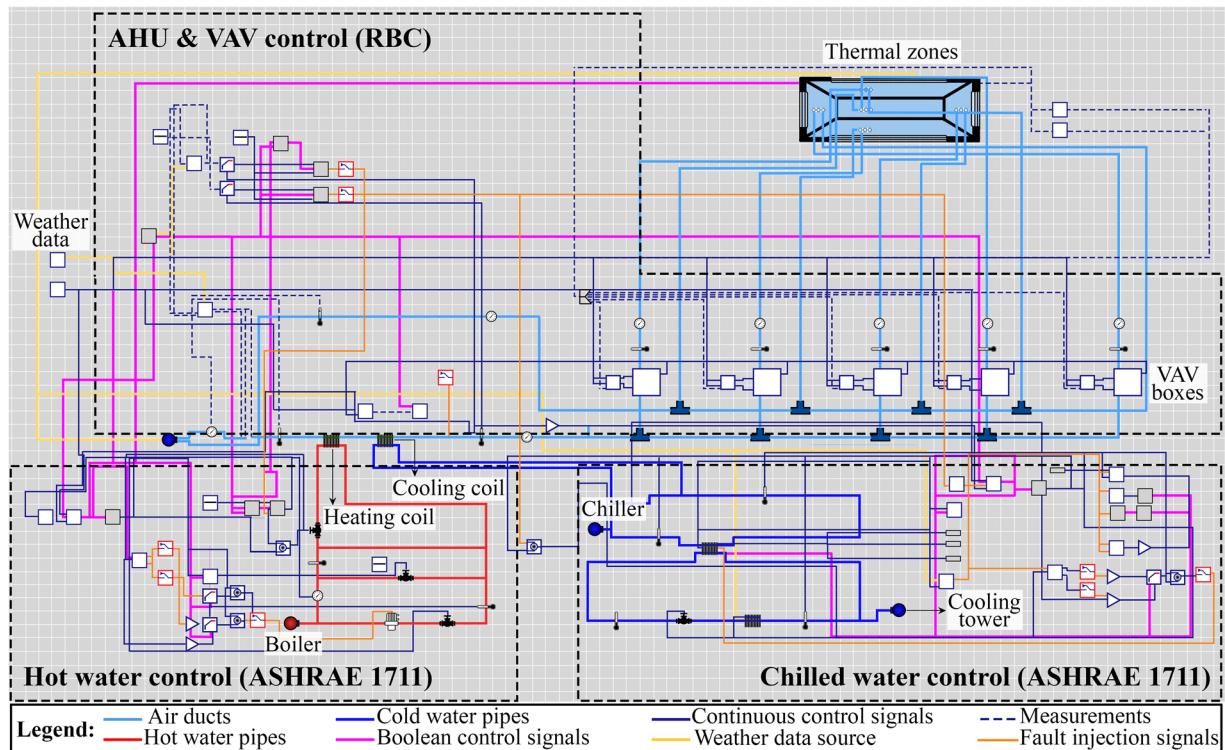
To broaden the scope of this section, we considered three other popular datasets for AHU fault diagnosis, which are already publicized. These datasets are:

1. NISTIR-6964 dataset²⁴, containing three faults (namely: supply air temperature sensor offset, recirculation air damper stuck open, and heating coil valve leakage) that were injected into the ERS test facility. Since the NIST-6964 dataset and the *RBC-ASHRAE1312* dataset were generated from the same test facility with similar principles, these two datasets are considered to belong to the same domain called *ASHRAE-NIST*.
2. LBNL 2019 dataset²²: This dataset contains two main subsets: (a) MZVAV-1 (called *LBNL-2019-1* hereinafter), containing six intensities of outdoor air temperature sensor bias injected to a simulated building in Chicago, IL, USA. And (b) SZVAV and SZCAV (called *LBNL-2019-2* hereinafter), containing data of seven and 14 faults injected into a real building (FLEXLAB facility in Berkely, CA, USA), respectively.
3. LBNL 2022 dataset²³ (called *LBNL-2022* hereinafter), containing 20 annual faults of a simulated office building in Chicago, IL, USA.

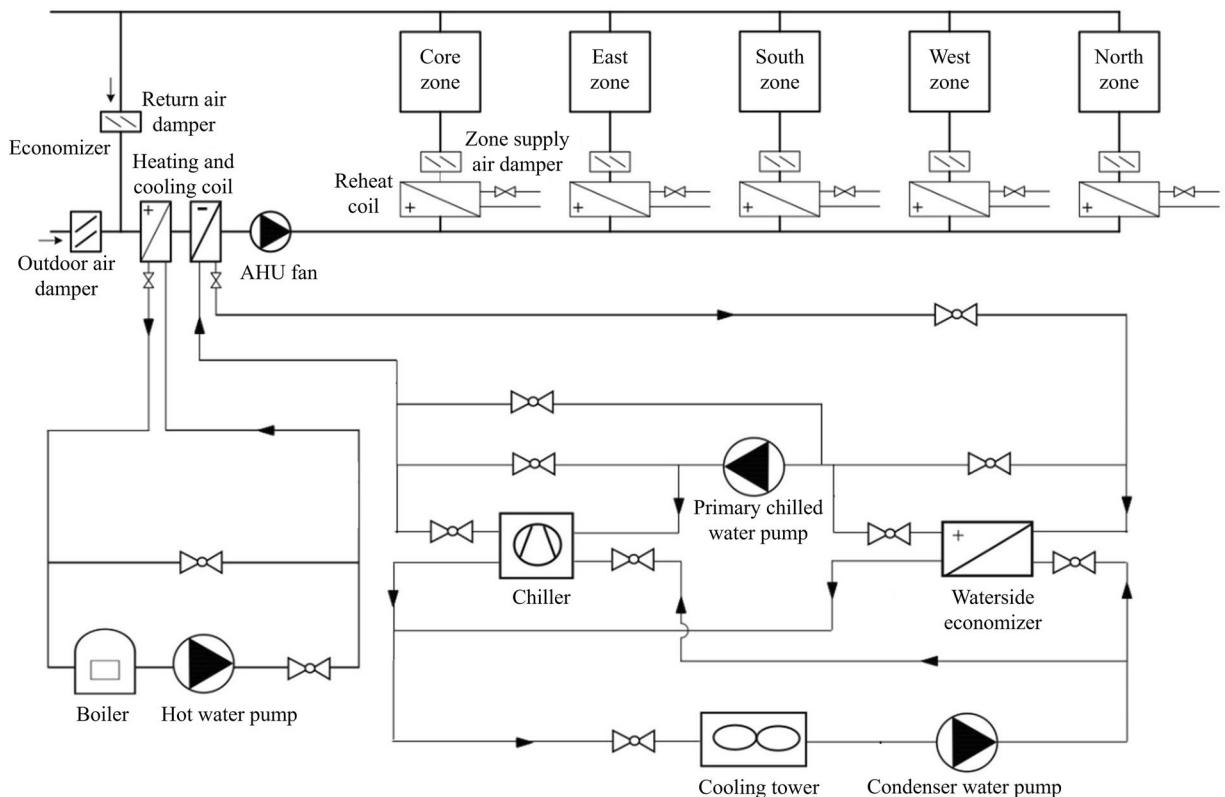
Pairing principle. The process used to identify suitable domain pairs and corresponding faults is outlined below. An example of this process is shown in Fig. 6 as well.

Step 1) Group domains by control strategy: Since control strategies strongly influence fault symptoms (see Section 1), domains with different control strategies cannot be paired for TL applications. Accordingly, the domains were divided into two groups:

- a) RBC: *ASHRAE-NIST*, *RBC-5wk*, *RBC-Nesbitt*, and *LBNL-2019-1*
- b) G36: *G36-1wk*, *G36-5wk*, *G36-Degrad*, *G36-Cyber*, *G36-HIL*, *LBNL-2019-2*, and *LBNL-2022*


Step 2) Identify candidate pairs within each group: A complete list of domain pairs was identified within each group, resulting in 6 RBC pairs and 21 G36 pairs. For each pair, domains’ similarities and differences were determined. For example, both *ASHRAE-NIST* and *RBC-5WK* domains represent medium-sized office buildings as their testbeds. However, *ASHRAE-NIST* is based on Iowa city, USA weather conditions, while *RBC-5wk* simulated a building located in Chicago, USA.

Step 3) Match corresponding faults: Faults were matched across paired domains based on two criteria:


- a) Seasonal alignment: Fault symptoms can vary significantly by season, so only faults occurring in the same season were matched. For instance, *ASHRAE-NIST* includes faults from summer, transitional (spring and autumn), and winter seasons. However, *RBC-5wk* includes only summer faults. Therefore, only summer faults could be matched for this pair.
- b) Match by fault type, not exact intensity: Within each season, faults were firstly categorized based on the source component (e.g., malfunctioning cooling coil valve, return fan, etc.). Within each device category, faults were then matched by the symptom rather than the exact fault intensity.

For example, consider the faults affecting the cooling coil valve. The *CooCoiValStuck_0* and *CooCoiValStuck_15* faults in *ASHRAE-NIST*, and *CooCoiValStuck_0*, *CooCoiValStuck_5*, and *CooCoiValStuck_15* faults in *RBC-5wk*, all correspond to the cooling coil valve being stuck at lower-than-normal position (stuck at either 0%, 5%, or 15% open positions). Thus, these faults are expected to exhibit similar symptoms in the systems, although their intensity (symptom magnitude) may be different. Figure 7 illustrates how these faults impacted three selected features, showing each fault caused the features to have higher-than-normal values, though with different magnitudes.

Another example can be the *TSup_p1.7* and *TSup_p2.8* faults from the same domain pair, both affecting the supply air temperature sensor with a positive bias (1.7 °F and 2.8 °F, respectively). As shown in Fig. 8, these faults produced the same symptoms in the features, but differ in their intensity. This fault-matching approach allows TL researchers to work with varying fault intensities among domain pairs, ensuring that their algorithms are scalable, robust, and ready for real-world applications.

Fig. 3 Modelica implementation of the medium-sized office building (adapted from⁴³).

Fig. 4 Schematic of the MedOffice virtual testbed (adapted from⁴³).

Fault type	Fault intensity	Method of fault imposition
Cooling coil valve stuck	0%, 5%, 15%, 65%, 100%	
Outdoor air damper stuck	0%, 5%, 15%, 45%, 55%, 65%, 100%	Defining the leakage ratio as: $l = \frac{\kappa v(y=0)}{\kappa v(y=1)}$, where $\kappa v(y=0)$ and $\kappa v(y=1)$ are the flow coefficient at the fully closed and fully open positions, respectively.
Supply duct leakage	20%, 45%, 55%	Implementing the mathematical expression as: $\dot{m}_{EF} + \dot{m}_L = k\sqrt{\Delta p}$, where \dot{m}_{EF} is the normal operation mass flow rate, \dot{m}_L is the leakage mass flow rate, k is the friction factor, and Δp is the pressure drop.
AHU supply air temperature sensor bias	+2 °K, -2 °K	
Outdoor air flow rate sensor scale error	+30%, -30%	Overwriting the output (sensed variable) of the original sensor model by the faulty value.
Chilled water differential pressure sensor bias	+10,000 Pa, -10,000 Pa	

Table 4. Details of RBC-5wk fault scenarios. Faults were injected during occupied mode duration, which was weekdays (Mon-Fri) from 7 a.m. to 7 p.m. (data sampling rate: 5-minute; location: Tuscaloosa, AL, USA).

Fault type	Fault intensity	Method of fault imposition
Sensor	Hot water supply temperature sensor bias	Sensor faults were decomposed into three parts: multiplicative errors, bias, and noise, as defined below. $V_{EP} = (1 + m) \cdot V_{EF} + \varepsilon_{bias} + \varepsilon_{noi}$ where V_{EP} and V_{EF} represent the error-presented and the error-free values, respectively. m is the multiplicative offset of the scaling error. ε_{bias} and ε_{noi} denote the deviation caused by the bias errors and the noise. The output of the original sensor model was overwritten by the faulty value (V_{EP}) when the fault mode was activated.
	Hot water differential pressure sensor bias	
	{ Outdoor air flow rate sensor scale error East zone air }	
	AHU { supply air mix air temperature sensor bias return air }	
	Air loop differential pressure sensor bias	
	East zone { air discharging air temperature sensor bias }	
HVAC equipment	Heating coil fouling	Reducing the nominal overall heat transfer coefficient (UA) of the AHU heating coil by 10%, 30%, or 50% from the baseline.
	Boiler fouling	Adjusting down the boiler efficiency curve (by 10% and 20%) since deposits on the fireside and the waterside of the boiler tubes could impair the heat transfer and reduce the boiler efficiency.
	Hot water pump cavitation & impeller fault	—
	{ Hot water pump motor degradation Fan motor }	Overwriting the fault-free pump curve by the faulty pump curves under different fault types.

Table 5. Details of G36-1wk fault scenarios in the heating season. Faults were injected continuously for a total of one week (data sampling rate: one-minute; location: Chicago, IL, USA).

Fault type	Fault intensity	Method of fault imposition
Cooling coil valve stuck position	Fully closed	Defining the leakage ratio as: $l = \frac{\kappa v(y=0)}{\kappa v(y=1)}$, where $\kappa v(y=0)$ and $\kappa v(y=1)$ are the flow coefficient at the fully closed and fully open positions, respectively.
Outdoor air damper stuck position	Fully open	
Supply duct leakage	20%	Implementing the mathematical expression as: $\dot{m}_{EF} + \dot{m}_L = k\sqrt{\Delta p}$, where \dot{m}_{EF} is the normal operation mass flow rate, \dot{m}_L is the leakage mass flow rate, k is the friction factor, and Δp is the pressure drop.

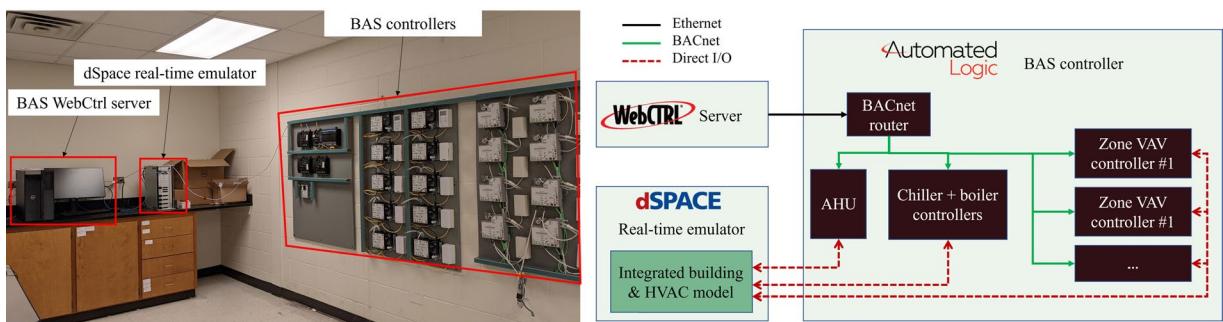
Table 6. Details of G36-5wk fault scenarios. Faults were injected continuously, but the system was in occupied mode on weekdays (Mon-Fri) from 7 a.m. to 7 p.m. only (data sampling rate: five-minute; location: Tuscaloosa, AL, USA).

Following this process, a comprehensive list of domain pairs and matched faults was generated. Due to the extensive list of pairs, two example pairs are listed in Table 11 to offer an overview, while the complete list is available in the data folder under 'DomainPairs.pdf'. Please note, in this table, faults names are shown in abbreviated form for clarity and brevity, with definitions provided in the accompanying PDF for each dataset.

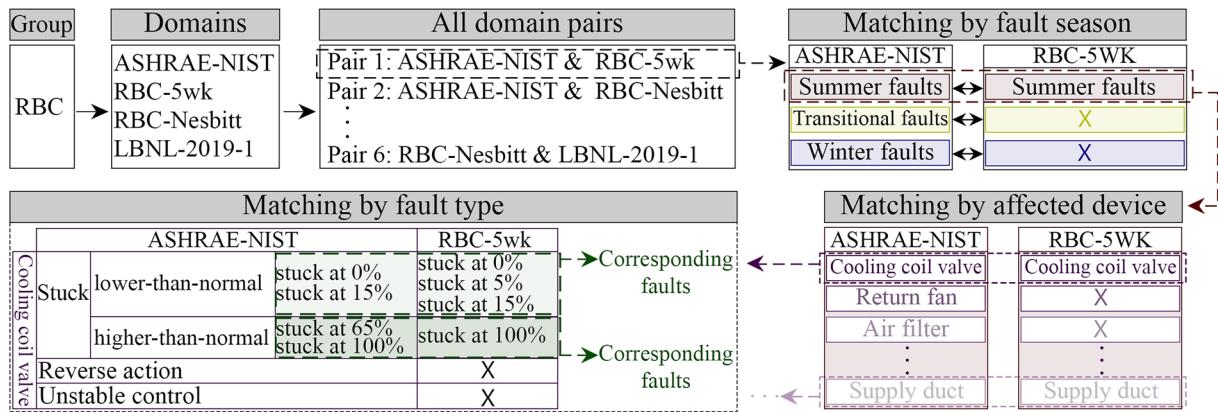
Data Records

The datasets are stored on figshare⁵⁷. A summarized description of the datasets is provided in Table 12. For each system, the FDD data are stored in individual comma-separated value (CSV) files, and each file contains one fault type under one fault intensity. Datasets are recorded at intervals of either one or five minutes to reflect system operations, which can be re-sampled to any higher interval to fit the needs of specific applications.

Fault type	Fault intensity		Method of fault imposition
	Heat transfer coefficient decrease rate	Pressure drop increase rate	
Cooling coil airside fouling	7%/yr	30%/yr	1) Modifying the pressure drop equation from $\dot{m} = k \cdot \sqrt{\Delta p}$ to $\Delta p = \text{coef_f}_{dp} \cdot \frac{1}{k^2} \cdot \dot{m}^2$ by introducing a time-dependent pressure drop coefficient (coef_f_{dp}). 2) Modifying the convection heat transfer rate equation from $\dot{Q} = U_{air} \cdot \Delta T$ to $\dot{Q} = \text{coef_f}_{HT} \cdot U_{air} \cdot \Delta T$ by introducing a time-dependent heat transfer degradation coefficient (coef_f_{HT}).
	14%/yr	200%/yr	
Condenser waterside fouling*	4%/30 days	250%/30 days	1) The same pressure drop equation modification as above. 2) Directly applying fouling effect on heat transfer to heat flux through $\dot{Q}_{condensor,f} = \text{coef}_{f_{HT}} \cdot \dot{Q}_{condensor,c}$ where $\dot{Q}_{condensor,f}$ and $\dot{Q}_{condensor,c}$ represent the heat transfer rates of the condenser under the fouled and the clean conditions, respectively.
	28%/30 days	50%/30 days	


Table 7. Details of G36-Degrad fouling fault scenarios. Faults were injected during occupied mode duration, which was weekdays (Mon-Fri) from 7 a.m. to 7 p.m. (data sampling rate: five-minute; location: Tuscaloosa, AL, USA). *Fault started on day 170.

Fault type	Fault intensity	Method of fault imposition
AHU supply air duct leakage	(starting rate, increase rate): (1%, 1.4%/yr), (1%, 7%/yr), (10%, 1.4%/yr), (10%, 7%/yr) (25%, 1.4%/yr), (25%, 7%/yr),	Adding a time-dependent parameter to the AHU air volume model.
Supply air temperature sensor bias	+1 °C/yr, -1 °C/yr	Overwriting the temperature sensor with the faulty measurement.


Table 8. Details of G36-Degrad non-fouling fault scenarios. Faults were injected during occupied mode duration, which was weekdays (Mon-Fri) from 7 a.m. to 7 p.m. (data sampling rate: 5-minute; location: Tuscaloosa, AL, USA).

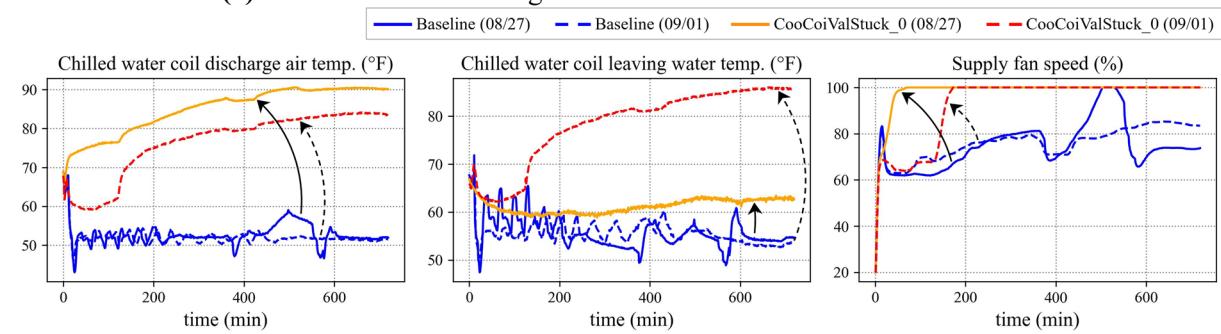
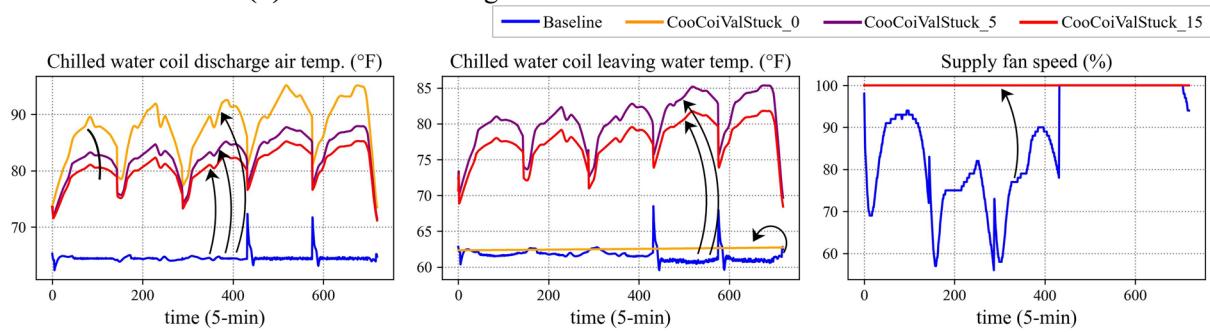
Fault type	Fault intensity	Duration*	Method of fault imposition
Data-intrusion attack	Temperature reset request	15 temperature reset request	12 p.m. to 3 p.m. on one shoulder season day (with the next 2 hours as the post-attack period). Corrupting the number of transmitted zone temperature reset requests to 15 for five thermal zones (maximum allowed in G36) using the <i>Max temporal</i> model: $\hat{y}(t) = \begin{cases} y(t), & t \notin A \\ y_{\max}, & t \in A \end{cases}$ where \hat{y} is the corrupted property value, y is the original value, and A is the threat period
	Chiller on/off	Chiller cycles on/off every 30 minutes	12 p.m. to 3 p.m. on one cooling season day (with 3 p.m. to 7 p.m. as the post-attack period). Using <i>square pulse</i> model with a period of one hour on chiller on/off control signal: $\hat{y}(t) = \begin{cases} y(t), & t \notin A \\ f_p(t), & t \in A \text{ and } c \in [y_{\min}, y_{\max}] \\ y_{\min}, & t \in A \text{ and } c < y_{\min} \\ y_{\max}, & t \in A \text{ and } c > y_{\max} \end{cases}$
	Supply air fan speed at max value	speed set to 100%	7 a.m. to 7 p.m. on one cooling season day. Using the <i>max temporal</i> model.
	Zone temperature cooling setpoint to constant 22 °C	—	1 p.m. to 3 p.m. on one cooling season day (with the next 2 hours as the post attack period). Using the <i>constant temporal</i> model, where property value was overwritten to a user-defined constant value c during the threat: $\hat{y}(t) = \begin{cases} y(t), & t \notin A \\ c, & t \in A \text{ and } c \in [y_{\min}, y_{\max}] \\ y_{\min}, & t \in A \text{ and } c < y_{\min} \\ y_{\max}, & t \in A \text{ and } c > y_{\max} \end{cases}$
DoS attack	Blocking chilled water setpoint	The CHWS temperature was continuously reset from a minimum value of 5 °C to a maximum value of 10 °C.	12 p.m. to 6 p.m. on one cooling season day (6 p.m. to 7 p.m. as the post-attack period). Blocking the chiller from receiving its setpoints to use values from the previous time step, by implementing the <i>blocking temporal</i> model: $\hat{y}(t) = \begin{cases} y(t), & t \notin A \\ y(t-1), & t \in A \end{cases}$
	Delaying chilled water setpoint	Fixed 10-minute delay in communication network	12 p.m. to 6 p.m. on one cooling season day. Transmitted signal was delayed to the receivers by the <i>delaying</i> model: $\hat{y}(t) = \begin{cases} y(t), & t \notin A \\ y(t-\Delta t), & t \in A \end{cases}$

Table 9. Details of G36-Cyber fault scenarios. Fault injection times varied in each case (data sampling rate: 5-minute; location: Chicago, IL, USA). *In this column, the cooling season day corresponds to the 207th day of the year (July 26th), while the shoulder season day corresponds to the 83rd day of the year (March 23rd).

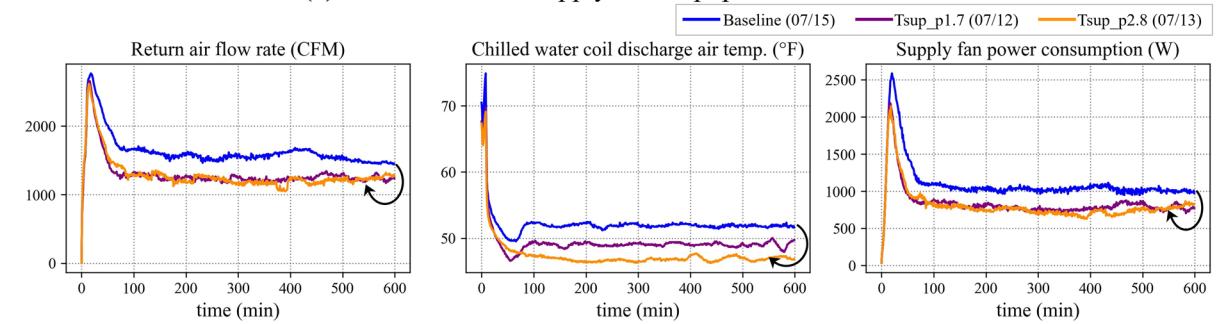
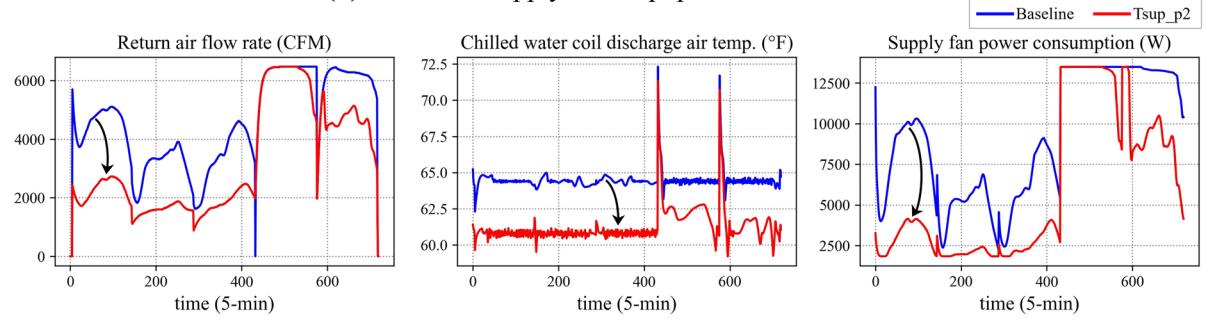
Fig. 5 The MedOffice-HIL testbed at Texas A & M University (adapted from³⁷).

Fig. 6 Overview of fault matching process for an example pair in the RBC group: ASHRAE-NIST and RBC-5wk.

Fault type		Fault intensity	Duration (start time-end time)	Method of fault imposition
Physical faults	AHU supply air temperature setpoint	Fixed to maximum value	08:00–09:00, 12:00–13:00, 16:00–17:00	Adjusting the setpoint to its maximum value, consistent with the actual bounds of the AHU controller defined in the BAS server.
	Cooling coil valve stuck position	Stuck at minimum position (i.e., 0%)	08:00–09:00, 12:00–13:00, 16:00–17:00	Adjusting the valve position by overriding the control signal through the BAS server.
Cyber-attack faults	Device reinitialization attack on the AHU controller	—	08:00–08:20, 10:00–10:20, 12:00–12:20, 14:00–14:20, 16:00–16:20, 18:00–18:20	—
	Network DoS attack on BAS	—	08:00–08:20, 10:00–10:20, 12:00–12:20, 14:00–14:20, 16:00–16:20, 18:00–18:20	—



Table 10. Details of G36-HIL fault scenarios. Fault injection times varied in each case, but all faults were simulated using the weather data from August 1st (data sampling rate: five-minute; location: Chicago, IL, USA).

Each dataset is accompanied by a pdf document (named '00_explanations.pdf') containing essential details including building and system information (model or experimental facility description, control strategy, data sampling rate, etc.), fault cases (fault types, intensities, abbreviations, etc.), and any extra information, required to better comprehend the datasets.



Technical Validation

Since various systems were utilized for datasets generation, the details of validation processes to ensure data accuracy vary as well. For the sake of brevity, an example of validation process for a single dataset (i.e., G36-5wk) is provided in this section, and readers are referred to the cited publications in each dataset folder for details on experimental facility or simulated model validation.

Regarding the G36-5wk dataset, functional testing was conducted to validate the baseline (fault-free) behavior of the model. This testing verified that system operation aligned with the designed control sequences and

(a) ASHRAE-NIST cooling coil valve stuck lower than normal faults**(b) RBC-5wk cooling coil valve stuck lower than normal faults**

Fig. 7 Impact of cooling coil stuck lower-than-normal faults on (a) ASHRAE-NIST domain and (b) RBC-5wk domain. Arrows indicate the overall impact of faults on each feature. In (a), both faults resulted in higher-than-normal values for all three features. In (b), all three faults similarly led to higher-than-normal values for all three features.

(a) ASHRAE-NIST supply air temp. positive bias faults**(b) RBC-5wk supply air temp. positive bias faults**

Fig. 8 Impact of supply air temperature positive bias faults on (a) ASHRAE-NIST domain; and (b) RBC-5wk domain. Arrows indicate the overall impact of faults on each feature. Both faults in (a) and the fault in (b) resulted in lower-than-normal values for all three features.

Domains		Corresponding faults			Similarities btw. domains	Discrepancies btw. domains
1 st	2 nd	1 st domain faults (followed by injection date: mm/dd, if available)	2 nd domain faults (followed by injection date: mm/dd, if available)			
ASHRAE-NIST	RBC-5wk	CooCoiValStuck_0 (08/27) CooCoiValStuck_15 (09/01)	CooCoiValStuck_0 CooCoiValStuck_5 CooCoiValStuck_15		*Same control strategy (RBC) *Both represent a medium-sized office building	*Building type and weather condition (1 st domain: ERS test facility in Iowa, USA. 2 nd domain: office building in Chicago, IL, USA)
		CooCoiValStuck_65 (09/02) CooCoiValStuck_100 (08/31)	CooCoiValStuck_100			
		OADamLea_45 (09/05) OADamLea_55 (09/06)	OADamStuck_65 OADamStuck_100			
		SupDucLea_AfterSF (09/07)	SupDucLea_20 SupDucLea_45 SupDucLea_55			
		TSup_P1.7 (07/12) TSup_P2.8 (07/13)	TSup_p2			
G36-1wk	LBNL-2019-2	Summer	OADamStuck_0	OADamStuck_min (09/18)	*Same control strategy (G36)	*Building type and weather condition (1 st domain: office building in Chicago, IL, USA. 2 nd domain: FLEXLAB test facility in Berkeley, CA, USA) *Data type (1 st domain: simulation data, and 2 nd domain: real data)
			OADamStuck_100	OADamStuck_100 (09/19)		
			CooCoiValStuck_100	CooCoiValStuck_100 (09/22)		
		Winter	HeaCoiValStuck_0 HeaCoiValStuck_5 HeaCoiValStuck_15	HeaCoiValStuck_0 (03/24)		
			HeaCoiValStuck_100	HeaCoiValStuck_100 (03/25)		
			OADamStuck_100	OADamStuck_100 (03/18)		

Table 11. Two examples of AHU domain pairs, suitable for TL algorithms.

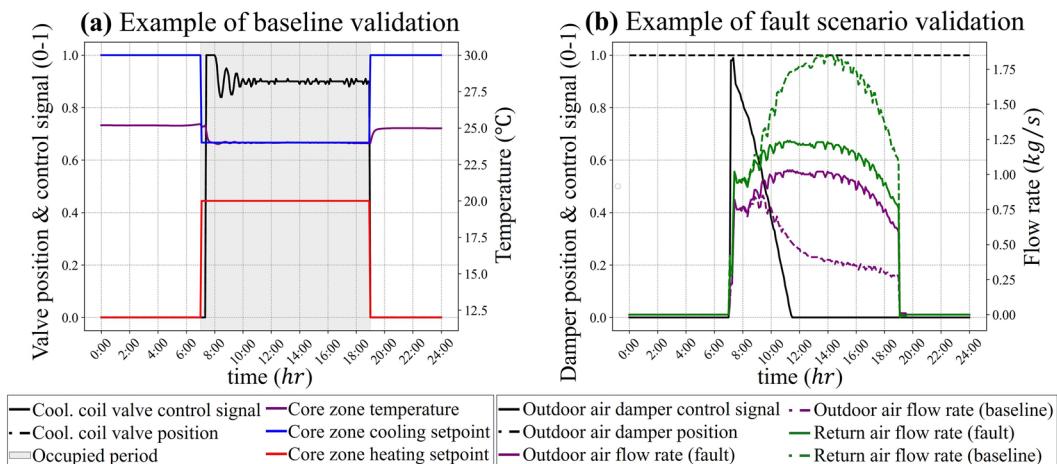

Dataset name		Faults description	Data provenance	Number of features	Sampling rate	Total data size
RBC	RBC-ASHRAE1312	18, 12, and 19 faults in summer, winter, and spring seasons, respectively.	Simulated using HVACISM+, and real building.	Real: 162 Sim.: 21	1-min	136 MB
	RBC-Nesbitt	16 and 4 faults in cooling and heating seasons, respectively.				
	RBC-5wk	21 faults in cooling season.				
G36	G36-1wk	127, 127, and 105 faults in cooling, shoulder and heating seasons, respectively.	Simulated building using Modelica	114	1-min 5-min 5-min 5-min	4.7 GB 22.3 MB 774 MB 1.4 MB 1.1 MB
	G36-5wk	3 faults in cooling season.				
	G36-Degrad	4 annual fouling faults and 8 annual non-fouling faults.				
	G36-Cyber	4 data-intrusion attacks, 2 DoS attacks.				
	G36-HIL	2 Physical faults and 2 cyber-attack threats in cooling season.	Simulated building using Modelica and integrated with HIL			

Table 12. Detailed description of each file in the dataset.

reflected fault-free operational behaviors. For example, Fig. 9(a) shows simulated measurements of the zonal temperature and cooling coil valve for the single-duct AHU system. The data trends were examined to confirm that the system operates according to the defined schedule, with occupied hours from 7 a.m. to 7 p.m., and a cooling setpoint that modulates from 30 °C during unoccupied times to 24 °C during occupied times. The data trends were further inspected to verify whether the modeled proportional-integral-derivative (PID) parameters for the cooling valve controller were configured to output appropriate control signals, which was confirmed by the smooth trend and absence of significant oscillations in the plotted signal for the cooling coil valve command. Similar validation processes were conducted for other variables as well.

After verifications of the fault-free operational state, additional tests were conducted for each fault scenario. These tests evaluated (a) whether the imposed fault condition was accurately reflected in the data, and (b) whether the expected symptoms of the fault were reflected in other operational trends.

A single fault of G36-5wk dataset (outdoor air damper stuck fully open) is chosen to illustrate the fault validation procedure. As shown in Fig. 9(b), the fault condition was confirmed by observing that outdoor air damper position (black dashed line) was fixed at 1.0 (fully open position), while its control signal was mainly at 0.0 (black solid line) in the controller's attempt to close it. The initial and main symptoms of this fault were an increased outdoor air flow rate (see purple lines), leading to a reduction in return air flow rates (see green lines) compared to those in the baseline. Similar verification steps were performed for all fault types and intensities in the dataset for model validation.

Fig. 9 Example of G36-5wk (a) baseline scenario; and (b) fault scenario (outdoor air damper stuck fully open) and its comparison to baseline (only the second day of last week is plotted, but the same trends are seen for other days as well).

Usage Notes

A complete inventory of the data was developed to assist users in comprehending the content and form of the data, and the associated AHU systems, controls, and faults. The data itself consists of time-series that can be analyzed with any software tools chosen by the user.

Data availability

The dataset is available at figshare <https://doi.org/10.6084/m9.figshare.29297999>.

Code availability

The Modelica buildings library is freely available for download⁴². A Windows or Linux-based computer with licensed Dymola software was used to run Modelica models to generate datasets presented in this paper. In addition, free program such as OpenModelica⁵⁸ can be used to run Modelica models as well. HVACSIM+ is freely available, upon request from NIST, and has no operating system requirements. The Modelica simulation code and workflow used to generate the G36-Cyber dataset are openly available on GitHub⁵⁹.

This repository contains: (1) The complete Modelica models of the G36-controlled medium office building testbed used for cyber-attack simulations. (2) Attack/fault injection modules implementing both data-intrusion and DoS attacks consistent with the described scenarios. (3) A simulation workflow for reproducing the six cyber-attack scenarios. And (4) instructions for running the models in Dymola or OpenModelica, including required library versions and simulation parameters.

The scripts and Modelica models in this repository can be directly used to regenerate the published G36-Cyber dataset. This repository can also serve as a template for generating other fault types described in the simulated datasets (i.e., G36-1wk, G36-5wk, G36-Degrad, G36-Cyber, and G36-HIL) by modifying the fault injection modules, enabling broader fault simulation studies beyond cyber-attacks. For the RBC-ASHRAE1312 dataset, related documentation and any available code can be obtained from the official ASHRAE Website⁶⁰. Finally, the RBC-Nesbitt dataset was collected from a real building system; therefore, no code was used for data collection or generation.

Received: 4 July 2025; Accepted: 22 October 2025;

Published online: 09 January 2026

References

1. Cao, X., Dai, X. & Liu, J. Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade. *Energy and buildings* **128**, 198–213 (2016).
2. Malkawi, A. *et al.* Design and applications of an IoT architecture for data-driven smart building operations and experimentation. *Energy and Buildings* **295**, 113291 (2023).
3. Granderson, J. *et al.* Characterization and survey of automated fault detection and diagnostic tools. Report No. LBNL-2001075, (Lawrence Berkeley National Laboratory, 2017).
4. Zhang, R. & Hong, T. Modeling of HVAC operational faults in building performance simulation. *Applied Energy* **202**, 178–188 (2017).
5. Ginestet, S., Marchio, D. & Morisot, O. Evaluation of faults impacts on energy consumption and indoor air quality on an air handling unit. *Energy and Buildings* **40**, 51–57 (2008).
6. Granderson, J. *et al.* A labeled dataset for building HVAC systems operating in faulted and fault-free states. *Scientific data* **10**, 342 (2023).
7. Mulumba, T., Afshari, A., Yan, K., Shen, W. & Norford, L. K. Robust model-based fault diagnosis for air handling units. *Energy and Buildings* **86**, 698–707 (2015).

8. Chen, Z. *et al.* A review of data-driven fault detection and diagnostics for building HVAC systems. *Applied Energy* **339**, 121030 (2023).
9. Lin, G., Kramer, H., Nibler, V., Crowe, E. & Granderson, J. Building analytics tool deployment at scale: Benefits, costs, and deployment practices. *Energies* **15**, 4858 (2022).
10. Zhang, F., Saeed, N. & Sadeghian, P. Deep learning in fault detection and diagnosis of building HVAC systems: A systematic review with meta analysis. *Energy and AI* **12**, 100235 (2023).
11. Matetić, I., Štajduhar, I., Wolf, I. & Ljubic, S. A review of data-driven approaches and techniques for fault detection and diagnosis in HVAC systems. *Sensors* **23**, 1 (2022).
12. Zhu, X., Du, Z., Jin, X. & Chen, Z. Fault diagnosis based operation risk evaluation for air conditioning systems in data centers. *Building and Environment* **163**, 106319 (2019).
13. Zhu, X., Zhang, S., Jin, X. & Du, Z. Deep learning based reference model for operational risk evaluation of screw chillers for energy efficiency. *Energy* **213**, 118833 (2020).
14. Ghalamshah, N. *et al.* Unsupervised domain adaptation for HVAC fault diagnosis using contrastive adaptation network. *Energy and Buildings*, 115659 (2025).
15. Liang, X., Li, P., Chen, S., Jin, X. & Du, Z. Partial domain adaption based prediction calibration methodology for fault detection and diagnosis of chillers under variable operational condition scenarios. *Building and Environment* **217**, 109099 (2022).
16. Liu, J. *et al.* Transfer learning-based strategies for fault diagnosis in building energy systems. *Energy and Buildings* **250**, 111256 (2021).
17. Li, G., Chen, L., Liu, J. & Fang, X. Comparative study on deep transfer learning strategies for cross-system and cross-operation-condition building energy systems fault diagnosis. *Energy* **263**, 125943 (2023).
18. Lu, N., Xiao, H., Sun, Y., Han, M. & Wang, Y. A new method for intelligent fault diagnosis of machines based on unsupervised domain adaptation. *Neurocomputing* **427**, 96–109 (2021).
19. Zhang, Z., Chen, H., Li, S. & An, Z. Unsupervised domain adaptation via enhanced transfer joint matching for bearing fault diagnosis. *Measurement* **165**, 108071 (2020).
20. Chen, P., Zhao, R., He, T., Wei, K. & Yang, Q. Unsupervised domain adaptation of bearing fault diagnosis based on join sliced Wasserstein distance. *ISA transactions* **129**, 504–519 (2022).
21. Fan, C., He, W., Liu, Y., Xue, P. & Zhao, Y. A novel image-based transfer learning framework for cross-domain HVAC fault diagnosis: From multi-source data integration to knowledge sharing strategies. *Energy and Buildings* **262**, 111995 (2022).
22. Granderson, J. & Lin, G. Data Sets for Evaluation of Building Fault Detection and Diagnostics Algorithms. *OpenEI* <https://doi.org/10.25984/1824861> (2019).
23. Granderson, J. *et al.* LBNL Fault Detection and Diagnostics Datasets. *OpenEI* <https://doi.org/10.25984/1881324> (2022).
24. Castro, N., Schein, J., Park, C., Galler, M. & Bushby, S. Results from simulation and laboratory testing of air handling unit and variable air volume box diagnostic tools. Report No. NISTIR 6964, (National Institute of Standards and Technology, 2003).
25. Lecamwasam, L., Wilson, J. & Chokolich, D. *Guide to best practice maintenance & operation of HVAC systems for energy efficiency*. (Department of Climate Change and Energy Efficiency, 2012).
26. Norford, L. *et al.* Demonstration of fault detection and diagnosis methods in a real building. Report No. ASHRAE 1020-RP, (American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2000).
27. Carling, P. Comparison of three fault detection methods based on field data of an air-handling unit/discussion. *ASHRAE Transactions* **108**, 904 (2002).
28. Schein, J., Bushby, S. T. & House, J. Results from laboratory testing of embedded air handling unit and variable air volume box fault detection tools. Report No. NISTIR 7036, (National Institute of Standards and Technology, 2003).
29. Milesi-Ferretti, N. S., Galler, M. A., Bushby, S. T. & Choiniere, D. Evaluating the Performance of DABO and HVAC-Cx Commissioning Tools using the Virtual Cybernetic Building Testbed. (National Institute of Standards and Technology, 2015).
30. Nehasil, O., Dobíášová, L., Mazanec, V. & Široký, J. Versatile AHU fault detection—Design, field validation and practical application. *Energy and Buildings* **237**, 110781 (2021).
31. ASHRAE. ASHRAE Guideline 36-2021: High-Performance Sequences of Operation for HVAC Systems (2021).
32. Lu, X., Fu, Y., O'Neill, Z. & Wen, J. A holistic fault impact analysis of the high-performance sequences of operation for HVAC systems: Modelica-based case study in a medium-office building. *Energy and Buildings* **252**, 111448 (2021).
33. Wen, J. & Li, S. Tools for evaluating fault detection and diagnostic methods for air-handling units. Report No. ASHRAE 1312-RP, (American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2011).
34. Chen, Y., Wen, J. & Lo, J. Using weather and schedule-based pattern matching and feature-based principal component analysis for whole building fault detection—Part I development of the method. *Journal of Engineering for Sustainable Buildings and Cities* **3**, 011001 (2022).
35. Chen, Y. *Data-driven Whole Building Fault Detection and Diagnosis*. (Drexel University, 2019).
36. Wetter, M., Zuo, W., Nouidui, T. S. & Pang, X. Modelica buildings library. *Journal of Building Performance Simulation* **7**, 253–270 (2014).
37. Li, G. *et al.* A hardware-in-the-loop (HIL) testbed for cyber-physical energy systems in smart commercial buildings. *Science and Technology for the Built Environment* **30**, 415–432 (2024).
38. DOE. *Commercial Prototype Building Models* <https://www.energycodes.gov/prototype-building-models#Commercial>.
39. EnergyPlus <https://energyplus.net/>.
40. ASHRAE. Sequences of Operation for Common HVAC Systems (2006).
41. Wetter, M., Hu, J., Grahovac, M., Eubanks, B. & Haves, P. In *Building Performance Modeling Conference and SimBuild*.
42. LBNL. *Modelica Buildings Library* <https://simulationresearch.lbl.gov/modelica>.
43. Fu, Y. *et al.* Modeling and evaluation of cyber-attacks on grid-interactive efficient buildings. *Applied Energy* **303**, 117639 (2021).
44. ASHRAE. ASHRAE Guideline 36-2018: High performance sequences of operation for HVAC systems. (2018).
45. Pradhan, O. M. S. *A Dynamic Bayesian Network Framework for Data-Driven Fault Diagnosis and Prognosis of Smart Building Systems*. (Drexel University, 2023).
46. Yang, L., Braun, J. E. & Groll, E. A. The impact of fouling on the performance of filter–evaporator combinations. *International journal of refrigeration* **30**, 489–498 (2007).
47. Cremaschi, L., Spitler, J. D., Lim, E. & Ramesh, A. Waterside fouling performance in brazed-plate-type condensers for cooling tower applications. *HVAC&R Research* **17**, 198–217 (2011).
48. Chu, M., Lu, X., Fu, Y., O'Neill, Z. & Wen, J. In *Proceedings of eSim 2022: 12th Conference of IBPSA-Canada (eSim, Vol. 12)*. IBPSA-Canada, Vancouver, Canada.
49. Tushar, W. *et al.* Internet of things for green building management: disruptive innovations through low-cost sensor technology and artificial intelligence. *IEEE Signal Processing Magazine* **35**, 100–110 (2018).
50. Peacock, M. Anomaly detection in bacnet/ip managed building automation systems (2019).
51. Roth, A. & Reyna, J. Grid-interactive efficient buildings technical report series: Whole-building controls, sensors, modeling, and analytics. Report No. DOE/GO-102019-5230, (US Department of Energy, Office of Energy Efficiency and Renewable Energy (EERE) 2019).
52. Li, G. *et al.* A critical review of cyber-physical security for building automation systems. *Annual Reviews in Control* **55**, 237–254 (2023).

53. Fu, Y., O'Neill, Z. & Adetola, V. A flexible and generic functional mock-up unit based threat injection framework for grid-interactive efficient buildings: A case study in Modelica. *Energy and Buildings* **250**, 111263 (2021).
54. O'Neill, Z. *et al.* Securing Grid-interactive Efficient Buildings (GEB) through Cyber Defense and Resilient System (CYDRES). (Texas A & M Univ., College Station, TX, United States., 2024).
55. Li, G. *et al.* CYDRES: CYber Defense and REsilient System for securing grid-interactive efficient buildings. *Proceedings of the 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation*, 307–309 (2023).
56. Li, G. *et al.* Emulation and detection of physical faults and cyber-attacks on building energy systems through real-time hardware-in-the-loop experiments. *Energy and Buildings*, 114596 (2024).
57. Ghalamsiah, N. *et al.* Labeled Datasets for Air Handling Units Operating in Faulted and Fault-free States. *figshare* <https://doi.org/10.6084/m9.figshare.29297999> (2025).
58. OPENMODELICA (The Open Source Modelica Consortium (OSMC)).
59. BE-HVACR-Group. Modelica G36 Cyber Datasets Codes. *GitHub* https://github.com/BE-HVACR/Modelica_G36-Cyber_Datasets (2025).
60. Li, S. & Wen, J. Development and Validation of a Dynamic Air Handling Unit Model. *ASHRAE Website, ASHRAE Bookstore In Partnership with Accuris* https://store.accuristech.com/standards/or-10-007-rp-1312-development-and-validation-of-a-dynamic-air-handling-unit-model-part-i?product_id=1712375 (2010).

Acknowledgements

This study is supported by funds from the U.S. National Science Foundation (NSF) award under the grant number 2309030 entitled “PIRE: Building Decarbonization via AI-empowered District Heat Pump Systems”.

Author contributions

Naghmeh Ghalamsiah led the overall data gathering effort and data comparison section, wrote the original manuscript, reviewed and edited the manuscript. Jin Wen curated and synthesized the *RBC-ASHRAE1312* dataset and documented the data, guided the curation of other datasets, reviewed and edited the manuscript. Guowen Li curated and synthesized the *G36-HIL* and *RBC-5wk* datasets and documented the data, wrote the original manuscript, reviewed and edited the manuscript. Yimin Chen curated and synthesized the *RBC-Nesbitt* dataset and documented the data. Xing Lu curated and synthesized the *G36-1wk* dataset and documented the data. Yangyang Fu curated and synthesized the *G36-Cyber* dataset and documented the data. Mengyuan Chu curated and synthesized the *G36-Degrad* and *G36-5wk* datasets and documented the data. Zheng O'Neill supervised the curation, synthesizing, and documentation of *RBC-5wk*, *G36-1wk*, *G36-5wk*, *G36-Degrad*, *G36-Cyber*, *G36-HIL* datasets, reviewed and edited the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to J.W.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit <http://creativecommons.org/licenses/by-nc-nd/4.0/>.

© The Author(s) 2026