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Labeled Datasets for Air Handling 
Units Operating in Faulted and 
Fault-free States
Naghmeh Ghalamsiah1, Jin Wen   1 ✉, Guowen Li2, Yimin Chen3, Xing Lu2,4, Yangyang Fu2, 
Mengyuan Chu2 & Zheng O’Neill2

Data-driven fault detection and diagnosis (FDD) for buildings’ heating, ventilating, and air conditioning 
(HVAC) systems has gained popularity in recent years. However, the scarcity of well-labeled data 
that represents true fault symptoms presents a challenge for developing new FDD methods. 
Furthermore, there is growing interest in applying transfer learning (TL) for building applications, 
where well-labeled data from one building is used to diagnose faults in a related but different building. 
Successful evaluation of TL algorithms requires at least two datasets that share similarities yet exhibit 
differences in some operational conditions. Unfortunately, the lack of comparative studies to identify 
suitable dataset pairs has slowed the progress of TL or other inter-dataset studies. To address these 
challenges, this paper focuses on the air handling unit (AHU), a key HVAC subsystem, and 1) presents 
the publication of eight new datasets, operating under fault-free and various faulty conditions; and 2) 
conducts a comprehensive study on AHU fault datasets to identify dataset pairs and their associated 
faults that are most suitable for evaluating TL algorithms.

Background & Summary
The building sector accounts for approximately 40% of global energy consumption1, highlighting a great poten-
tial to reduce energy use and carbon emissions through improving building operation efficiency. The concept of 
smart buildings has therefore emerged, which integrates advanced data-driven technologies to optimize energy 
performance and maintain occupant comfort in real time2. Among the key applications of data-driven smart 
buildings, data-driven fault detection and diagnosis (FDD) of heating, ventilation, and air conditioning (HVAC) 
systems plays a critical role due to its significant impact on building energy use and carbon emission3, equip-
ment life, occupant comfort4, and indoor air quality5. In addition, the growing emphasis on grid-interactive 
buildings, which can reliably provide load-flexibility services to the grid, underscores the importance of having 
fault-free HVAC systems, providing further motivation for FDD technology development6.

Compared to traditional rule-based FDD approaches, data-driven methods for HVAC FDD have 
gained much popularity in recent decades due to their potential for improved performance while being less 
time-consuming or dependent on experts7,8. In these methods, operational data collected from building auto-
mation systems (BAS) and sensors are employed by FDD software tools to automatically detect equipment 
issues and degrading performance9. Overall, support vector machine (SVM), Bayesian networks, and principal 
component analysis (PCA) have been the most popular algorithms for data-driven HVAC FDD in the litera-
ture8. Apart from them, deep learning-based models have attracted much attention in recent years due to their 
advanced feature extraction ability, where convolutional neural networks (CNN), and recurrent neural networks 
(RNN) have been the most popular ones10.

Although the results of such algorithms are promising, many papers have declared that the lack of 
well-labeled data, representing the true fault symptoms, is the main barrier to testing the effectiveness of 
data-driven algorithms and developing new ones8,11. While large volumes of operational data can be exported 
from today’s building control and automation systems, much of them are unsuitable for algorithm training due 
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to data quality issues, the presence of unknown and unlabeled faults, and extreme difficulty in assembling a 
large-scale dataset that captures climate, HVAC configuration, and operational diversities. This makes the devel-
opment of well-labeled and validated data, especially for less-investigated faults and building operation modes, 
a crucial task and challenge.

Furthermore, many studies12–14 have documented a decline in models’ diagnosis performance when the 
operational conditions (such as building load or equipment size) and, consequently, the distribution of the 
testing data differ from the training data. Thus, a growing body of literature has started to focus on the applica-
tion of transfer learning (TL) in HVAC FDD, where researchers deal with distribution discrepancies between 
datasets15 by leveraging rich labeled data from one dataset, known as the source domain, to solve a new but 
related task in the shifted dataset, referred to as the target domain12. TL for fault diagnosis using limited labeled 
target domain16,17, completely unlabeled target domain18–20, and multiple source domains21 are the most popular 
research areas in this field.

However, a successful evaluation of the proposed TL methods is only possible by having at least two datasets 
with the same main characteristics, such as control strategy or operating season, but different to some extent in 
other disturbances, such as occupancy load, system design (e.g., variable air volume (VAV) vs. constant air vol-
ume (CAV) systems), and equipment size. Nevertheless, the scarcity of well-labeled HVAC fault data, as well as 
the lack of a comprehensive study on existing datasets to identify appropriate dataset pairs and their associated 
faults that meet the above-mentioned TL criteria (i.e., sharing similarities in some aspects while differing in 
others) place a huge hurdle in successfully developing and testing new TL algorithms for the HVAC FDD field.

Prior works, such as the LBNL FDD datasets22,23 and NISTIR-6964 project24, represent foundational contri-
butions to AHU fault data, and provide case studies demonstrating how these datasets can be utilized for FDD 
purposes. This research builds upon those early efforts through the following key advancements: (1) Expanding 
the collection of datasets with enhanced features, longer fault durations, and diverse building configurations, 
making them valuable complements to existing public AHU fault data, especially for data-intensive FDD algo-
rithms. (2) Incorporating under-investigated faults, including gradual faults (especially relevant for fault prog-
nosis) and cyber-attacks. (3) Conducting a comprehensive study of existing datasets to identify suitable dataset 
pairs and corresponding faults to facilitate data preparation for TL algorithms. Beyond FDD applications, this 
work broadens the applicability of these datasets for TL algorithm development and performance evaluation.

To achieve the above-mentioned objectives, this paper firstly documents eight new air handling unit 
(AHU) fault datasets, covering various building configurations, control strategies, seasons, and injected faults 
with expanded duration and feature sets. AHU is specifically investigated in this study since it is the most 
commonly-used secondary HVAC equipment in commercial buildings, significantly impacting building energy 
use (accounting for nearly 35% of total HVAC energy consumption in commercial buildings25) as well as occu-
pant comfort compared to many other HVAC components26–28. Figure 1 schematically illustrates the major 
components of a typical single-duct AHU, including supply and return fans for air circulation, heating and 
cooling coils for air conditioning, three dampers for regulating airflow between AHU and outdoor environment, 
various sensors and actuators, and a controller that processes sensor measurements to generate control signals29. 
Various faults may occur in any AHU component, disrupting its normal operation and leading to performance 
degradation. Some common faults include stuck or leaking dampers or valves, biased temperature sensors, and 
fan failures30. Although the main AHU components (e.g., cooling coil, fans, and dampers) are the same among 
the datasets introduced in this paper, the detailed diagrams may differ. Thus, the detailed schematic for each 
AHU is provided in the corresponding dataset folder in the shared repository.

Table 1 illustrates the eight AHU datasets described in this paper. Notice that the control strategies used 
for the AHUs can be categorized as either: (1) rule-based control (RBC) or traditional control or (2) ASHRAE 
Guideline 36-based control31 (G36 hereinafter). G36 provides high-performance sequences of operation for 
HVAC systems, offering standardized control sequences that enhance energy efficiency, system stability, and 
code compliance compared to conventional control strategies. Due to high interconnectivity of components 
under G36 control, fault symptoms at the component level may propagate through the whole system, leading to 
cascading fault impacts32. Consequently, G36 responds to faults in a different and more sophisticated manner 

Fig. 1  Schematic diagram of a single-duct AHU (adapted from29).
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than RBC strategies32. This difference in fault behavior motivated the categorization of datasets into RBC and 
G36-based datasets.

Table 1 also provides key information for each dataset, including the system type (whether the data come 
from a real building or a simulated environment), the number of features (measured or computed variables such 
as sensor and control signals), the sampling rate (time interval between successive data points), and fault dura-
tion (the period over which faults were introduced or observed).

Additionally, a detailed comparative study of both publicly available AHU fault datasets and the datasets 
presented in this paper is conducted to identify suitable dataset pairs and their corresponding faults, providing 
researchers with resources for evaluating their TL algorithms. Notably, the results of this section can also be used 
for other inter-class studies, such as cross-building fault-symptoms comparisons, but TL remains the primary 
use case of this work.

The remaining sections of this paper are organized as follows: Methods section provides detailed informa-
tion on the facilities used for data generation, AHU specifications, the list of faults, and a comparative study 
among datasets. Data Records presents a summary table of the datasets along with a link for public access to the 
described datasets. Technical Validation includes examples of validation processes to ensure data accuracy. The 
paper concludes with Usage Notes and Code Availability sections.

Methods
As illustrated in Table 1, the datasets presented in this study were generated using a diverse range of facilities, 
system configurations, control strategies, weather conditions, and implemented faults. Detailed descriptions of 
these facilities, HVAC system characteristics, and faults are described in Section 2.1. Additionally, a comparative 
analysis of the FDD datasets is presented in Section 2.2 to facilitate cross-datasets studies and to enhance their 
usability for various applications.

Datasets description.  The eight datasets, as summarized in Table 1, are described in detail in this section.

RBC-ASHRAE1312.  This dataset, generated as part of the ASHRAE-1312 project33, has been a popular data-
set for examining FDD algorithms in the last two decades. It comprises (1) real data collected from the AHUs 
located at the Iowa energy resource station (ERS), where the AHUs were operated under fault-free or various 
faulted conditions; and (2) simulated data collected from a validated virtual testbed representing the AHUs at 
the ERS. A shorter and limited version of this dataset is already publicized in the reference22. This study includes 
the ASHRAE-1312 dataset with expanded features and a more completed list of faults. To avoid repetition, the 
system configuration and control sequences is not provided in this paper, since a detailed description is already 
available in ASHRAE RP-131233. A more detailed description of the faults is provided below.

A total of 18, 12, and 19 faults were injected in the ERS testbed during the summer, winter, and spring 
seasons, respectively. These faults were classified into four categories: controlled device, equipment, controller, 
and sensor. Each fault scenario is paired with corresponding fault-free scenario for analyzing its symptoms. In 
accordance with FDD terminology, the fault free scenario is also referred to as the as baseline scenario in this 
paper, representing normal operation of the system33. Due to the extensive list of faults, only detailed descrip-
tions of two fault categories (controlled device and equipment) are provided in Table 2 to offer an overview of 
the dataset.

RBC-Nesbitt.  Nesbitt Hall, a seven-story mixed-use commercial building on Drexel University’s campus in 
Philadelphia, PA, USA, was selected as the test building for faulted data generation from 2016 to 2018. The 
HVAC system configuration in the building is depicted in Fig. 2, which consists of a water-cooled chiller system, 
three AHU systems that supply several VAV terminal units, and a hydronic heating system. Detailed informa-
tion on the building is included in the reference34.

In total, 17 faults were injected into the HVAC system of the Nesbitt Hall. These faults were selected for 
implementations based on safety considerations, facility capabilities, and minimizing impact on the indoor 
environment. Additionally, three naturally occurred faults, observed during the data collection period, were 
also included. This list of all 20 faults is presented in Table 3, and details on data collection are discussed in the 
reference35.

Control strategy Dataset name Weather condition System type (real /simulated) No. of faults No. of features Sampling rate Fault duration

RBC

RBC-ASHRAE1312 Iowa city, Iowa, USA Both 49 Real: 162
Sim.:21 1-min

1 day
RBC-Nesbitt Philadelphia, PA, 

USA Real 20 540 5-min

RBC-5wk Tuscaloosa, AL, USA

Simulated

21

114

5-min 5 weeks

G36

G36-1wk Chicago, IL, USA 359 1-min 1 week

G36-5wk
Tuscaloosa, AL, USA

3

5-min

5 weeks

G36-Degrad 12 1 year

G36-Cyber
Chicago, IL, USA

6
1 day

G36-HIL Simulated, integrated with 
hardware-in-the-loop (HIL) 4

Table 1.  Summary of datasets described in this study.
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RBC-5wk.  The remaining datasets (RBC-5wk and all datasets with G36 control strategy) were created using a 
virtual testbed developed in Modelica, an object-oriented dynamic modeling solution, Buildings Library 7.0.036. 
This Modelica virtual testbed37, referred to as the MedOffice virtual testbed hereafter, is based on and verified 
against the medium-sized office prototype model developed by the U.S. Pacific Northwest National Lab38 in 
EnergyPlus39. The original EnergyPlus model has three floors, but only the middle floor, featuring five zones with 
a VAV AHU, was simulated here for simplicity. Additionally, a chilled water plant system and a boiler hot water 
system (conforming to ASHRAE RP-171131) were added to the MedOffice virtual testbed, as depicted in Fig. 3.

As shown in Fig. 4, the MedOffice virtual testbed represents a single-duct multi-zone VAV AHU connected 
with five VAV terminal boxes that serve five zones (four exterior and one interior zone) on one floor. It consists 
of component models such as VAV system with terminal reheat unit model, building envelope model, and a 

Fault type Fault intensity

Fault injection date (yy/mm/dd)

Method of fault imposition (for real building)Summer Winter Spring

Controlled device

Outdoor air damper stuck
0% 07/08/26 08/02/12 08/05/07

Manually controlling the damper at faulty positions.

40% — — 08/05/08

Outdoor air damper leaking

45% open 07/09/05 — —

52% open — 08/02/13 —

55% open 07/09/06 — —

62% open — 08/02/15 —

Exhaust damper stuck

0% 07/08/21 08/02/03 08/05/10

40% — — 08/05/11

100% 07/08/20 08/02/02 08/05/27

Cooling coil valve stuck

0% 07/08/27 — 08/05/06

Manually controlling the valve at faulty positions.

15% 07/09/01 — —

20% — 08/02/11 —

50% — — 08/05/16

65% 07/09/02 — —

100% 07/08/31 08/02/10 08/05/15

Heating coil valve leaking

0.4 GPM 07/08/28 — —

Manually opening the heating coil bypass valve.1.0 GPM 07/08/29 — —

2.0 GPM 07/08/30 — —

Equipment

Supply duct leaking
After supply fan 
(SF) 07/09/07 — —

Removing the sealing from one access door.
Before SF 07/09/08 — —

Heating coil fouling
Stage 1 — 08/02/05 —

Partially blocking the heating coil using a piece of cardboard.
Stage 2 — 08/02/06 —

Heating coil reduced capacity

Stage 1 — 08/02/07 —

Manually throttling the heating coil balancing valve.Stage 2 — 08/02/08 —

Stage 3 — 08/02/09 —

Return fan complete failure — 07/08/23 — 08/05/12 Manually stopping the return fan.

Air filter blockage
10% — — 08/05/22

Partially blocking air filter using a piece of cardboard.
25% — — 08/05/25

Table 2.  Details of RBC-ASHRAE1312 ‘controlled device’ and ‘equipment’ fault scenarios. Faults were injected 
throughout the whole day, but the system was occupied from 6 a.m. to 6 p.m. only (data sampling rate: 1-minute; 
location: Iowa city, Iowa, USA).

Fig. 2  (a) HVAC system configuration at Nesbitt Hall; and (b) Nesbitt Hall at the campus of Drexel University 
(adapted from34).
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model for air flow through building leakage and through open doors based on wind pressure and flow imbalance 
of the HVAC system.

The chilled water is supplied by a central chiller plant which consists of a chiller, a waterside economizer, a 
cooling tower, and associated one chilled water pump and one cooling water pump. The boiler, fed by natural 
gas, supplies hot water to the AHU heating coil. The system was sized based on the location, which includes two 
different ASHRAE climate zones: 3 A (Tuscaloosa, AL) and 5 A (Chicago, IL).

Traditional control sequence from the ASHRAE 2006 standard for common HVAC systems40 was adopted 
for the AHU in the MedOffice virtual testbed to develop the RBC-5wk dataset. As an example, the AHU supply 
air temperature (SAT) control sequence is described here, since it provides both a representative overview of 
the implemented control strategy and a reference point for comparison with G36-based datasets41: The heating 
coil valve, outside air damper, and cooling coil valve were modulated in sequence to maintain the SAT setpoint. 
The SAT was maintained at a constant value depending on the operation models. For example, the SAT cooling 
setpoint was set as 12 °C during occupied hours and 30 °C during unoccupied hours. SAT heating setpoint was 
set at 10 °C for preheating purposes and worked in coordination with the reheat valve at the VAV terminal box to 
meet the heating requirements. The controller of the terminal units tracked the room air temperature set point 
based on a ‘dual maximum with constant volume heating’ logic42. For the detailed implementation of this control 
logic, please refer to the model ‘Buildings.Examples.VAVReheat.ASHRAE2006’ of Modelica building library36.

Using the MedOffice virtual testbed with weather conditions for Tuscaloosa, AL, USA, data from multiple 
fault scenarios were collected, as detailed in Table 4. The first week of each fault scenario was simulated under 
the fault-free condition, and the following four weeks were simulated under the associated fault scenario.

G36-1wk.  The G36 datasets were developed using the same MedOffice virtual testbed as RBC-5wk, but 
employed a different control sequence, namely G36, for the AHU section. A brief description of the SAT control 
as an example of G36 control sequences is provided below to be compared with RBC-5wk section, explained in 
section 2.1.3. A more detailed description of G36 is provided in references31,43,44.

As recommended by G36, the SAT control loop is to reset SAT setpoints based on the zone temperatures and 
outdoor air temperature. The range of outdoor air temperatures (16–21 °C) was used to maximize airside econ-
omizer hours. The SAT setpoint was reset from its minimum value (e.g., 12 °C) when the outdoor air tempera-
ture reached its maximum value or above (e.g., 21 °C), proportionally up to the maximum SAT (e.g., 18 C° ) 
when the outdoor air temperature reached its lower bound (e.g., 16 °C). The SAT setpoint was reset using ‘trim 
and response (T&R)’ logic, which is explicitly modeled in the Modelica models31.

To develop the G36-1wk dataset, a total of 359 fault scenarios, distributed across the cooling, shoulder, and 
heating seasons, were simulated using the MedOffice virtual testbed with Chicago, IL weather condition. These 
faults were categorized into seven various types: sensor, duct & pipe, valve & damper, HVAC equipment, control, 
schedule, and design & construction. Due to the extensive list of faults, detailed description of only sensor and 
HVAC equipment categories for the heating season is provided in Table 5 to offer an example of the dataset. Each 
fault scenario was simulated over a week and assumed to be active continuously throughout the week. All fault 
scenarios have a one-minute interval sampling rate. Detailed information on fault impact analysis, fault injection 
methods, and evaluated key performance indexes (KPIs) is available in32.

G36-5wk.  The baseline (i.e., when the system is considered fault-free, as discussed in section 2.1.1) and three 
specific fault scenarios of G36-1wk were chosen to be simulated over an extended period of five weeks during 
the cooling season. This longer simulation time aimed to capture a broader variation of influencing conditions 
such as outdoor air and system load; thereby enhancing the generalization of FDD algorithms and increasing the 
training samples for data-intrusive ones such as deep learning-based models. The three selected faults, detailed 
in Table 6, occurred in three critical and fault-prone components, namely the cooling coil valve, outdoor air 
damper, and supply duct.

G36-Degrad.  Unlike instantaneous faults, gradually degrading faults must be simulated over an extended 
period (e.g., one year) to accurately capture the progressive impact of the degrading component on system 
performance45. Three types of commonly observed degrading faults, i.e. fouling (airside and waterside), duct 
leaking, and sensor bias, were modeled by adding time-dependent degradation functions in the MedOffice 
virtual testbed for the component that the fault affects. Table 7 summarizes the fouling faults and their method 
of imposition, which was by modifying the component’s heat transfer behavior and pressure drop across it46,47. 
Table 8 summarizes those for the non-fouling faults.

The weather profile for Tuscaloosa, AL was used to simulate the degradation faults. All fault scenarios were 
conducted over a full year (from January 1st to December 31st), with one exception: The condenser waterside 
fouling fault was excluded until a specific hot day (the 170th day of the year), as the cooling plant was inactive 
prior to that day. Further details about fault injection and evaluations are described in48.

G36-Cyber.  This dataset was designed to evaluate various cyber-attacks (active treats) for a typical building 
HVAC system. Cyber-attack faults are increasingly critical in HVAC systems for two main reasons: Firstly, the 
communication protocols for BAS are not designed with security as a primary requirement. Secondly, with more 
connected devices, a vulnerability in one component can be used to access data, attack, and compromise other 
components, or even worse, the larger power grid49–52.

Two primary types of cyber-attacks were modeled in this regard: the data-intrusion attack that corrupted the 
data integrity, and the denial-of-service (DoS) attack that undermined communication between the controller 
and the plant. The attacks were injected during peak load periods to analyze their impact on both building service 
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and grid service. As shown in Table 9, the timing of the attacks varied to demonstrate the flexibility of threat mod-
eling. The quantified impact assessment on the building’s operational performance can be found in43,53.

G36-HIL.  Hardware-in-the-loop (HIL) testbed provides a cost-effective method to evaluate how a fault affects 
certain perspectives of a real system. In this dataset, the MedOffice virtual testbed, described in section 2.1.4, was 
integrated with a set of real BAS control system to form a HIL testbed54–56, as depicted in Fig. 5. This HIL testbed, 
referred to as the MedOffice-HIL testbed hereafter, comprised three main components: (1) a real-time dSPACE 
machine, that emulated the virtual building modeled in Modelica. (2) A set of BAS controllers of chiller, boiler, 
AHU and VAV box, which adopted G36 control logic for different HVAC equipment. Their control commands 
were sent to the virtual building through the real-time HIL machine. (3) A computer server, which hosted the 
software environment for all the hardware and customized services such as a master program that controlled 
the experiments. The MedOffice-HIL testbed was capable of emulating both physical faults and cyber-attacks in 
real-time without requiring actual building zones or HVAC equipment56, while able to emulate fault symptoms 
in a real control system. The description of injected faults is included in Table 10.

Dataset limitations.  While the datasets presented in this study offer controlled, well-labeled, and reproduc-
ible (for simulated cases) data for research purposes, several limitations should be noted:

	 1.	 No multi-fault scenarios: Each fault scenario includes only a single fault at a time. In real building op-
erations, multiple faults can occur concurrently and interact in complex ways, which may alter system 
responses compared to the isolated-fault conditions represented here.

	 2.	 Simplified actuator and component failure modeling: The faults represented in this study capture common 
HVAC component issues (e.g., valve stuck, damper leakage) through parameter changes or overrides. 
However, they do not include full physical degradation or abrupt mechanical failures (e.g., motor burnout, 
actuator linkage breakage), which may produce different symptom patterns.

Fault type
Fault 
intensity

Date: yy/mm/dd 
(start-finish time) Method of fault imposition

System stopped working (Chiller off) — 16/07/06 (16:00-23:00) Naturally occurred fault.

AHU-1 supply air temperature bias
−4 °F 16/08/08 (10:22-21:16)

Overriding demand adjust by 2.
+4 °F 16/09/07 (10:30-22:09)

System stopped working (Chiller off) — 16/09/11 (18:30-20:30) Turning off the chiller from 6:30 p.m. to 8:30 p.m.

AHU-2 outdoor air damper stuck higher 
than normal position

90% open 16/12/01 (10:00-20:45) Overriding the AHU-2 outdoor air damper control 
signal* to be 90% open.

80% open 17/01/03 (10:00-20:30) Overriding the AHU-2 outdoor air damper control signal 
to be 80% open.

Occupied during the unoccupied-
scheduled period — 17/01/14 (1:30-7:00) Naturally occurred fault.

Chiller stopped earlier than scheduled — 17/07/09 (4:00-15:30) Naturally occurred fault.

AHU-2 outdoor air damper stuck higher 
than normal position

90% open 17/07/11 (10:00-20:01) Overriding the AHU-2 outdoor air damper control signal 
to be 90% open.

100% open 17/07/18 (11:00-20:01) Overriding the AHU-2 outdoor air damper control signal 
to be 100% open.

Chiller supply chilled water (CHWS) 
temperature sensor bias −4 °F 17/08/03 (10:00-21:27) Overriding the CHWS temperature setpoint from 44 °F to 

48 °F on control panel.

HVAC system occupied earlier than 
scheduled — 17/08/05 (4:00-8:00) Changing the system schedule to be occupied from 4:00 

a.m.

AHU-2 cooling coil valve position 
software override at higher-than-normal 
position

100% open 17/08/11 (10:05-20:06) Overriding the cooling coil valve control signal to be 
100% open.

Chiller chilled water differential pressure 
(DP) sensor positive bias 0.1 psi 17/09/15 (10:30-15:21) Overriding the DP setpoint from 7.5 to 0.5.

AHU-2 supply air temperature sensor 
bias −3.5 °F 18/07/09 (10:15-20:15) Overriding the supply air temperature ‘setpoint demand 

adjust’ point by 1.75.

AHU-2 outdoor air damper stuck at 
higher than the normal position 30% open 18/07/10 (10:30-20:30) Overriding outdoor air damper control signal to be 30% 

open (normal mode: 15% open).

AHU-2 cooling coil valve stuck at higher 
than the normal position 80% 18/07/11 (10:00-20:00) Overriding the cooling coil control signal to be 80% open 

(normal mode: 40-60% open).

AHU-2 outdoor air damper stuck at 
higher than the normal position 60% open 18/07/18 (9:30-19:30) Overriding the outdoor air damper signal to be 60% open 

(normal mode: 15% open).

Change weekend occupied schedule to 
end at 8:20 p.m. — 18/07/22 (20:20-21:40) Turning off the HVAC system at 8:20 p.m.

CHWS temperature sensor bias −3.0 °F 18/07/23 (8:00-18:00) Changing the CHWS temperature setpoint from 44 °F 
to 47 °F.

Table 3.  Details of RBC-Nesbitt fault scenarios. Fault injection time varied in each case (data sampling rate: 
5-minute; location: Philadelphia, PA, USA). *All control signal overriding was performed within the BAS.
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	 3.	 Absence of stochastic sensor noise and control feedback variability: For all simulated data, sensor measure-
ments are noise-free except for cases where a bias or scaling error is explicitly modeled. Likewise, control 
system behavior is deterministic and idealized, without the small fluctuations and delays often present in 
real BAS networks. For data collected from real systems, such as RBC-Nesbitt, real-world issues including 
sensor noise and communication delays were present.

These limitations should be considered when applying the datasets to FDD, transfer learning, or other 
smart building applications, particularly when adapting algorithms developed with these datasets to real-world 
systems.

Comparative study and dataset pairs.  Datasets pool.  The datasets discussed above have broad applica-
tions in smart building technology development. However, given that one of the objectives of this paper is to facil-
itate the data preparation for TL algorithms, this section identifies suitable dataset pairs and corresponding faults 
for TL purposes. To be consistent with TL nomenclature, a datasets is also referred to as a ‘domain’ in this section. 
The domain pairs were chosen to satisfy the TL assumption, i.e., while there are some discrepancies between the 
domains (such as simulation vs. real, different weather conditions, etc.), they share similarities in other aspects 
(such as control strategy, operation season, etc.).

To broaden the scope of this section, we considered three other popular datasets for AHU fault diagnosis, 
which are already publicized. These datasets are:

	 1.	 NISTIR-6964 dataset24, containing three faults (namely: supply air temperature sensor offset, recirculation 
air damper stuck open, and heating coil valve leakage) that were injected into the ERS test facility. Since 
the NIST-6964 dataset and the RBC-ASHRAE1312 dataset were generated from the same test facility with 
similar principles, these two datasets are considered to belong to the same domain called ASHRAE-NIST.

	 2.	 LBNL 2019 dataset22: This dataset contains two main subsets: (a) MZVAV-1 (called LBNL-2019-1 herein-
after), containing six intensities of outdoor air temperature sensor bias injected to a simulated building in 
Chicago, IL, USA. And (b) SZVAV and SZCAV (called LBNL-2019-2 hereinafter), containing data of seven 
and 14 faults injected into a real building (FLEXLAB facility in Berkely, CA, USA), respectively.

	 3.	 LBNL 2022 dataset23 (called LBNL-2022 hereinafter), containing 20 annual faults of a simulated office 
building in Chicago, IL, USA.

Pairing principle.  The process used to identify suitable domain pairs and corresponding faults is outlined 
below. An example of this process is shown in Fig. 6 as well.

Step 1) Group domains by control strategy: Since control strategies strongly influence fault symptoms (see 
Section 1), domains with different control strategies cannot be paired for TL applications. Accordingly, the 
domains were divided into two groups:

	 a)	 RBC: ASHRAE-NIST, RBC-5wk, RBC-Nesbitt, and LBNL-2019-1
	 b)	 G36: G36-1wk, G36-5wk, G36-Degrad, G36-Cyber, G36-HIL, LBNL-2019-2, and LBNL-2022

Step 2) Identify candidate pairs within each group: A complete list of domain pairs was identified within 
each group, resulting in 6 RBC pairs and 21 G36 pairs. For each pair, domains’ similarities and differences were 
determined. For example, both ASHRAE-NIST and RBC-5WK domains represent medium-sized office build-
ings as their testbeds. However, ASHRAE-NIST is based on Iowa city, USA weather conditions, while RBC-5wk 
simulated a building located in Chicago, USA.

Step 3) Match corresponding faults: Faults were matched across paired domains based on two criteria:

	 a)	 Seasonal alignment: Fault symptoms can vary significantly by season, so only faults occurring in the same 
season were matched. For instance, ASHRAE-NIST includes faults from summer, transitional (spring and 
autumn), and winter seasons. However, RBC-5wk includes only summer faults. Therefore, only summer 
faults could be matched for this pair.

	 b)	 Match by fault type, not exact intensity: Within each season, faults were firstly categorized based on the 
source component (e.g., malfunctioned cooling coil valve, return fan, etc.). Within each device category, 
faults were then matched by the symptom rather than the exact fault intensity.

For example, consider the faults affecting the cooling coil valve. The CooCoiValStuck_0 and CooCoiValStuck_15 
faults in ASHRAE-NIST, and CooCoiValStuck_0, CooCoiValStuck_5, and CooCoiValStuck_15 faults in RBC-5wk, 
all correspond to the cooling coil valve being stuck at lower-than-normal position (stuck at either 0%, 5%, or 15% 
open positions). Thus, these faults are expected to exhibit similar symptoms in the systems, although their inten-
sity (symptom magnitude) may be different. Figure 7 illustrates how these faults impacted three selected features, 
showing each fault caused the features to have higher-than-normal values, though with different magnitudes.

Another example can be the TSup_p1.7 and TSup_p2.8 faults from the same domain pair, both affecting the 
supply air temperature sensor with a positive bias (1.7 °F and 2.8 °F, respectively). As shown in Fig. 8, these faults 
produced the same symptoms in the features, but differ in their intensity. This fault-matching approach allows 
TL researchers to work with varying fault intensities among domain pairs, ensuring that their algorithms are 
scalable, robust, and ready for real-world applications.
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Fig. 3  Modelica implementation of the medium-sized office building (adapted from43).

Fig. 4  Schematic of the MedOffice virtual testbed (adapted from43).
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Following this process, a comprehensive list of domain pairs and matched faults was generated. Due to the 
extensive list of pairs, two example pairs are listed in Table 11 to offer an overview, while the complete list is 
available in the data folder under ‘DomainPairs.pdf’. Please note, in this table, faults names are shown in abbrevi-
ated form for clarity and brevity, with definitions provided in the accompanying PDF for each dataset.

Data Records
The datasets are stored on figshare57. A summarized description of the datasets is provided in Table 12. For each 
system, the FDD data are stored in individual comma-separated value (CSV) files, and each file contains one 
fault type under one fault intensity. Datasets are recorded at intervals of either one or five minutes to reflect sys-
tem operations, which can be re-sampled to any higher interval to fit the needs of specific applications.

Fault type Fault intensity Method of fault imposition

Cooling coil valve stuck 0%, 5%, 15% 65%, 100% Defining the leakage ratio as: l ,y
y

( 0)
( 1)= κυ

κυ
=
=

 where κυ =y( 0) and 
κυ =y( 1) are the flow coefficient at the fully closed and fully open 
positions, respectively.Outdoor air damper stuck 0%, 5%, 15%, 45%, 55%, 65%, 100%

Supply duct leakage 20%, 45%, 55%
Implementing the mathematical expression as: ∆m m k pEF L� �+ = , 
where mEF�  is the normal operation mass flow rate, �mL is the leakage mass 
flow rate, k is the friction factor, and p∆  is the pressure drop.

AHU supply air temperature sensor bias +2 °K, −2 °K
Overwriting the output (sensed variable) of the original sensor model by 
the faulty value.Outdoor air flow rate sensor scale error +30%, −30%

Chilled water differential pressure sensor bias +10,000 Pa, −10,000 Pa

Table 4.  Details of RBC-5wk fault scenarios. Faults were injected during occupied mode duration, which was 
weekdays (Mon-Fri) from 7 a.m. to 7 p.m. (data sampling rate: 5-minute; location: Tuscaloosa, AL, USA).

Fault type Fault intensity Method of fault imposition

Sensor

Hot water supply temperature sensor bias −4, −2, 2, 4 °K

Sensor faults were decomposed into three parts: multiplicative errors, 
bias, and noise, as defined below.

·V m V(1 ) ε εEP EF bias noi= + + +

where VEP and VEF represent the error-presented and the error-free values, 
respectively. m is the multiplicative offset of the scaling error. biasε  and εnoi 
denote the deviation caused by the bias errors and the noise.
The output of the original sensor model was overwritten by the faulty 
value (VEP) when the fault mode was activated.

Hot water differential pressure sensor bias −10000, −5000, 5000, 
10000 Pa

{Outdoor air
East zone air

 
  

 flow rate sensor scale error −30, −15, 15, 30%

AHU 







 
 

 

supply air
mix air
return air

 temperature sensor bias −2, −1, 1, 2 °K

Air loop differential pressure sensor bias −25, −15, 15, 25 Pa

East zone air
discharging air




  

 temperature sensor bias −2, −1, 1, 2 °K

HVAC equipment

Heating coil fouling 10, 30, 50% Reducing the nominal overall heat transfer coefficient (UA) of the AHU 
heating coil by 10%, 30%, or 50% from the baseline.

Boiler fouling 10%, 20%
Adjusting down the boiler efficiency curve (by 10% and 20%) since 
deposits on the fireside and the waterside of the boiler tubes could impair 
the heat transfer and reduce the boiler efficiency.

Hot water pump cavitation & impeller fault —
Overwriting the fault-free pump curve by the faulty pump curves under 
different fault types.





   
 

Hot water pump motor
Fan motor

 degradation 15, 30%

Table 5.  Details of G36-1wk fault scenarios in the heating season. Faults were injected continuously for a total 
of one week (data sampling rate: one-minute; location: Chicago, IL, USA).

Fault type Fault intensity Method of fault imposition

Cooling coil valve 
stuck position Fully closed

Defining the leakage ratio as: = κυ
κυ

=
=

l ,y
y

( 0)
( 1)  where y( 0)κυ =  and κυ =y( 1) are the flow 

coefficient at the fully closed and fully open positions, respectively.Outdoor air damper 
stuck position Fully open

Supply duct leakage 20%
Implementing the mathematical expression as: � �+ =m m k pEF L ∆ , where �mEF  is the 
normal operation mass flow rate, �mL is the leakage mass flow rate, k is the friction factor, 
and ∆p is the pressure drop.

Table 6.  Details of G36-5wk fault scenarios. Faults were injected continuously, but the system was in occupied 
mode on weekdays (Mon-Fri) from 7 a.m. to 7 p.m. only (data sampling rate: five-minute; location: Tuscaloosa, 
AL, USA).
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Fault type

Fault intensity

Method of fault imposition
Heat transfer coefficient 
decrease rate

Pressure drop 
increase rate

Cooling coil 
airside fouling

7%/yr 30%/yr 1) Modifying the pressure drop equation from � = . ∆m k p  to = . .p coef_f mdp k

1
2

2∆ �  by introducing a 
time-dependent pressure drop coefficient (coef_fdp).
2) Modifying the convection heat transfer rate equation from = .� ∆Q U Tair  to = . . ∆Q coef_f U THT air

�  by 
introducing a time-dependent heat transfer degradation coefficient (coef_fHT).

14%/yr 200%/yr

Condenser 
waterside 
fouling*

4%/30 days 250%/30 days 1) The same pressure drop equation modification as above.
2) Directly applying fouling effect on heat transfer to heat flux through = .� �Q coef Q ,condensor f f HT

condensor c, ,  where 
�Qcondensor f,  and �Qcondensor c,  represent the heat transfer rates of the condenser under the fouled and the clean 

conditions, respectively.
28%/30 days 50%/30 days

Table 7.  Details of G36-Degrad fouling fault scenarios. Faults were injected during occupied mode duration, 
which was weekdays (Mon-Fri) from 7 a.m. to 7 p.m. (data sampling rate: five-minute; location: Tuscaloosa, AL, 
USA). *Fault started on day 170.

Fault type Fault intensity Method of fault imposition

AHU supply air duct leakage
(starting rate, increase rate):
(1%, 1.4%/yr), (1%, 7%/yr),
(10%, 1.4%/yr), (10%, 7%/yr)
(25%, 1.4%/yr), (25%, 7%/yr),

Adding a time-dependent parameter to the AHU 
air volume model.

Supply air temperature sensor bias +1 °C/yr, −1 °C/yr Overwriting the temperature sensor with the faulty 
measurement.

Table 8.  Details of G36-Degrad non-fouling fault scenarios. Faults were injected during occupied mode 
duration, which was weekdays (Mon-Fri) from 7 a.m. to 7 p.m. (data sampling rate: 5-minute; location: 
Tuscaloosa, AL, USA).

Fault type Fault intensity Duration* Method of fault imposition

Data-intrusion attack

Temperature reset 
request 15 temperature reset request

12 p.m. to 3 p.m. on one shoulder 
season day (with the next 2 hours 
as the post-attack period).

Corrupting the number of transmitted zone temperature reset 
requests to 15 for five thermal zones (maximum allowed in G36) 
using the Max temporal model:

ŷ t
y t t A
y t A( )

( ),
,max

=






∉
∈

where ŷ is the corrupted property value, y is the original value, 
and A is the threat period

Chiller on/off Chiller cycles on/off every 
30 minutes

12 p.m. to 3 p.m. on one cooling 
season day (with 3 p.m. to 7 p.m. 
as the post-attack period).

Using square pulse model with a period of one hour on chiller on/
off control signal:

ˆ
  

  

  

=











∉
∈ ∈

∈ <

∈ >

y t

y t t A
f t t A and c y y

y t A and c y
y t A and c y

( )

( ),
( ), [ , ]

,
,

p min max

min min

max max

Supply air fan speed at 
max value speed set to 100% 7 a.m. to 7 p.m. on one cooling 

season day.
Using the max temporal model.

Zone temperature 
cooling setpoint to 
constant 22 C°

—
1 p.m. to 3 p.m. on one cooling 
season day (with the next 2 hours 
as the post attack period).

Using the constant temporal model, where property value was 
overwritten to a user-defined constant value c during the threat:

ˆ
  

  

  

=











∉
∈ ∈

∈ <

∈ >

y t

y t t A
c t A and c y y
y t A and c y
y t A and c y

( )

( ) ,
, [ , ]

,
,

min max

min min

max max

DoS attack

Blocking chilled water 
setpoint

The CHWS temperature was 
continuously reset from a 
minimum value of 5 °C  to a 
maximum value of 10 ◦C.

12 p.m. to 6 p.m. on one cooling 
season day (6 p.m. to 7 p.m. as the 
post-attack period).

Blocking the chiller from receiving its setpoints to use values from 
the previous time step, by implementing the blocking temporal 
model:

ˆ =





∉
− ∈

y t
y t t A
y t t A

( )
( ),
( 1),

Delaying chilled water 
setpoint

Fixed 10-minute delay in 
communication network

12 p.m. to 6 p.m. on one cooling 
season day.

Transmitted signal was delayed to the receivers by the delaying 
model:

ˆ
∆

=





∉
− ∈

y t
y t t A
y t t t A

( )
( ),
( ),

Table 9.  Details of G36-Cyber fault scenarios. Fault injection times varied in each case (data sampling rate: 
5-minute; location: Chicago, IL, USA). *In this column, the cooling season day corresponds to the 207th day of 
the year (July 26th), while the shoulder season day corresponds to the 83rd day of the year (March 23rd).
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Each dataset is accompanied by a pdf document (named ‘00_explanations.pdf’) containing essential details 
including building and system information (model or experimental facility description, control strategy, data 
sampling rate, etc.), fault cases (fault types, intensities, abbreviations, etc.), and any extra information, required 
to better comprehend the datasets.

Technical Validation
Since various systems were utilized for datasets generation, the details of validation processes to ensure data 
accuracy vary as well. For the sake of brevity, an example of validation process for a single dataset (i.e., G36-5wk) 
is provided in this section, and readers are referred to the cited publications in each dataset folder for details on 
experimental facility or simulated model validation.

Regarding the G36-5wk dataset, functional testing was conducted to validate the baseline (fault-free) behav-
ior of the model. This testing verified that system operation aligned with the designed control sequences and 

Fig. 5  The MedOffice-HIL testbed at Texas A & M University (adapted from37).

Fig. 6  Overview of fault matching process for an example pair in the RBC group: ASHRAE-NIST and RBC-5wk.

Fault type Fault intensity
Duration (start  
time-end time) Method of fault imposition

Physical faults

AHU supply air temperature 
setpoint

Fixed to maximum 
value

08:00–09:00, 12:00–
13:00, 16:00–17:00

Adjusting the setpoint to its maximum 
value, consistent with the actual bounds 
of the AHU controller defined in the 
BAS server.

Cooling coil valve stuck 
position

Stuck at minimum 
position (i.e., 0%)

08:00–09:00, 12:00–
13:00, 16:00–17:00

Adjusting the valve position by 
overriding the control signal through the 
BAS server.

Cyber-attack faults

Device reinitialization attack 
on the AHU controller —

08:00–08:20, 10:00–
10:20, 12:00–12:20, 
14:00–14:20, 16:00–
16:20, 18:00–18:20

—

Network DoS attack on BAS —
08:00–08:20, 10:00–
10:20, 12:00–12:20, 
14:00–14:20, 16:00–
16:20, 18:00–18:20

—

Table 10.  Details of G36-HIL fault scenarios. Fault injection times varied in each case, but all faults were 
simulated using the weather data from August 1st (data sampling rate: five-minute; location: Chicago, IL, USA).
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Fig. 7  Impact of cooling coil stuck lower-than-normal faults on (a) ASHRAE-NIST domain and (b) RBC-5wk 
domain. Arrows indicate the overall impact of faults on each feature. In (a), both faults resulted in higher-than-
normal values for all three features. In (b), all three faults similarly led to higher-than-normal values for all three 
features.

Fig. 8  Impact of supply air temperature positive bias faults on (a) ASHRAE-NIST domain; and (b) RBC-5wk 
domain. Arrows indicate the overall impact of faults on each feature. Both faults in (a) and the fault in (b) 
resulted in lower-than-normal values for all three features.
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reflected fault-free operational behaviors. For example, Fig. 9(a) shows simulated measurements of the zonal 
temperature and cooling coil valve for the single-duct AHU system. The data trends were examined to confirm 
that the system operates according to the defined schedule, with occupied hours from 7 a.m. to 7 p.m., and a 
cooling setpoint that modulates from 30 °C during unoccupied times to 24 °C during occupied times. The data 
trends were further inspected to verify whether the modeled proportional-integral-derivative (PID) parameters 
for the cooling valve controller were configured to output appropriate control signals, which was confirmed by 
the smooth trend and absence of significant oscillations in the plotted signal for the cooling coil valve command. 
Similar validation processes were conducted for other variables as well.

After verifications of the fault-free operational state, additional tests were conducted for each fault scenario. 
These tests evaluated (a) whether the imposed fault condition was accurately reflected in the data, and (b) 
whether the expected symptoms of the fault were reflected in other operational trends.

A single fault of G36-5wk dataset (outdoor air damper stuck fully open) is chosen to illustrate the fault 
validation procedure. As shown in Fig. 9(b), the fault condition was confirmed by observing that outdoor air 
damper position (black dashed line) was fixed at 1.0 (fully open position), while its control signal was mainly at 
0.0 (black solid line) in the controller’s attempt to close it. The initial and main symptoms of this fault were an 
increased outdoor air flow rate (see purple lines), leading to a reduction in return air flow rates (see green lines) 
compared to those in the baseline. Similar verification steps were performed for all fault types and intensities in 
the dataset for model validation.

Domains Corresponding faults

Similarities btw. 
domains

Discrepancies btw. 
domains1st 2nd

1st domain faults (followed by 
injection date: mm/dd, if available)

2nd domain faults (followed by injection 
date: mm/dd, if available)

ASHRAE-NIST RBC-5wk

CooCoiValStuck_0 (08/27)
CooCoiValStuck_15 (09/01)

CooCoiValStuck_0
CooCoiValStuck_5
CooCoiValStuck_15

*Same control 
strategy (RBC)
*Both represent 
a medium-sized 
office building

*Building type and 
weather condition 
(1st domain: ERS 
test facility in Iowa, 
USA.
2nd domain: 
office building in 
Chicago, IL, USA)

CooCoiValStuck_65 (09/02)
CooCoiValStuck_100 (08/31) CooCoiValStuck_100

OADamLea_45 (09/05)
OADamLea_55 (09/06)

OADamStuck_65
OADamStuck_100

SupDucLea_AfterSF (09/07)
SupDucLea_20
SupDucLea_45
SupDucLea_55

TSup_P1.7 (07/12)
TSup_P2.8 (07/13) TSup_p2

G36-1wk LBNL-2019-2

Summer

OADamStuck_0 OADamStuck_min (09/18)

*Same control 
strategy (G36)

*Building type and 
weather condition 
(1st domain: 
office building in 
Chicago, IL, USA.
2nd domain: 
FLEXLAB test 
facility in Berkeley, 
CA, USA)
*Data type (1st 
domain: simulation 
data, and 2nd 
domain: real data)

OADamStuck_100 OADamStuck_100 (09/19)

CooCoiValStuck_100 CooCoiValStuck_100 (09/22)

Winter

HeaCoiValStuck_0
HeaCoiValStuck_5
HeaCoiValStuck_15

HeaCoiValStuck_0 (03/24)

HeaCoiValStuck_100 HeaCoiValStuck_100
(03/25)

OADamStuck_100 OADamStuck_100 (03/18)

Table 11.  Two examples of AHU domain pairs, suitable for TL algorithms.

Dataset name Faults description Data provenance
Number of 
features

Sampling 
rate Total data size

RBC

RBC-ASHRAE1312 18, 12, and 19 faults in summer, winter, 
and spring seasons, respectively.

Simulated using 
HVACISM+, and 
real building.

Real: 162
Sim.: 21 1-min 136 MB

RBC-Nesbitt 16 and 4 faults in cooling and heating 
seasons, respectively. Real building 540 5-min 15.2 MB

RBC-5wk 21 faults in cooling season.

Simulated building 
using Modelica

114

5-min 125 MB

G36

G36-1wk
127, 127, and 105 faults in cooling, 
shoulder and heating seasons, 
respectively.

1-min 4.7 GB

G36-5wk 3 faults in cooling season.

5-min

22.3 MB

G36-Degrad 4 annual fouling faults and 8 annual non-
fouling faults. 774 MB

G36-Cyber 4 data-intrusion attacks, 2 DoS attacks. 1.4 MB

G36-HIL 2 Physical faults and 2 cyber-attack 
threats in cooling season.

Simulated building 
using Modelica 
and integrated 
with HIL

1.1 MB

Table 12.  Detailed description of each file in the dataset.
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Usage Notes
A complete inventory of the data was developed to assist users in comprehending the content and form of the 
data, and the associated AHU systems, controls, and faults. The data itself consists of time-series that can be 
analyzed with any software tools chosen by the user.

Data availability
The dataset is available at figshare https://doi.org/10.6084/m9.figshare.29297999.

Code availability
The Modelica buildings library is freely available for download42. A Windows or Linux-based computer with 
licensed Dymola software was used to run Modelica models to generate datasets presented in this paper. In 
addition, free program such as OpenModelica58 can be used to run Modelica models as well. HVACSIM+ is freely 
available, upon request from NIST, and has no operating system requirements. The Modelica simulation code and 
workflow used to generate the G36-Cyber dataset are openly available on GitHub59.

This repository contains: (1) The complete Modelica models of the G36-controlled medium office building 
testbed used for cyber-attack simulations. (2) Attack/fault injection modules implementing both data-intru-
sion and DoS attacks consistent with the described scenarios. (3) A simulation workflow for reproducing the 
six cyber-attack scenarios. And (4) instructions for running the models in Dymola or OpenModelica, including 
required library versions and simulation parameters.

The scripts and Modelica models in this repository can be directly used to regenerate the published G36-
Cyber dataset. This repository can also serve as a template for generating other fault types described in the simu-
lated datasets (i.e., G36-1wk, G36-5wk, G36-Degrad, G36-Cyber, and G36-HIL) by modifying the fault injection 
modules, enabling broader fault simulation studies beyond cyber-attacks. For the RBC-ASHRAE1312 dataset, 
related documentation and any available code can be obtained from the official ASHRAE Website60. Finally, the 
RBC-Nesbitt dataset was collected from a real building system; therefore, no code was used for data collection or 
generation.
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