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OPEN A haplotype-resolved genome
patapescripTor  assembly of Anoectochilus
roxburghii
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. Zehao Huang'®, Wei Xu'** & Haifeng Wang (3

. Anoectochilus roxburghii, a highly valued medicinal plant in traditional Chinese medicine, exhibits

: unique pharmacological properties and broad application value. In this study, we de novo assembled

: and annotated haplotype-resolved chromosome-level genomes of A. roxburghii cultivar ‘Xiaoyuanye’

. by integrating PacBio HiFi reads and Hi-C data. The final assembly sizes were 1.92 Gb and 1.93 Gb, with

. contig N50 values of 22.72 Mb and 22.17 Mb, respectively. A total of 26,239 and 26,324 protein-coding

. genes were annotated, establishing a high-quality genomic resource for further research. Moreover,

. comparative genomic analysis revealed that A. roxburghii possesses 1,060 unique gene families and has
undergone significant expansion of 2,100 gene families during evolution, providing crucial theoretical

* insights into the adaptive evolution of Orchidaceae species. The availability of the high-quality genomic

. data providing a crucial genetic foundation for elucidating the biosynthetic mechanisms and regulatory

. networks of pharmacologically active compounds in A. roxburghii.

: Background & Summary

: Anoectochilus roxburghii (Wall.) Lindl., a perennial herb of the Orchidaceae family and Anoectochilus genus, is
: highly valued for its dual medicinal and edible properties'. This species has been used as a natural, nutritional
¢ food ingredient and a traditional Chinese herb for thousands of years?. A. roxburghii has various biological activ-
. ities, including anti-tumor, anti-oxidative, hypoglycemic, anti-inflammatory, and immunomodulatory activ-
. ities®™. Research indicates that the primary active ingredients in A. roxburghii includes alkaloids, flavonoids,
© polysaccharides, steroids, and terpenes®’. Among these, flavonoids are widely recognized as important indicator
* components for quality assessment of A. roxburghii®®.

: In this study, we report the first haplotype-resolved genome assembly of wild A. roxburghii widely dis-
. tributed in Fujian Province, China. Through an integrated multi-omics approach, we combined PacBio
. high-fidelity (HiFi) sequencing, high-throughput chromosome conformation capture (Hi-C) sequencing,
. Illumina short-read sequencing, and RNA-Seq data to assemble and annotate the haplotype-resolved genomes
. of A. roxburghii. The haploid genomes exhibit sizes of 1.92 Gb and 1.93 Gb, with contig N50 values of 22.72 Mb
: and 22.17 Mb. The Benchmarking Universal Single-Copy Orthologs (BUSCO)'° analysis demonstrates a com-
: pleteness score of 93.5% and 92.9%, respectively. Furthermore, we annotated a total of 26,239 and 26,324
. protein-coding genes in the two haplotypes. Phylogenetic analysis elucidated the evolutionary relationships
. among A. roxburghii and related Orchidaceae species. These high-quality haplotype-resolved genomes provide
: afundamental genetic resource that will enable comprehensive elucidation of secondary metabolite (particularly
- flavonoid) biosynthetic pathways and will significantly advance both functional genomics studies and molecular
. breeding applications.
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Sequencing A. roxburghii
PacBio Sequel II sequencing
Raw data (Gb) 162.58
Sequencing depth (x) 78
Average reads length (bp) 17,484
Reads N50 (bp) 17,251
Hi-C sequencing
Clean data (Gb) 188.98
Sequencing depth (x) 90
Illumina sequencing
Clean data (Gb) 124.55
Sequencing depth () 60
Haplotype-resolved chrc I-level bl
Haplotype A Haplotype B
Assembly size 2,064,327,351 2,067,046,529
Number of contigs 2,771 1,449
Contig N50 (Mb) 22.72 22.17
Scaffold N50 (Mb) 104.19 105.51
GC content (%) 39.01% 39.00%
Sequences anchored to chromosomes | 2,060,869,048 2,036,472,919
BUSCO completeness of assembly (%) | 93.5% 92.9%
Total number of genes 26,239 26,324

Table 1. Summary of haplotype-resolved genome assembly of A. roxburghii.
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Fig. 1 Genome survey result based on K-mer analysis.

Methods

Sample collection, library construction, and sequencing. High-quality PacBio HiFi libraries were
prepared following the manufacturer’s protocol and sequenced on a PacBio Sequel II platform, yielding a total of
162.58 Gb circular consensus sequencing (CCS) reads with N50 of 17,251 bp (~78 x coverage). Libraries prepared
with Illumina TruSeq PCR-free kits were sequenced on a NovaSeq X platform, generating 150 bp paired-end
reads that yielded 124.55 Gb of data. For Hi-C library construction, young leaves were cross-linked with formal-
dehyde. Genomic DNA was then isolated using the CTAB method and digested with DpnII. The Hi-C libraries
were prepared following a standard protocol and sequenced on an Illumina HiSeq 3000 platform, generating a
total of 188.98 Gb of paired-end reads (Table 1). RNA sequencing libraries were generated with the TruSeq RNA
Library Prep Kit according to the manufacturer’s guidelines, with triplicate biological replicates sequenced on an
[lumina NovaSeq platform.
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Fig. 2 Characteristics of A. roxburghii genome assembly. (a) Genomic landscape of A. roxburghii. (b) Hi-C
contact heat map of A. roxburghii genome of haplotype A. (c) Hi-C contact heat map of A. roxburghii genome of
haplotype B.

Estimation of genome size and heterozygosity. The genome size and heterozygosity of A. roxburghii
were estimated through k-mer frequency analysis, the method that involves analyzing the distribution of k-mers
within the genome based on Poisson’s distribution!!. Prior to assembly, we used Jellyfish'? (v2.2.10) to generate
the 39-mer frequency distribution of PacBio HiFi reads. Following this, we employed GenomeScope 2.0" to eval-
uate the genomic features. Consequently, we obtained the haploid genome size of A. roxburghii is 1.92 Gb, with a
heterozygosity rate of 2.19% (Fig. 1).

Haplotype-resolved genome assembly. We assembled the A. roxburghii genome using multiple sequenc-
ing datasets, including 162.58 Gb (~78 x coverage) PacBio HiFi reads, 124.55Gb (~60 x coverage) Illumina reads,
and 188.98 Gb (~90 x coverage) Hi-C paired reads (Table 1). To address the assembly challenges caused by the high
heterozygosity of A. roxburghii genome, we conducted genome assembly and phasing using HiFiasm'* (v0.23.0)
with PacBio HiFi reads under Hi-C mode parameters (-s 0.55 for haplotype similarity threshold; -D 5 for kmer filter
threshold), generating two phased haplotype contig assemblies. Redundant and low-quality sequences were removed
using Purge_Dups"® (v1.2.6) with stringent parameters (-f 0.7 for sequence retention threshold). Subsequent error
correction was conducted using Pilon'® (v1.24) with Illumina paired-end data, employing diploid-optimized param-
eters. To further elevate the assembly to the chromosomal level, Hi-C data were used to cluster, order, and orient the
contigs with ALLHIC" (v0.9.8) using the following parameters: -k 80 for cluster size cutoff and --nonunique 0.7 for
mapping tolerance threshold. This process generated 20 pseudochromosomes for each haplotype (A and B) (Fig. 2),
with mounting rates of 99.83% and 98.52%, and Scaffold N50 was 104.19 Mb and 105.51 Mb, respectively (Table 1).

Genome annotation. For repeat sequence annotation, we used RepeatMasker!'® (v4.1.2) and
RepeatModeler' (v2.0.5) for homologous prediction and de novo prediction, respectively. Additionally, sequences
predicted as “Unknown” repeat were further analyzed using DeepTE® (v1.0). By integrating the predicted results
and removing redundancy, we determined that repeat sequences accounted for 76.54% and 76.68% of the two
haploid genomes (Table 2 and Table 3).

Gene structure prediction integrates de novo gene prediction, homologous gene prediction, and transcript
retrieval-based gene prediction. Firstly, Augustus®! (v4.0.0) was used for de novo gene prediction, HISAT2*
(v2.2.1) and StringTie* (v3.0.0) were used for transcriptome-based prediction, and TransDecoder?** (v5.4.0)
was applied to predict open reading frames. Furthermore, Exonerate®® (v2.2.0) was used to align homologous
peptides from several nearby species, including Dcatenatum catenatum (https://ftp.ncbi.nlm.nih.gov/genomes/
all/GCF/001/605/985/GCF_001605985.2_ASM160598v2/), Phalaenopsis equestris (https://ftp.ncbi.nlm.nih.
gov/genomes/all/GCF/001/263/595/GCF_001263595.1_ASM126359v1/), Gastrodia elata (https://ftp.ncbi.nlm.
nih.gov/genomes/all/GCA/016/760/335/GCA_016760335.1_NIFOS_GasEla_1.0/), and Apostasia shenzhenica
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Type Total length (bp) | % of genome
Copia 172,418,197 8.49%
LTR Gypsy | 946,162,439 46.60%
Class ITE others | 28,175,460 1.39%
LINE 37,242,708 1.83%
SINE 10,284,768 0.51%
Class II TE DNA 222,785,015 10.97%
Satellite 139,599,879 6.88%
hAT 63,329,655 3.12%
MULE-MuDR 40,727,304 2.01%
CMC-EnSpm 14,234,170 0.70%
Simple repeat 37,628,816 1.85%
Unknown 31,892,486 1.57%
Total 1,554,150,275 76.54%

Table 2. Statistics of repetitive sequences in haplotype A genome of A. roxburghii.

Type Total length (bp) % of genome
Copia 183,497,769 9.03%
LTR Gypsy | 1,001,206,981 49.24%
Class ITE others | 25,175,842 1.24%
LINE 41,327,644 2.03%
SINE 10,566,284 0.52%
Class I TE DNA 201,779,596 9.92%
Satellite 77,801,541 3.83%
hAT 63,129,069 3.10%
MULE-MuDR 6,488,596 0.32%
CMC-EnSpm 15,194,022 0.75%
Simple repeat 38,237,296 1.88%
Unknown 34,223,202 1.68%
Total 1,559,008,887 76.68%

Table 3. Statistics of repetitive sequences in haplotype B genome of A. roxburghii.

(https://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/002/786/265/GCA_002786265.1_ASM278626v1/), to the assem-
bled genome and obtained homolog prediction results. Finally, the Geta pipeline (https://github.com/chenlianfu/
geta) was used to intergrate the gene models, and quality checks were conducted using HMMScan?® (v3.3.2) and
BLASTp? (v1.0.0) to screen for highly credible genes. In total, we successfully annotated 26,239 and 26,324 cod-
ing genes in the two haplotypes (Table 1). Additionally, we employed standardized workflows for gene function
annotation. DIAMOND BLASTp? (v1.0.0) was used to compare the predicted protein sequences against public
databases, including UniProt, NR, GO, and KEGG, with an E-value cutoff of 1e-5%. This approach enabled us
to obtain information regarding gene functions and the metabolic pathways in which these genes are involved.

Phylogenetic analysis. We conducted the phylogenetic tree and divergence time between A. roxburghii and 15
other plants, including 4 orchids (P, equestris®, D. catenatum®, G. elata®, and A. shenzhenica®), 1 species of Liliaceae
(Asparagus officinalis®), 6 monocotyledon plants (Brachypodium distachyon®*, Oryza sativa®, Sorghum bicolor*®,
Ananas comosus®’, Musa acuminata, and Spirodela polyrhiza®), 3 dicotyledon plants (Populus trichocarpa,
Arabidopsis thaliana*!, and Vitis vinifera*?), and one basal angiosperm (Amborella trichopoda*). Orthologous
gene families were identified across all species using OrthoFinder** (v3.0.1b1) with all-vs-all BLASTp alignment
(e-value < le-5). Comparative analysis of five orchid species revealed 8,111 conserved gene families shared among
all members, while 1,060 gene families were uniquely retained in A. roxburghii (Fig. 3a). Furthermore, the 343
single-copy orthologous gene sequences were aligned using MUSCLE® (v5.2). Conserved blocks were selected
through Gblocks* (v0.91b), with optimal amino acid substitution models determined by ProtTest? (v3.4.2). A
maximum-likelihood phylogenetic tree was constructed in RAXML* (v8.2.12) with 1,000 bootstrap replicates.
Divergence times were subsequently estimated employing the MCMCTree module in PAML* (v4.10.3) package
under a relaxed molecular clock model. To calibrate the molecular clock, we applied fossil calibration constraints at
four key nodes, with all calibration times obtained from the TimeTree*® database (http://timetree.org/), including
the divergence time between A. officinalis and P. equestris (92.5-118.5 million years ago, Mya), O. sativa and B.
distachyon (41.5-62.0 Mya), M. acuminata and O. sativa (103.2-117.1 Mya), and the basal angiosperm node repre-
sented by A. trichopoda and A. thaliana (179.9-205.0 Mya). Finally, evolutionary analyses of gene family expansion
and contraction were performed using CAFE 5%, identifying 2,100 expanded and 2,120 contracted gene families.
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Fig. 3 Phylogenetic and comparative genomics analyses of the A. roxburghii haplotype A genome. (a) The
number of shared and unique gene families in A. roxburghii and four Orchidaceae species. (b) Phylogenetic tree
showing the evolutionary relationship of A. roxburghii and 15 other plants. Expansion (green) and contraction
(red) of gene family numbers are shown. Predicted divergence times (Mya, million years ago) are labelled in
black at other intermediate nodes.

Data Record

The raw sequencing data®>>* generated in this study have been deposited in both the Genome Sequence
Archive (GSA) at the National Genomics Data Center (CNCB-NGDC) under accession CRA021929 and the
NCBI Sequence Read Archive (SRA) under accession SRP605955. The two haplotype genome assemblies have
bee deposited in the European Nucleotide Archive (ENA) under the accession numbers GCA_976986765
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for Haplotype A and GCA_976986775 for Haplotype B***°. The genome assembly and annotation data®
had been submitted at the Figshare database at the following link: https://figshare.com/articles/dataset/
Genome_of_Anoectochilus_roxburghii/28163756.

Technical Validation
To evaluate the quality of the genome assembly, we aligned Illumina short reads to the reference genome using
BWA?’ (v0.7.17), achieving a high mapping rate of 99.99%. Genome completeness was further assessed through
BUSCO'? (v2.2) analysis against the embryophyta_odb10 database. The results demonstrated completeness,
with 93.5% and 92.9% of core conserved plant genes identified in the two haplotype assemblies, respectively.
To validate the reliability of haplotype-resolved genome assembly, we aligned HiFi reads to the merged
haplotype assemblies using minimap2°® (v2.24) with mapping parameters (-N 0) to retain only primary align-
ments. Statistical analysis revealed that among the 10,149,730 reads successfully mapped to both haplotypic
chromosome sets, 49.55% (5,028,978 reads) showed specific alignment to haplotype A chromosomes, while
49.21% (4,994,602 reads) specifically aligned to haplotype B chromosomes. Notably, only 1.24% (126,150 reads)
exhibited cross-mapping between the two haplotypic chromosome sets, demonstrating high inter-haplotype
sequence specificity. For anchoring quality assessment, we performed Hi-C data alignment to the reference
genome. The contact matrix revealed significantly stronger intra-chromosomal interaction signals compared to
inter-chromosomal interactions (Fig. 2b and Fig. 2c). Notably, the interaction patterns showed prominent diag-
onal distribution within chromosomes, providing additional validation for the accuracy of genome assembly
and scaffolding.

Code avaliability
The Geta pipeline is publicly available under the MIT License at GitHub: https://github.com/chenlianfu/geta. All
parameters used in this study are described in the Methods.

Data availability

The raw sequencing data®*® generated in this study are available in the Genome Sequence Archive (GSA) at
the National Genomics Data Center (CNCB-NGDC) under accession number CRA021929 and in the NCBI
Sequence Read Archive (SRA) under accession number SRP605955. The two haplotype genome assemblies
have been deposited in the European Nucleotide Archive (ENA) under the accession numbers GCA_976986765
for Haplotype A and GCA_976986775 for Haplotype B**>. And the genome assembly and annotation data®
are available in the Figshare repository at https://figshare.com/articles/dataset/ Genome_of_Anoectochilus_
roxburghii/28163756.
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