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An Enhanced Valence-Arousal 
Multimodal Emotion Dataset for 
Emotion Recognition
Xin Huang   1,2,3,4, Shiyao Zhu1,3, Ziyu Wang1,3, Yaping He2,4, Zhenyu Zou1,3, Jingyi Wang5, 
Hao Jin1,3 & Zhengkui Liu2,4 ✉

We introduce a novel multimodal emotion recognition dataset designed to enhance the precision 
of valence-arousal modeling while incorporating individual differences. This dataset includes 
electroencephalogram (EEG), electrocardiogram (ECG), and pulse interval (PI) data from 64 
participants. Data collection employed two emotion induction paradigms: video stimuli targeting 
different valence levels (positive, neutral, and negative) and the Mannheim Multicomponent Stress Test 
(MMST) inducing high arousal through cognitive, emotional, and social stressors. To enrich the dataset, 
participants’ personality traits, anxiety, depression, and emotional states were assessed using validated 
questionnaires. By capturing a broad spectrum of affective responses and systematically accounting 
for individual differences, this dataset provides a robust resource for precise emotion modeling. The 
integration of multimodal physiological data with psychological assessments lays a strong foundation 
for personalized emotion recognition. We anticipate this resource will support the development of more 
accurate, adaptive, and individualized emotion recognition systems across diverse applications.

Background & Summary
Emotion recognition plays a vital role in various fields, including mental health support, human-computer inter-
action, education, and marketing. By accurately identifying and measuring emotional states, emotion recogni-
tion could create more personalized experiences, enhance user engagement, and support individuals’ mental 
health and well-being1,2. For instance, in mental health, emotion recognition could monitor fluctuations in an 
individual’s mood in real-time, facilitating the early detection of risks for psychological disorders such as depres-
sion and anxiety3, which allows for timely interventions.

In recent years, advancements in the interdisciplinary fields of affective computing and neuroscience have 
significantly accelerated the development of emotion recognition technology2. Furthermore, progress in deep 
learning algorithms and multimodal data fusion has greatly improved the accuracy and adaptability of emotion 
recognition systems4.

Existing multimodal emotion datasets, such as DEAP5, AMIGOS6, and SEED-VII7, have significantly 
advanced the field by integrating diverse physiological signals, including electroencephalography (EEG), elec-
trocardiography (ECG), and self-reported emotional labels. These datasets have enabled the development of 
machine learning models that can recognize complex emotional states. However, several limitations still exist8. 
One major issue is that most current emotion studies rely on the continuous emotional model to differentiate 
between valence but do not address the distinctions in arousal6,9. Additionally, while individual differences such 
as personality traits and anxiety levels are known to significantly impact emotional processing, there is a lack 
of comprehensive datasets that systematically incorporate these factors8. This gap restricts the depth of analy-
sis, particularly in understanding how personal characteristics influence emotional responses under various 
conditions.

To address these limitations, we introduce a novel multimodal emotion recognition dataset aimed at improv-
ing the precision of emotional dimension modeling while systematically accounting for individual variability. 
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Our approach builds upon the well-established two-dimensional model of emotion, which characterizes emo-
tions along the orthogonal dimensions of valence and arousal10.

To comprehensively capture emotional variability, we integrate two complementary emotion elicitation 
paradigms: video-based emotion induction and the Mannheim Multicomponent Stress Test (MMST). While 
both methods provide data on valence and arousal, they offer distinct advantages in eliciting specific emotional 
responses. Video-based tasks are particularly effective in inducing a wide range of emotional valence—including 
positive, negative, and neutral states—while simultaneously triggering moderate levels of arousal. In contrast, 
the MMST is specifically designed to elicit high arousal through stress-inducing components such as time con-
straints, negative feedback, and cognitive load, leading to valence shifts associated with stress responses11.

By combining these two paradigms, our approach ensures broad coverage of emotional states, spanning low 
to high arousal and encompassing the full spectrum of valencee, respectively. This design enhances the ecologi-
cal validity and diversity of the dataset, making it a robust resource for advancing emotion recognition research.

In addition to comprehensive emotional dimension modeling, our dataset integrates assessments of individ-
ual differences to explore their influence on emotional processing. Participants completed a series of psychomet-
rically validated questionnaires designed to measure personality traits, anxiety, depression, and life events. By 
incorporating these individual characteristics, the database supports the development of personalized emotion 
recognition models, which can account for variability across different user profiles and improve the adaptability 
of affective computing systems.

Regarding data collection, we combined high-precision physiological recording techniques with exploratory 
applications of wearable device technology. EEG and ECG data were collected using laboratory-grade equip-
ment, whereas pulse interval (PI) data were obtained from wrist-worn wearable devices. Although wearable 
technology is currently constrained by accuracy and data resolution limitations, we acknowledge its potential 
for future large-scale data collection. The portability and ease of use of wearable devices create possibilities for 
emotion data acquisition in real-world settings, enabling long-term, low-intrusion monitoring of emotional 
dynamics12,13. This capability not only enhances the ecological validity of emotion recognition models but also 
supports the development of personalized emotion-aware technologies, such as emotion-adaptive interfaces and 
mental health monitoring tools14,15.

In summary, this novel multimodal emotion recognition dataset is distinguished by its precise modelling of 
emotional dimensions and its comprehensive consideration of individual differences. The integration of con-
trolled laboratory data with exploratory wearable device applications establishes the foundation for future scal-
ability and real-world applicability. It is anticipated that this dataset will make a substantial contribution to the 
advancement of emotion recognition research, thereby fostering the development of more accurate, personal-
ized, and context-aware affective computing systems.

Fig. 1  Experiment Procedures.
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Methods
Participants.  A total of 64 university students (33 males and 31 females) participated in this study, with 
ages ranging from 19 to 26 years (M = 22.06, SD = 2.08). Participants were recruited through advertisements at 
universities in Beijing. All individuals were physically and mentally healthy. Inclusion criteria required partici-
pants to be over 18 years old, enrolled in college, not currently using psychotropic medications, and free from 
significant neurological or cardiovascular conditions. Exclusion criteria included the use of psychiatric medica-
tions within the past six months, a diagnosis of major mental health disorders such as schizophrenia or major 
depressive disorder, and any physiological abnormalities affecting cardiac function. The study was approved by 
the Ethics Committee of the Institute of Psychology, Chinese Academy of Sciences (No. H22130). All partici-
pants gave written informed consent prior to their involvement, agreeing to both study participation and the 
anonymized sharing of their data.

Procedure.  To thoroughly sample the emotional spectrum, we employed two complementary emotion 
induction paradigms: (1) affective video viewing and (2) the Mannheim Multicomponent Stress Test (MMST). 
The video-based paradigm was designed to evoke discrete emotional states varying in valence (positive, neutral, 
negative), while the MMST was used to induce high-arousal affective states. This dual-approach design provides 
comprehensive coverage of the valence-arousal continuum, thereby aligning with established methodological 
standards in affective neuroscience.

The experiment was divided into three distinct phases (see Fig. 1).
In the first phase, participants were instructed to relax while completing a questionnaire and undergoing 

physiological data collection. This phase, corresponding to a calm state, served as the baseline reference for 
subsequent emotional change.

In the second phase, participants underwent the emotion induction phase, which involved watching video 
clips corresponding to different emotional valences (positive, neutral, negative). For the first thirty participants, 
the viewing order was positive, neutral, and then negative; for the remaining participants, the order was reversed 
to negative, neutral, and then positive. This counterbalancing minimized potential carryover effects between 
emotional states. At the end of each video, participants completed Self-Assessment Manikin (SAM) ratings 
to evaluate both valence and arousal, providing subjective reports of their emotional responses to the viewed 
materials.

In the third phase, participants first watched a two-minute neutral video to stabilize their emotional state 
following the emotion induction phase. They then proceeded to perform the MMST, during which SAM ratings 
were obtained at 0, 3, 6, and 8 minutes, while EEG, ECG, and PI data were continuously recorded.

Stimuli.  Video clips.  To ensure emotional efficacy, a pre-experiment was conducted with 55 college students 
who rated the emotional intensity and differentiation of candidate clips. The final selections demonstrated strong 
emotional induction effects, validated through subjective ratings on a four-point Likert scale.

The video materials were classified into three categories according to emotional valence, with each video 
lasting for 10 minutes.

Fig. 2  SAM Diagram.
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	 1.	 Positive: humorous short clips sourced from Chinese internet media platforms to evoke positive emotions.
	 2.	 Neutral: videos depicting everyday objects and landscapes with neutral background music to maintain a 

baseline emotional state.
	 3.	 Negative: documentary footage featuring interviews with left-behind children to elicit negative emotions.

MMST paradigm.  The Mannheim Multicomponent Stress Test (MMST) combines five distinct stressors to 
elicit a heightened state of arousal. Cognitive stress was induced using the Paced Auditory Serial Addition Test 
(PASAT)16, in which participants added consecutive numbers and selected the correct answer from 21 options 
within approximately 3.5 seconds per trial. Real-time feedback was provided throughout the 8-minute task. 
Additionally, participants performed the arithmetic task while emotionally aversive images from the Geneva 
Affective Picture Database (GAPED)17 were presented simultaneously, thereby incorporating an emotional 
stressor. Acoustic stress was introduced via countdown signals and explosion-like noises that intensified after 
incorrect responses. A motivational stressor was implemented by deducting monetary amounts from an initial 
balance for incorrect or delayed responses. Finally, social evaluative stress was applied through on-screen feed-
back, especially at the third and fifth minutes, indicating that performance was delivered through on-screen 
feedback indicating that performance was below average compared to peers. All five stressors were applied 
simultaneously, except for the social stressor, which was introduced at the 3rd minute and remained visible 

Fig. 3  Experimental Setup for Multimodal Physiological Data Collection. Participants wore an EEG cap to 
record brain activity, while ECG electrodes were placed on the chest and lower rib area to monitor heart activity. 
A wrist-worn wearable device was used to collect pulse interval (PI) data. The participant performed tasks on a 
computer while physiological signals were continuously recorded.

Fig. 4  Pulse Interval.
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thereafter. To further increase task difficulty, only responses made within a designated central area on the screen 
were accepted; any responses outside this area were deemed invalid regardless of correctness.

Measures.  Participants completed a series of questionnaires and self-assessment scales to evaluate demo-
graphic information, personality traits, anxiety, depression.

Demographic information questionnaire.  Collected basic demographic data, including gender, age.

Psychological measures.  Chinese Big Five Personality Inventory-15 (CBF-PI-15): assessed personality 
traits across the five dimensions, openness, conscientiousness, extraversion, agreeableness, and neuroticism, 
using 15 items rated on a 6-point scale (1 = strongly disagree, 6 = strongly agree)18.

Patient Health Questionnaire-9 (PHQ-9): measured the severity of depressive symptoms through 9 items 
rated on a 4-point scale (0 = not at all, 3 = nearly every day)19.

State-Trait Anxiety Inventory (STAI): evaluated trait anxiety levels through 20 items rated on a 4-point scale 
(1 = seldom, 4 = almost always)20.

Adolescent Self-Rating Life Events Checklist (ASLEC): assessed the frequency and intensity of recent life 
events and associated stress with 27 items rated on a 6-point scale (0 = not at all, 5 = extremely)21.

Subjective emotional experience.  SAM: quantified participants’ current emotional valence and arousal levels22, 
using a graphical representation with a 9-point scale, later converted to a 1–5 scale in increments of 0.5, shown 
in Fig. 2.

Equipment.  An illustration of the experimental scene is presented in Fig. 3, depicting the participant’s seating 
arrangement, stimulus presentation setup, and physiological recording configuration.

ECG equipment.  ECG data were collected using the Biopac MP150 system equipped with an ECG module, 
which recorded single-channel ECG signals. Before data acquisition, the skin was cleaned with alcohol and the 
disposable electrodes were affixed to three locations: the right clavicular midline at the sternal notch level, the left 
lower rib middle area, and the right lower abdominal area (ground). Data were captured using AcqKnowledge 
4.2 software at a sampling rate of 2000 Hz.

EEG equipment.  EEG signals were collected using the NeuroScan system with 64 electrodes arranged accord-
ing to the 10–20 system. The online reference electrode was placed on the left mastoid, while the offline reference 
was the arithmetic average of the bilateral mastoids. The ground electrode was positioned between FPz and Fz. 
Vertical eye movement electrodes were placed above and below the left eye, and horizontal eye movement elec-
trodes were placed laterally on both sides of the eyes. Data collection and real-time monitoring were performed 
using Scan 4.5 software.

PI Data collection.  PI refers to the time between consecutive pulse waves, reflecting the variability in heartbeats 
over time (See Fig. 4). PI data were collected using the consumer-grade Huawei Band 7. The device sampled 
data at 25 Hz, capturing data on a per-minute basis. The data were transmitted via Bluetooth for further analysis.

Software for data processing.  Data preprocessing was conducted using Python with the following packages. 
EEG and ECG data preprocessing were performed using the MNE toolkit, RRI values were extracted from the 
ECG data using NumPy, outlier filtering for PI data was done using the HRV package, and the analysis of PI 
values was carried out using the NeuroKit2 package23.

Data preprocessing.  The dataset comprises EEG, ECG, and PI signals collected from 64 participants. All 
data segments are meticulously labeled with valence and arousal scores to facilitate comprehensive emotion 

Fig. 5  Dataset structure.
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recognition tasks. The preprocessing pipeline ensures data quality, consistency, and precise temporal alignment 
across the different physiological modalities.

EEG data preprocessing.  Initially, spherical spline interpolation was performed to correct any bad channels in 
the EEG recordings. Subsequently, the data were filtered using a fourth-order zero-phase Butterworth bandpass 
filter with a frequency range of 0.5 Hz to 45 Hz to remove unwanted noise. Artifact-contaminated segments 
were then automatically identified and removed based on excessive high-frequency activity. Next, Independent 
Component Analysis (ICA) was applied to further eliminate artifacts such as eye blinks, cardiac signals, and 
movement-related noise. Finally, the cleaned EEG data were segmented into 4-second epochs according to 
the emotional labels and synchronized with the ECG data. After preprocessing, the EEG data were segmented 
into 4-second non-overlapping epochs. This segmentation was based on the annotated emotional labels and 
aligned with the corresponding ECG signals. A 4-second epoch length is widely used in EEG research due to its 
demonstrated reliability in providing both frequency resolution and temporal stability, as supported by multiple 
studies24,25.

ECG data preprocessing.  Initially, the raw ECG data were filtered using a high-pass filter at 0.5 Hz, a 5th-order 
Butterworth filter, and a notch filter at 50 Hz to eliminate power line interference. Then the data were segmented 
based on emotional labels into 4-second intervals for subsequent statistical analysis. R-wave detection was per-
formed based on the absolute gradient of the ECG signals, identifying the peaks corresponding to heartbeats. 
Subsequently, RRI, defined as the time between consecutive R-wave peaks, was calculated for further analysis.

PI Data preprocessing.  Anomaly filtering was performed to eliminate outliers and artifacts. Due to the 
minute-by-minute sampling rate of the PI data, only short-term heartbeat dynamic features could be extracted, 
limiting the analysis of long-term heart rate variability metrics.

Emotional labeling.  To characterize affective states, we implemented two complementary classification 
tasks: binary-class arousal and four-class valence. The experimental protocol was designed to evoke distinct 
emotional states in participants, with physiological data labeled according to the experimental conditions. For 
the four-class valence classification, calm served as the baseline emotion, whereas positive, negative, and neu-
tral states were induced via exposure to corresponding video clips. In the binary-class arousal classification, 

Fig. 6  Subjective Emotional Valence and Arousal Scores at Different Experimental Stages.

Total male female

t pMean SD Mean SD Mean SD

Neuroticism 9.03 3.24 8.45 3.60 9.65 2.74 −1.48 0.143

Openness 11.94 3.47 12.70 3.48 11.13 3.33 1.84 0.071

Conscientiousness 12.58 2.28 12.88 2.34 12.26 2.21 1.09 0.280

Agreeableness 13.80 2.17 13.82 1.89 13.77 2.46 0.08 0.936

Extraversion 10.53 3.02 11.18 3.21 9.84 2.70 1.81 0.076

Trait Anxiety 37.28 8.80 35.55 9.86 39.13 7.22 −1.65 0.104

Depressive Symptoms 4.31 3.87 3.70 3.45 4.97 4.23 −1.32 0.192

Life Event Stress 17.95 11.78 17.36 11.21 18.58 12.52 −0.41 0.683

Table 1.  Descriptive statistics table of sample psychological characteristics.
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calm again acted as the baseline, with stress elicited by the Mannheim Multicomponent Stress Test (MMST). 
Physiological data segments were labeled according to these experimental conditions. These dual classification 
schemes effectively capture both arousal-based and valence-based distinctions, providing a robust framework for 
modeling emotional states.

Data Records
The data files are accessible through the Science Data Bank via the following DOI link: https://doi.org/10.57760/
sciencedb.23231. To download the data, please register an account on the Science Data Bank website and use the 
provided link to access the dataset26.

Data Type

EEG ECG PI

>ACC F1-score >ACC F1-score >ACC F1-score

SVM
Valence 74.00% 0.73 45.08% 0.45 48.78% 0.48

Arousal 77.12% 0.75 70.83% 0.7 64.86% 0.73

Decision Tree
Valence 61.89% 0.61 45.87% 0.46 37.01% 0.36

Arousal 72.74% 0.69 76.67% 0.76 57.84% 0.69

Random Forest
Valence 81.72% 0.81 33.90% 0.33 48.47% 0.47

Arousal 80.97% 0.76 75.83% 0.75 65.96% 0.77

XGBoost
Valence 80.69% 0.8 42.11% 0.41 50.12% 0.49

Arousal 90.17% 0.89 81.67% 0.81 67.00% 0.76

MLP
Valence 44.51% 0.43 67.03% 0.56 43.12% 0.44

Arousal 77.10% 0.67 82.50% 0.82 63.17% 0.74

1dCNN
Valence 90.46% 0.9 81.60% 0.82 73.23% 0.76

Arousal 93.44% 0.91 86.65% 0.89 73.92% 0.76

Table 2.  Classification Performance of Emotion Valence and Arousal Across Different Modalities (EEG, ECG, 
and PI).

Fig. 7  1dCNN Models for Emotional Valence and Arousal. (a) Confusion matrix for emotional valence 
prediction by EEG, ECG, and PI features. (b) ROC curve for emotional arousal prediction by EEG, ECG, and PI 
features.
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As shown in Fig. 5, the dataset was organized into four sections, and a ‘Metadata.txt’ file was included in 
dataset to provide detailed information about each file:

	 1.	 Physiological Data

	 (1)	 EEG_raw: Each file contains 64-channel EEG data for one subject (the data of subjects 02 and 03 are 
split into two) in .cnt format. For channel information, see EEG_channel_order.xlsx.

	 (2)	 ECG_raw: Each file contains ECG data for one subject (the data of subjects 02 and 03 are split into 
two) in.acq format.

	 (3)	 PI_raw: Each file contains one day’s PI data collected via a wearable device in.csv format, containing 
three columns of information: device number, time and PI data.

	 (4)	 ECG_EEG_emo: Each file contains time-aligned EEG and ECG data segmented into 4-second epochs 
(non-overlapping) with corresponding emotion labels (.fif format). For channel information, see 
ECG_EEG_channel_order.xlsx.

	 (5)	 PI_emo.csv: This file contains PI data segmented by emotional states for each subject, each row con-
taining time, PI, label, and name.

	 (6)	 EEG_preprocessed: Each file contains preprocessed EEG data in.fif format from ECG_EEG_emo. The 
data are segmented into 4-second intervals.

	 (7)	 ECG_preprocessed: Each file contains preprocessed ECG data in.npy format from ECG_EEG_emo. 
The data are segmented into 4-second intervals.

	 (8)	 PI_preprocessed: Each file contains 1 minute long preprocessed PI data in.txt format, with label in the 
file name.

	 2.	 Questionnaire Data

	 (1)	 Demographic_Information.xlsx: This file contains demographic details of all participants, with each 
row corresponding to an individual subject, including the following information: participation num-
ber, sex, age, Big Five personality, trait anxiety, depression, score of life events.

	 (2)	 SAM.xlsx: This file stores SAM ratings, documenting valence and arousal scores across different 
experimental phases.

	 3.	 Channel Order

	 (1)	 EEG_order.xlsx: This file provides the 64 EEG channel order information.
	 (2)	 EEG_ECG_order.xlsx: This file provides the channel order of time-aligned EEG and ECG Data.

	 4.	 Stimuli

	 (1)	 Positive video: short humorous clips sourced from Chinese media platforms.
	 (2)	 Neutral video: scenic footage with soft instrumental music.
	 (3)	 Negative video: documentary excerpts featuring interviews with left-behind children.

Technical Validation
Effectiveness of emotion induction.  Participants’ self-reported ratings on the SAM scale were analyzed 
to assess the effectiveness of emotion induction. As shown in Fig. 6, affective videos produced specific valence 
ratings: calm (M = 3.58, SD = 0.56), negative (M = 2.18, SD = 0.74), neutral (M = 3.52, SD = 0.65), and positive 
(M = 4.31, SD = 0.65), with the result of variance analysis showing significant differences (F = 119.46, p < 0.001). 
The stress phase was rated as having significantly higher arousal (M = 3.30, SD = 0.90) compared to the calm 
(M = 1.70, SD = 0.64), with a t-test confirming a significant difference (p < 0.001). These results confirm that the 
targeted emotional states were successfully induced.

Descriptive statistics for psychological measures.  Descriptive statistics for the assessed personality 
traits and psychological variables are presented in Table 1. We compared these factors across genders and found 
no statistically significant differences.

Model implementation.  Initially, features were extracted from the preprocessed data. For EEG signals, 
Principal Component Analysis (PCA) was applied to reduce spatial dimensionality, and the first 10 princi-
pal components were retained. The cumulative variance explained by the principal components reached 75%. 
Frequency-domain features as well as time-domain and time-frequency features, were computed for each com-
ponent, yielding a total of 80 features. RRI was extracted from ECG data, and a comprehensive set of 94 features 
was computed using time-domain, frequency-domain, and nonlinear analysis. An identical feature extraction 
procedure was applied to the PI data; however, due to the per-minute aggregation of PI data, the analysis was 
restricted to short-term heart rate dynamics, resulting in 78 features. The complete list of features can be found 
in the supplementary materials.

Next, predictive models were constructed for emotional valence and emotional arousal using multiple 
machine learning and deep learning algorithms. The models included traditional machine learning techniques 
such as Support Vector Machines (SVM), Random Forest, Decision Trees, and Extreme Gradient Boosting 
(XGBoost), along with deep learning models such as Multi-Layer Perceptron (MLP) and 1D Convolutional 
Neural Networks (1dCNN).

https://doi.org/10.1038/s41597-025-06214-y
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We present a detailed description of the 1dCNN architecture here. The structures of the other models were 
included in the supplementary materials. For binary classification tasks, the 1dCNN model consisted of.three 
convolutional blocks with kernel sizes of 1, 3, and 5, with the number of filters increasing from 32 to 128. Each 
block included batch normalization, ReLU activation, max pooling, and dropout (rate = 0.5). A global average 
pooling layer and a dense layer with 64 units preceded the final sigmoid output. For four-class classification, 
the model included four convolutional blocks (kernel sizes: 1, 3, 3, 5; filters: 64 - 256), each followed by batch 
normalization, LeakyReLU activation (α = 0.1), pooling, and dropout (rate = 0.3). Two dense layers (128 and 
64 units) preceded the final SoftMax output. Both models were trained using the Adam optimizer (learning 
rate = 0.0005) with appropriate cross-entropy loss functions.

Model performance was assessed using 10-fold stratified cross-validation, where all samples from all sub-
jects were pooled together and then randomly split in each fold (90% for training and 10% for validation). This 
procedure ensured that the class distribution was preserved across folds while providing robust performance 
estimates.

Performance evaluation.  As shown in the Table 2 and Fig. 7, the 1dCNN model outperformed tradi-
tional machine learning models in predicting both emotional valence and arousal, with accuracies of 90.46% 
and 93.44% for the EEG-based model, 82.00% and 86.65% for the ECG-based model, and 73.23% and 73.92% for 
the PI-based model, respectively. Despite the moderate performance of the PI-based models, their suitability for 
long-term, low-intrusion monitoring underscores their practical applicability in real-world emotion recognition 
systems.

In addition to the four-class and binary-class arousal analyses, we further performed a three-class classifica-
tion task using only the video-induced emotional states (negative, neutral, positive). The classification models 
achieved robust performance across modalities. EEG achieved the highest performance with an average accu-
racy of 0.87, whereas ECG and PI followed with 0.84 and 0.76, respectively. These findings are consistent with 
widely adopted protocols and further support the effectiveness of multimodal physiological signals for emotion 
recognition.

In this study, we present a comprehensive multimodal emotion recognition dataset aimed at improving the 
precision of Valence-Arousal Model while systematically incorporating individual differences. By integrating 
EEG, ECG, and PI signals collected under controlled emotional stimuli, this dataset serves as a valuable resource 
for advancing research in emotion recognition and computational affective science.

Although the MMST has been widely validated as an effective paradigm for inducing stress and high arousal 
(Reinhardt et al., 2012), it should be noted that its multimodal stressors differ from the neutral video used in 
the calm baseline, which may introduce potential confounding effects. To further minimize such risks, future 
studies could consider employing more unified or comparable stimulus materials across conditions.

Future studies can also expand the dataset to include a larger and more diverse population across different 
age groups, cultural backgrounds, and real-world scenarios. Furthermore, enhancing the real-time performance 
and robustness of emotion recognition systems is crucial. By refining data diversity and enhancing real-time 
processing capabilities, emotion recognition systems can achieve enhanced accuracy and applicability in every-
day settings and human-computer interaction.

Data availability
The dataset generated and analysed during the current study has been deposited in the Science Data Bank 
repository and is publicly available via the following: https://doi.org/10.57760/sciencedb.23231.

Code availability
The data preprocessing and validation procedures presented in the validation section were conducted in Python. 
The data analysis code are included in the dataset26.

Received: 5 May 2025; Accepted: 27 October 2025;
Published: xx xx xxxx

References
	 1.	 Cai, Y., Li, X. & Li, J. Emotion recognition using different sensors, emotion models, methods and datasets: A comprehensive review. 

Sensors (Basel, Switzerland) 23, 2455, https://doi.org/10.3390/s23052455 (2023).
	 2.	 Saganowski, S. et al. Emognition dataset: Emotion recognition with self-reports, facial expressions, and physiology using wearables. 

Sci. Data 9, 158, https://doi.org/10.1038/s41597-022-01262-0 (2022).
	 3.	 Cohen, A. S., Kim, Y. & Najolia, G. M. Psychiatric symptom versus neurocognitive correlates of diminished expressivity in 

schizophrenia and mood disorders. Schizophrenia Research 146, 249–253, https://doi.org/10.1016/j.schres.2013.02.002 (2013).
	 4.	 Ezzameli, K. & Mahersia, H. Emotion recognition from unimodal to multimodal analysis: A review. Inf. Fusion 99, 101847, https://

doi.org/10.1016/j.inffus.2023.101847 (2023).
	 5.	 Koelstra, S. et al. DEAP: A database for emotion analysis using physiological signals. IEEE Trans. Affect. Comput. 3, 18–31, https://

doi.org/10.1109/T-AFFC.2011.15 (2012).
	 6.	 Miranda Calero, J. A. et al. WEMAC: Women and Emotion Multi-modal Affective Computing dataset. Sci. Data https://doi.

org/10.1038/s41597-024-04002-8 (2024).
	 7.	 Jiang, W.-B. et al. SEED-VII: A multimodal dataset of six basic emotions with continuous labels for emotion recognition. IEEE 

Trans. Affect. Comput. https://doi.org/10.1109/TAFFC.2024.3245678 (2024).
	 8.	 Ramaswamy, M. P. A. & Palaniswamy, S. Multimodal emotion recognition: A comprehensive review, trends, and challenges. WIREs 

Data Mining Knowl. Discov. 14, e1563, https://doi.org/10.1002/widm.1563 (2024).
	 9.	 Katsigiannis, S. & Ramzan, N. DREAMER: A database for emotion recognition through EEG and ECG signals from wireless low-

cost off-the-shelf devices. IEEE J. Biomed. Health Inform. 22, 98–107, https://doi.org/10.1109/JBHI.2017.2688239 (2018).
	10.	 Zhao, S., Jia, G., Yang, J., Ding, G. & Keutzer, K. Emotion recognition from multiple modalities: Fundamentals and methodologies. 

IEEE Signal Process. Mag. 38, 59–73, https://doi.org/10.1109/MSP.2021.3106895 (2021).

https://doi.org/10.1038/s41597-025-06214-y
https://doi.org/10.57760/sciencedb.23231
https://doi.org/10.3390/s23052455
https://doi.org/10.1038/s41597-022-01262-0
https://doi.org/10.1016/j.schres.2013.02.002
https://doi.org/10.1016/j.inffus.2023.101847
https://doi.org/10.1016/j.inffus.2023.101847
https://doi.org/10.1109/T-AFFC.2011.15
https://doi.org/10.1109/T-AFFC.2011.15
https://doi.org/10.1038/s41597-024-04002-8
https://doi.org/10.1038/s41597-024-04002-8
https://doi.org/10.1109/TAFFC.2024.3245678
https://doi.org/10.1002/widm.1563
https://doi.org/10.1109/JBHI.2017.2688239
https://doi.org/10.1109/MSP.2021.3106895


1 0Scientific Data |         (2025) 12:1944  | https://doi.org/10.1038/s41597-025-06214-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

	11.	 Reinhardt, T., Schmahl, C., Wüst, S. & Bohus, M. Salivary cortisol, heart rate, electrodermal activity and subjective stress responses 
to the Mannheim Multicomponent Stress Test (MMST). Psychiatry Res. 198, 106–111, https://doi.org/10.1016/j.psychres.2011.12.009 
(2012).

	12.	 Lee, S., Kim, H., Park, M. J. & Jeon, H. J. Current advances in wearable devices and their sensors in patients with depression. Front. 
Psychiatry 12, 672347, https://doi.org/10.3389/fpsyt.2021.672347 (2021).

	13.	 Wijasena, H. Z., Ferdiana, R. & Wibirama, S. A survey of emotion recognition using physiological signal in wearable devices. Int. 
Conf. Artif. Intell. Mech. Syst. (AIMS) 1–6. https://doi.org/10.1109/AIMS52415.2021.9466092 (2021).

	14.	 Kwon, J., Ha, J., Kim, D.-H., Choi, J. W. & Kim, L. Emotion recognition using a glasses-type wearable device via multi-channel facial 
responses. IEEE Access 9, 146392–146403, https://doi.org/10.1109/ACCESS.2021.3121543 (2021).

	15.	 Shu, L. et al. Wearable emotion recognition using heart rate data from a smart bracelet. Sensors (Basel, Switzerland) 20, 718, https://
doi.org/10.3390/s20030718 (2020).

	16.	 Lejeuz, C. W., Kahler, C. W. & Brown, R. A. A. modified computer version of the Paced Auditory Serial Addition Task (PASAT) as a 
laboratory-based stressor. Behav. Ther. 26, 290–293, https://doi.org/10.1037/h0100463 (2003).

	17.	 Dan-Glauser, E. S. & Scherer, K. R. The Geneva affective picture database (GAPED): a new 730-picture database focusing on valence 
and normative significance. Behav Res 43, 468–477, https://doi.org/10.3758/s13428-011-0064-1 (2011).

	18.	 Zhang, X., Wang, M.-C., He, L., Jie, L. & Deng, J. The development and psychometric evaluation of the Chinese Big Five Personality 
Inventory-15. PLoS ONE 14, e0221621, https://doi.org/10.1371/journal.pone.0221621 (2019).

	19.	 Wang, W. et al. Reliability and validity of the Chinese version of the Patient Health Questionnaire (PHQ-9) in the general population. 
Gen. Hosp. Psychiatry 36, 539–544, https://doi.org/10.1016/j.genhosppsych.2014.05.021 (2014).

	20.	 Spielberger, C. D., Gonzalez-Reigosa, F., Martinez-Urrutia, A., Natalicio, L. F. S. & Natalicio, D. S. The State-Trait Anxiety Inventory. 
Rev. Interam. Psicol./Interam. J. Psychol. 5, Article 3 & 4, https://doi.org/10.30849/rip/ijp.v5i3 (2017).

	21.	 Liu, X. et al. The adolescent self-rating life events checklist and its reliability and validity. Chin. J. Clin. Psychol. 5, 34–36, https://doi.
org/10.16128/j.cnki.1000-9817.1997.01.010 (1997).

	22.	 Bradley, M. M. & Lang, P. J. Measuring emotion: The self-assessment manikin and the semantic differential. Journal of Behavior 
Therapy and Experimental Psychiatry 25, 49–59, https://doi.org/10.1016/0005-7916(94)90063-9 (1994).

	23.	 Makowski, D. et al. NeuroKit2: A Python toolbox for neurophysiological signal processing. Behav. Res. Methods 53, 1689–1696, 
https://doi.org/10.3758/s13428-020-01516-y (2021).

	24.	 Zheng, W. L., Zhu, J. Y. & Lu, B. L. Identifying stable patterns over time for emotion recognition from EEG. IEEE transactions on 
affective computing 10, 417–429, https://doi.org/10.1109/TAFFC.2017.271214 (2017).

	25.	 Rozgić, V., Vitaladevuni, S. N. & Prasad, R. Robust EEG emotion classification using segment level decision fusion. 2013 IEEE 
international conference on acoustics, speech and signal processing, 1286–1290, https://doi.org/10.1109/ICASSP.2013.6637858 (2013).

	26.	 Huang, X. EVA-MED: An Enhanced Valence-Arousal Multimodal Emotion Dataset for Emotion Recognition. Science Data Ban 
https://doi.org/10.57760/sciencedb.23231 (2025).

Acknowledgements
This work was supported by the National Key Research and Development projects under Grant number 
2023YFC3605304.

Author contributions
Xin Huang: Data curation, Formal analysis, Methodology, Writing-original draft, Writing-review and editing. 
Shiyao Zhu: Data curation, Writing-review and editing. Ziyu Wang: Writing-review and editing. Yaping He: 
Writing-review and editing. Zhenyu Zou: Data curation, Validation. Jingyi Wang:Writing-review and editing, 
Validation. Hao Jin: Supervision, Validation, Funding acquisition. Zhengkui Liu: Conceptualization, Funding 
acquisition, Project administration, Resources, Supervision.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/ 
10.1038/s41597-025-06214-y.
Correspondence and requests for materials should be addressed to Z.L.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial- 
NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribu-

tion and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) 
and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed mate-
rial. You do not have permission under this licence to share adapted material derived from this article or parts 
of it. The images or other third party material in this article are included in the article’s Creative Commons 
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s  
Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the  
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
 
© The Author(s) 2025

https://doi.org/10.1038/s41597-025-06214-y
https://doi.org/10.1016/j.psychres.2011.12.009
https://doi.org/10.3389/fpsyt.2021.672347
https://doi.org/10.1109/AIMS52415.2021.9466092
https://doi.org/10.1109/ACCESS.2021.3121543
https://doi.org/10.3390/s20030718
https://doi.org/10.3390/s20030718
https://doi.org/10.1037/h0100463
https://doi.org/10.3758/s13428-011-0064-1
https://doi.org/10.1371/journal.pone.0221621
https://doi.org/10.1016/j.genhosppsych.2014.05.021
https://doi.org/10.30849/rip/ijp.v5i3
https://doi.org/10.16128/j.cnki.1000-9817.1997.01.010
https://doi.org/10.16128/j.cnki.1000-9817.1997.01.010
https://doi.org/10.1016/0005-7916(94)90063-9
https://doi.org/10.3758/s13428-020-01516-y
https://doi.org/10.1109/TAFFC.2017.271214
https://doi.org/10.1109/ICASSP.2013.6637858
https://doi.org/10.57760/sciencedb.23231
https://doi.org/10.1038/s41597-025-06214-y
https://doi.org/10.1038/s41597-025-06214-y
http://www.nature.com/reprints
http://creativecommons.org/licenses/by-nc-nd/4.0/

	An Enhanced Valence-Arousal Multimodal Emotion Dataset for Emotion Recognition

	Background & Summary

	Methods

	Participants. 
	Procedure. 
	Stimuli. 
	Video clips. 
	MMST paradigm. 

	Measures. 
	Demographic information questionnaire. 

	Psychological measures. 
	Subjective emotional experience. 

	Equipment. 
	ECG equipment. 
	EEG equipment. 
	PI Data collection. 
	Software for data processing. 

	Data preprocessing. 
	EEG data preprocessing. 
	ECG data preprocessing. 
	PI Data preprocessing. 

	Emotional labeling. 

	Data Records

	Technical Validation

	Effectiveness of emotion induction. 
	Descriptive statistics for psychological measures. 
	Model implementation. 
	Performance evaluation. 

	Acknowledgements

	Fig. 1 Experiment Procedures.
	Fig. 2 SAM Diagram.
	Fig. 3 Experimental Setup for Multimodal Physiological Data Collection.
	Fig. 4 Pulse Interval.
	Fig. 5 Dataset structure.
	Fig. 6 Subjective Emotional Valence and Arousal Scores at Different Experimental Stages.
	Fig. 7 1dCNN Models for Emotional Valence and Arousal.
	Table 1 Descriptive statistics table of sample psychological characteristics.
	Table 2 Classification Performance of Emotion Valence and Arousal Across Different Modalities (EEG, ECG, and PI).




