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CrossDI: A comprehensive dataset 
crossing three databases for 
calculating disruption indexes
Shuo Xu1, Congcong Wang1, Xin An   2 ✉ & Jianhua Liu3

The Disruption Index (DI) is a significant metric for identifying research that expands scientific frontiers 
and pioneers new fields. Unlike readily accessible metrics like citation counts, DI requires complex analysis 
of citation patterns, specifically, how subsequent research that cites a given work also references its 
foundational predecessors, representing a paradigm shift in assessing scientific impact. Current DI studies 
remain largely confined to single indicators, disciplines, or databases, lacking comprehensive benchmarks 
to evaluate the intrinsic properties and temporal dynamics of diverse DI metrics. To bridge this critical 
gap, we introduce Cross-source Disruption Indexes (CrossDI) dataset, a comprehensive benchmark 
resource that integrates multiple established DI metrics for key articles across four fields. Curated from 
three major bibliographic databases (WoS, Dimensions, and OpenCitations), this dataset is designed as a 
reusable benchmark for the systematic evaluation and comparison of disruption indexes.

Background & Summary
Scientific disruptions, characterized by their capacity to challenge existing paradigms and redefine research tra-
jectories, serve as critical catalysts for technological breakthroughs and societal transformation1–3. Traditional 
bibliometric indicators (e.g., citation counts) remain limited in capturing the innovative and revolutionary 
nature of such work, as they predominantly reflect incremental contributions that reinforce existing knowledge 
rather than displacing it3,4. This gap motivated the development of the Disruption Index (DI), a metric quantify-
ing the extent to which research eclipses foundational references and replaces established practices5.

The DI index operates on a tripartite citation framework (Fig. 1), analyzing relationships among target 
articles (current generation, square), their cited references (past generation, diamond), and subsequent citing 
works (future generation, circle). Bibliographic coupling identifies two distinct contribution types: Consolidating 
contributions (D = −1), where subsequent works co-cite both the target article and its referenced prior works, 
signaling incremental advancement, and Disruptive contributions (D = 1), where subsequent works cite only 
the target article, indicating divergence from prior knowledge trajectories6. Valid application requires sufficient 
citation context3,7, with empirical studies recommending thresholds of ≥5 references and ≥5 citations2,8.

Recent methodological refinements have produced specialized DI variants to address limitations of 
Disruption Index9. While the earliest alternative, DIm 1

5, remains relatively understudied, subsequent studies 
focus on distinct challenges. Variants such as DI n1

10, and DIX%
11 specifically mitigate noise from highly cited 

references. Conversely, alternative approaches, including DI noR12, DEP13,14, Origbase
15, eliminate dependency on 

citation thresholds by exclusively analyzing subsequent works that directly cite the focal paper. Moving beyond 
the conventional binary framework that treats disruption and consolidation as opposing constructs, Chen et al.16 
conceptualized them as distinct dimensions and developed corresponding indices (D for Destabilization and C 
for Consolidation), further introducing the consolidation-disruption disentanglement indexes.

Despite these methodological improvements, existing DI indexes remain susceptible to several types of 
bias9. First, the use of NR as a denominator introduces inconsistency: NR can exert different effects depending 
on whether the numerator is positive or negative, which contradicts its theoretical interpretation, consolidat-
ing qualities should consistently yield lower or negative scores. Second, the time-dependency of disruption 
scores remains unresolved, although Bornmann and Tekles17 have recommended a minimum citation window 
of three years. Third, empirical evidence suggests that the relationship between the number of cited references 
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and disruption scores is non-linear and modulated by discipline, publication age, and the length of the citation 
window. Fourth, biases may also arise from incomplete coverage within bibliometric databases.

To address these methodological gaps, this study establishes a comprehensive benchmark dataset integrating 
the Web of Science (WoS), Dimensions, and OpenCitations, hereafter referred to as Cross-source Disruption 
Indexes (CrossDI)18. The dataset encompasses both established fields (e.g., Synthetic Biology, Astronomy & 
Astrophysics) and emerging domains (e.g., Blockchain-based Information Systems, Socio-Economic Impacts of 
Biological Invasions). Within this framework, we systematically compute the full suite of disruption indexes 
discussed above, including DI, DIm 1, DI n1 , DIX%, DI noR, DEP, Origbase

, as well as the Destabilization (D) and 
Consolidation (C) indices, for each article in the dataset, tracking their annual disruption indexes for every year 
following article up to 2023. In addition, we retain and report key intermediate results and parameters underly-
ing these calculations.

By integrating citation data across multiple databases and providing standardized intermediate variables 
relevant to different disruption indexes, our dataset enables comprehensive analysis of several types of bias, 
including database coverage, time window selection, and discipline-specific effects. Ultimately, this resource 
supports deeper investigation into the intrinsic characteristics and methodological sensitivities of disruption 
indexes, facilitating more robust and comparative bibliometric studies.

It should be noted that our dataset is supported by our previous works:

	(1)	 Xu et al.19 developed a regular expression-based method to systematically identify and automatically cor-
rect various typical DOI errors in cited references from the WoS database, thereby significantly improving 
the quality of citation data.

	(2)	 Xu et al.20 compares the Disruption Index across the WoS, Dimensions, and OpenCitations, finding that the 
Dimensions is a more reliable open alternative to the WoS than the OpenCitations.

Methods
The CrossDI dataset18 is constructed through a systematic workflow that integrates bibliographic meta-
data from multiple sources. As illustrated in Fig. 2, the generation process comprises three primary phases: 
(1) Multi-source metadata collection, involving the retrieval of seed articles and their complete citation net-
works from the WoS, Dimensions, and OpenCitations; (2) Data preprocessing, where key metadata fields, pri-
marily DOIs and publication years, are cleaned and harmonized to ensure cross-database consistency; and (3) 
Computation of the disruption indexes, which calculates a family of disruption measures from annual citation 
network snapshots for temporal and cross-source analysis.

Multi-source metadata collection.  The CrossDI dataset is constructed through a systematic integration of 
bibliographic metadata from three major sources: Web of Science Core Collection (https://www.webofscience.com), 
Dimensions (https://www.dimensions.ai/), and OpenCitations (https://search.opencitations.net/). The seed articles 
for the dataset are derived from four distinct research areas. For established fields, the SynBio dataset (2003–2012) 
comprises 2,584 article records obtained by executing the reproducible search strategy provided by Porter et al.21 
and Xu et al.22,while the Astro dataset (2003–2010) utilizes the curated bibliographic data assembled by Gläser et 
al.23 and Xu et al.24. For emerging domains, the Block-Based Information System Management dataset (2019–2022) 
was compiled from the reference list of Lei and Ngai25 and the Socio-Economic Impacts of Biological Invasions 
dataset (2019–2022) was built by applying the search strategy from Diagne et al.26. A stratified random sample of 10 
articles per publication year is drawn from each of these source collections to form the final set of target articles. The 
complete list of DOIs for the final set of 260 target articles is provided as part of the CrossDI dataset18.

Fig. 1  Simplified illustration of the Disruption Index. Note: Schematic representation of disruption index (DI) 
values in a citation network with a target article (■), its references (♦), and the resulting citing articles (●).
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For each seed article, the complete citation network, including metadata, cited references, and citing arti-
cles, is retrieved from all three sources. Metadata from the WoS is manually exported, while data from the 
Dimensions is collected programmatically via its API (https://app.dimensions.ai/api/dsl/v2), and data from the 
OpenCitations is collected via its API. The integration of these heterogeneous data streams is governed by a con-
sistent, DOI-centric methodology. Citation relationships are systematically constructed through DOI linkages 
across three dimensions: (1) from target articles to their cited references, (2) from target articles to their citing 
articles, and (3) between the cited references and the citing articles. Citing-article coverage is truncated at the 
end of 2023; only citations appearing through 2023 are included.

DOI extraction required distinct approaches across sources: the WoS and Dimensions necessitate metadata 
parsing for DOI retrieval, whereas the OpenCitations provides direct citation linkages through its dual-dataset 
architecture. The OpenCitations infrastructure maintains two principal resources: the OpenCitations Index 
(documenting citing-cited entity pairs with temporal metadata; https://api.opencitations.net/index/v2) and 
OpenCitations Meta (containing rich bibliographic records; https://api.opencitations.net/meta/v1), as detailed 
by Heibi et al.27. This structural distinction enables more efficient citation network reconstruction from the 
OpenCitations compared to other sources requiring DOI extraction from heterogeneous metadata fields.

To mitigate errors from ‘non-linked’ records, publications that lack standard identifiers (e.g., DOIs) in 
sources such as the WoS, we enforce a deterministic inclusion rule: only references and citing items with valid, 
matchable DOIs are admitted to the integrated network. This approach ensures a consistent and reproducible 
matching logic across all sources and minimized the risk of false-positive citation links. This guarantees a fair 
comparison among the three sources. Furthermore, a data quality filter is applied at the article level, retaining 
only those seed articles that possessed at least five cited references and five citing articles2 identifiable via DOIs, 
thereby guaranteeing a meaningful citation structure for subsequent use.

Data preprocessing.  Persistent DOI inconsistencies in the WoS induce systemic citation linkage errors, 
compromising analytical validity19,28. While automated cleaning19 rectifies detectable errors, residual ambiguity 
persists when multiple DOIs exhibit equivalent plausibility. Our cross-database processing procedure reveals 
six multi-DOI phenomena20: (1) Multi-publisher attribution; (2) Derivative material linkage; (3) Multilingual 
versioning; (4) Component disaggregation; (5) Serialized articles; and (6) Erroneous assignment. As detailed 
in Algorithm 1, for the category 1–5 (non-erroneous multi-DOIs), the DOI with rank 1 in alphabetic order is 
selected as the preferred one. In addition, it is very popular that publication years are missed or even conflicted 
across different databases. In this time the most recent year is kept, since this simple operation can correct the vast 
majority of missed or conflicted publication years (see further).

This reproducible decision framework is crucial for the large-scale harmonization of bibliographic records. 
Notably, it directly addresses citation redundancy on the platforms such as Dimensions, where multiple DOIs 
may be assigned to an identical works, resulting in artificial inflation of citation counts. By clamping DOIs from 
multiple sources, our approach can mitigate such database-induced inflation and thereby enhance the computa-
tional validity of disruption metrics. This normalization procedure not only reconciles metadata heterogeneity 
across the WoS, Dimensions, and OpenCitations but also establishes an interoperable foundation, ensuring meth-
odological consistency and facilitating cross-platform comparability of disruption indexes.

Notwithstanding these strengths, we acknowledge the inherent arbitrariness of our preprocessing rules. 
The selection of the alphanumerically-first DOI as the canonical identifier, while systematic, may not always 
represent the authoritative version of record. Similarly, the preference for the most recent publication year, 
though effective in resolving conflicts, may in some cases differ from the initial online availability. We recognize 
these as intentional methodological trade-offs, where we have prioritized scalability and reproducibility for 
cross-database analysis over context-specific precision in every instance.

Calculation of the disruption indexes.  The final dataset assembly involved constructing local citation 
networks for each target article using the DOI linkages. To support temporal analysis, annual citation network 
snapshots are built from publication year until 2023. Within each snapshot, nine disruption index variants are 
pre-calculated, grouped into four methodological families as detailed below. All measures are computed inde-
pendently for the WoS, Dimensions, and OpenCitations databases.

Core and impact-weighted indexes.  Funk and Owen-Smith5 introduced the DI1 index, with its calcu-
lation formula illustrated in Fig. 3. Let’s consider a scenario where there is a focal article (represented by a black 
square) and its references (depicted as diamonds). The citing articles can be categorized into three groups: those 

Fig. 2  A framework for cross-database computation of disruption indexes.
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citing only the focal article (represented by single-ring circles formed by dotted lines, counted as NF), those citing 
only the focal article’s references (single-ring circles made of solid lines, counted as NR), and those citing both the 
focal article and its references (double-ring circles, counted as NB).
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The original index DI1 ranges in [−1,1] and reflects the direction (disruptive vs consolidating) but not the 
magnitude of use.

Funk and Owen-Smith5 also proposed the impact-weighted CD index ( DIm 1), with the following formula:
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Algorithm 1 Data preprocessing (Reuse prior DOI cleaning + Alphabetical DOI selection + Max-year reconciliation).
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Here, mt counts only citations of the target article. This variant mixes direction with magnitude; its scale 
depends on mt and is therefore not bounded in [−1,1].

Threshold-based variants.  A recognized challenge is the potential bias introduced by highly-cited refer-
ences, which can inflate the NR and NB values. The following variants implement thresholds to mitigate this effect 
and reduce noise in the citation network10,11. Bornmann et al.10 developed DI5, which required citing articles to 
reference at least five of the target article’s cited references when calculating the DI1 index.

=
−

+ +
DI

N N
N N N (3)

F B

F B R
5

5

5

Additionally, Deng and Zeng11 suggested another disruption index, DIX%, which excludes references that fall 
within the top X% of most-cited articles.

DI
N N

N N N (4)
F B

F B R
X% =

−
+ +

Both DI5 and DIX% utilize thresholds to eliminate the noise caused by highly-cited references. However, these 
thresholds can be arbitrarily set, potentially introducing biases or subjectivity into the calculation. We acknowl-
edge the inherent arbitrariness in selecting specific threshold values (e.g., 5 references/citations, top X%). Our 
choices are guided by established conventions in the literature to ensure comparability and robustness1,8,10,29,30. 
These thresholds represent a pragmatic compromise between mitigating noise from sparse data and maintaining 
a sufficiently large sample for analysis.

Reference-omitted measures.  To avoid threshold arbitrariness and clarify the role of NR, the following 
several measures omit entirely it. Wu and Yan12 proposed the disruption index, DI noR, defined as:

DI
N N
N N (5)

noR F B

F B
=

−
+

Bu et al.13 introduced MR cited_pub[ ], later termed the Dependency Index (DEP) by subsequent work14, 
defined as:

DEP
T

N N (6)
R

F B
=

+

Here, TR is the total number of shared references between the focal paper and its citing papers. A higher 
dependency index indicates a lower level of disruption. To align its interpretive direction with that of the disrup-
tion indexes, we adapt the inverse DEP (invDEP) in this study by following the approach of Bittmann et al.14. In 
more detail, invDEP is calculated by subtracting each DEP value from the sample maximum plus one.

Shibayama and Wang15 introduced a refinement to disruption measurement by shifting the unit of analysis 
from article-level counts (e.g., NR) to link-level counts within the citing-reference bipartite network. Their base 
originality index, Origbase

, is defined as the proportion of non-links in this network, as shown in Eq. (7).

Orig
CR

x with x if c cites r1 1 1
0 otherwise (7)base C

C
r
R

cr cr1 1∑ ∑= − =



= =

Here, c denotes the citing articles that reference the focal paper, while r represents the references contained 
in the focal paper. The total counts of citing articles and references are denoted by capital letters C and R, 
respectively.

Moving beyond the unidimensional trade-off of DI1, Chen et al.16 re-conceptualized technological evolution 
with a dual-view framework. A single index that forces a choice between disruption and consolidation cannot 

Fig. 3  Graphical representation of calculating the DI1 index.
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capture dual technologies that destabilize some predecessors while consolidating others. To operationalize this, 
they structurally adapted the tripartite network and defines two indices: D (Destabilization) and C 
(Consolidation).
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Here, i denotes an arbitrary reference cited by the target article. NF
i  measures the number of articles citing the 

target articles but not citing reference i, NB
i  measures the number of articles citing both the target articles and 

reference i, NR
i  measures number of articles citing reference i but not the target articles, and n measures the total 

number of references in the target articles.

Data overview.  Citation data across four research domains, namely Synthetic Biology, Astronomy and 
Astrophysics, Blockchain-based Information System Management, and the Socio-Economic Impacts of Biological 
Invasions, are compiled through the integration of three major bibliographic databases: the WoS, Dimensions, and 
OpenCitations. Table 1 summarizes, for each field database combination, the number of target articles and the 
field-level averages of (i) references and (ii) citations.

Data Records
The dataset is openly available on Figshare18 and is organized as a data lake encompassing four research fields: 
Synthetic Biology (ID = 1), Astronomy & Astrophysics (ID = 2), Blockchain-based Information System 
Management (ID = 3), and Socio-Economic Impacts of Biological Invasions (ID = 4). A consistent folder and 
file structure is used for each field, where the placeholder {ID} corresponds to the field number, and {SOURCE} 
denotes the citation data source (viz., WoS, Dimensions, OpenCitations). The data is structured into five core 
components for each field:

	(1)	 Article list (doi/dois-{ID}.csv): This file contains two columns: doi and year. It lists all unique articles that 
constitute the citation network. It is a key methodological point that only the publication years of citing 
articles are essential for our disruption metrics calculation. Consequently, the year field is guaranteed to be 
complete for all such articles but is intentionally left blank for cited references, as this information was not 
required for the analysis.

	(2)	 Citation edges (citations/citations-{ID}-{SOURCE}.csv): This tab-delimited file defines the directed cita-
tion relationships with two columns: cited_doi and citing_doi.

	(3)	 Target Articles (target/target-{ID}.csv): This single-column file (header: doi) specifies the focal articles for 
which disruption metrics are computed.

	(4)	 Results (result/results-{ID}-{SOURCE}.xlsx): This spreadsheet compiles the disruption indexes and 
metadata for each target article. It includes: metadata (doi, Publication Year, Y (years since publication), 
Source), Citation counts (NF, NB, NR, NB

5, NFnew
, alias of NF, and NBnew

, alias of NB), disruption indexes (DI1, 
DIm 1, DI5, DI noR, DI3%, DEP, invDEP, Origbase, Destabilization D( ), Consolidation C( )).

	(5)	 Multi-DOI consolidation (doi/dois-multi-{ID}.csv): No header; each line lists a group of normalized DOIs 
determined to refer to the same work; the first DOI is taken as the canonical identifier (subsequent DOIs 
are aliases).

Field Count Database Avg. references Avg. citations

Synthetic Biology 100

Dimensions 36.37 94.96

OpenCitations 36.21 91.82

WoS 34.32 78.21

Astronomy & Astrophysics 80

Dimensions 34.74 50.96

OpenCitations 34.24 46.69

WoS 32.77 43.85

Blockchain-based Information System Management 40

Dimensions 50.35 66.90

OpenCitations 40.12 54.33

WoS 45.20 45.77

Socio-Economic Impacts of Biological Invasions 40

Dimensions 59.15 67.12

OpenCitations 56.35 56.35

WoS 56.80 57.48

Table 1.  The average number of references and citations per article in four fields.
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Technical Validation
To quality-control the dataset, we perform three validations: (i) multi-DOI consolidation accuracy (man-
ual stratified audit), (ii) publication-year reconciliation accuracy, and (iii) reference-count consistency ver-
sus PDF ground truth; we additionally benchmark coverage overlap against Crossref to surface potential 
database-induced biases.

Validation of multiple DOI.  Different databases frequently assign multiple DOIs to a single article, with 
Fig. 4 confirming that dual-DOI cases predominate. Manual verification of 100 stratified-sampled merged groups 
demonstrates 95% deduplication accuracy (cf. Table S1 in Supplementary Information document): 92 groups are 
correctly consolidated (including identical articles, same-series entries [IDs: 96, 98, 99], or article components 
[IDs: 91, 95]), while 5 groups are incorrectly merged (IDs: 20, 44, 60, 78, 94; primarily in the OpenCitations). Three 
groups (IDs: 66, 68, 71) contain unresolvable secondary DOIs but are validated as correct merges via metadata.

Validation of publication year.  When reconciling publication years across databases for identical articles, 
we observe significant year discrepancies. As shown in Fig. 5, the OpenCitations exhibits the highest rate of miss-
ing years (9,192 articles), followed by the WoS (97) and Dimensions (4). Figure 6 further reveals temporal patterns 
in non-missing but conflicting years, indicating that inter-database inconsistency increases over time. To validate 
our discrepancy-resolution strategy (adopting the maximum year), we perform stratified random sampling by 
year and manually verify 100 articles. Table S2 in Supplementary Information document shows 12 erroneous 
assignments within the sample, yielding 88% accuracy. Notably, the maximum year approach introduces tempo-
ral bias, particularly for earlier articles.

Validation of references.  Database-reported reference counts are benchmarked against ground truth 
extracted from the resulting PDFs (Figs. 7–10). Across all examined fields (Astronomy & Astrophysics, 
Blockchain-based Information System Management, Socio-Economic Impacts of Biological Invasions), database 
counts are consistently less than or equal to the actual reference counts. We argue that a primary reason is that 
many referenced articles are not assigned any DOI at all. Notably, the Dimensions demonstrates significantly 
higher reference coverage in emerging fields compared to other databases. Critically, in the field of Synthetic 
Biology, the OpenCitations or Dimensions reported reference counts substantially exceeding the actual number of 
references (e.g., articles IDs: 6, 22, 25, 26, 49, 64, 69, 76, 87). In our opinion, this over-counting primarily stems 
from two mechanisms:

	(1)	 DOI Redundancy: the OpenCitations (and the Dimensions, e.g., ID = 87) treated distinct DOI strings refer-
encing the same underlying article as separate DOIs. Let’s take the article with DOI = https://doi.org/10.1128/
jb.186.13.4276-4284.2004 as an example. Its references https://doi.org/10.1128/mmbr.40.3.722-756.1976 and 
https://doi.org/10.1128/br.40.3.722-756.1976 (resolving to identical content) are recorded as two distinct 
citation relationships (IDs: 6, 49, 64, 69, 76, 87).

Fig. 4  Number of articles with multiple DOIs.

https://doi.org/10.1038/s41597-025-06232-w
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Fig. 5  Distribution of missing publication years across databases.

Fig. 6  Number of articles with conflicted year information over year across three databases.

Fig. 7  Validation of database-derived reference counts in Synthetic Biology field.

https://doi.org/10.1038/s41597-025-06232-w


9Scientific Data |         (2025) 12:1974  | https://doi.org/10.1038/s41597-025-06232-w

www.nature.com/scientificdatawww.nature.com/scientificdata/

	(2)	 Extraneous References: Both the OpenCitations and Dimensions include references demonstrably absent from 
the source article’s reference list and unrelated to its content (e.g., IDs: 22, 25, 26). A representative example is the 
inclusion of reference with DOI = https://doi.org/10.1152/ajpcell.1997.273.1.c7 for article with DOI = https://doi. 
org/10.1128/jb.186.13.4276-4284.2004. In fact, no actual citation relationship between them exists.

Fig. 10  Validation of database-derived reference counts in Socio-Economic Impacts of Biological Invasions field.

Fig. 8  Validation of database-derived reference counts in Astronomy & Astrophysics field.

Fig. 9  Validation of database-derived reference counts in Blockchain-based Information System Management field.
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Crossref benchmark comparison.  The Crossref is chosen as the external validation reference, reflecting 
its role as the primary DOI registration authority31. Using the 2025 Crossref Public Data File32 (with citations up 
to 2023), we validate the coverage and completeness of our collected data. Our comparative analysis find that the 
Dimensions provides the most comprehensive citation coverage, followed by the WoS, with the OpenCitations 
exhibiting the lowest coverage. However, supervisingly in the Synthetic Biology field, the Crossref’s coverage was 
lower than the WoS, primarily due to systematic omissions of references in certain key articles.

Figures 11–14 further illustrate the distribution and overlap of records across the WoS, Dimensions, 
OpenCitations and Crossref in four fields. Each figure utilizes an UpSet plot to display both the total number of 
citations indexed by each database (left bars) and the size of intersections among them (top bars). For instance, 
in Fig. 14, the Dimensions contains 2,260,464 citations and the WoS includes 2,025,014 citations, with 165,306 
citations shared exclusively between the WoS and Dimensions, absent from the OpenCitations and Crossref. 
Notably, a substantial number of records are shared among all four databases, indicating considerable overlap 
in core articles. These findings highlight the necessity of integrating multiple data sources for comprehensive 
bibliometric analysis and emphasize the risk of coverage bias when relying on a single database.

Usage Notes
Our CrossDI dataset supports a variety of research applications. First, it enables systematic analysis of the prop-
erties and dynamic evolution of disruption indexes over time. Annual DI values across multiple variants allow 
researchers to examine trends and patterns in scientific disruption. Second, the dataset covers both established 
and emerging fields providing a basis for investigating disciplinary differences in term of disruption indexes. 
Third, by combining citation data from multiple sources (WoS, Dimensions, and OpenCitations), the dataset 

Fig. 11  Comparative analysis of citation overlaps among major bibliographic databases in Synthetic 
Biology field. Left bars show total citation counts per database. Filled circles in the matrix indicate database 
combinations, and top bars represent intersection sizes.

Fig. 12  Comparative analysis of citation overlaps among major bibliographic databases in Astronomy & 
Astrophysics field. Left bars show total citation counts per database. Filled circles in the matrix indicate database 
combinations, and top bars represent intersection sizes.
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allows users to assess how database characteristics and data coverage affect the calculation and interpretation 
of disruption indexes. Furthermore, standardized intermediate variables are included to help identify sources 
of methodological bias, such as time window selection or discipline-specific citation practices. This facilitates 
sensitivity analyses and supports the development of more robust and comparable DI measures. Moving beyond 
these core applications, the dataset uniquely empowers several advanced research avenues: the structured cita-
tion networks facilitate sophisticated citation network mining to model the propagation of disruptive ideas; the 
comprehensive suite of indicators and their temporal evolution provides a rich feature set for predictive mode-
ling using machine learning; and these standardized metrics enable systematic anomaly detection by revealing 
scholarly outliers with atypical disruption trajectories. Overall, the dataset offers a harmonized and flexible 
benchmark for exploring the disruptive nature of scholarly works across disciplines and data infrastructures.

Data availability
The CrossDI dataset generated during this study is openly available in the Figshare repository at https://doi.
org/10.6084/m9.figshare.30356599.

Code availability
The source code for calculating the disruption indexes is available via a github link: https://github.com/pzczxs/
CrossDI-Dataset-and-Source-Code.
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Fig. 14  Comparative analysis of citation overlaps among major bibliographic databases in Socio-Economic 
Impacts of Biological Invasions field. Left bars show total citation counts per database. Filled circles in the 
matrix indicate database combinations, and top bars represent intersection sizes.

Fig. 13  Comparative analysis of citation overlaps among major bibliographic databases in Blockchain-based 
Information System Management field. Left bars show total citation counts per database. Filled circles in the 
matrix indicate database combinations, and top bars represent intersection sizes.
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