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A Mycelium Dataset with Edge-
Precise Annotation for Semantic 
Segmentation
Qianguang Yuan   1,2, Weizhen Liu   1,2 ✉, Yunfei Liu3,4, Pin Li5, Yuxuan Liu5, Xiaohui Yuan3,6, 
Nanqing Dong7,8, Shengwu Xiong9 ✉ & Yongping Fu5,6 ✉

With the increasing application of computer vision in mycology research, precisely segmenting 
mycelium and its edges in petri dish images remains a critical and underexplored task. This technology, 
accurately delineating mycelium boundaries, enables quantification of growth patterns, playing a 
crucial role in exploration of strain-related features, environmental adaptability, and physiological 
stimuli responses. The field confronts two bottlenecks, restricting real-world computer vision 
application. First, scarce public datasets impede development of mycelium-specific algorithms. 
Second, low contrast and high complexity of mycelium edges complicate annotation and segmentation 
processes. To address these bottlenecks, we established MyceliumSeg, the first large-scale benchmark 
dataset. MyceliumSeg contains: (i) 20,176 high-quality diverse images covering full growth cycle of four 
fungal species across multiple culture conditions; (ii) 567 pixel-level labeled samples generated with 37 
person-days’ manual effort through a mycelium annotation framework, including a multi-blind refined 
annotation guideline and a novel disagreement solution; (iii) a benchmark evaluating mainstream 
deep learning models under classic and boundary-aware segmentation metrics. MyceliumSeg serves as 
valuable resource for research on both mycology and segmentation algorithm.

Background & Summary
Mycelium semantic segmentation represents a transformative approach in fungal research, offering unprece-
dented capabilities for large-scale analysis of hyphal network architectures. By accurately delineating mycelium 
boundaries, this technology enables the quantification of growth patterns that were previously unassessable by 
conventional methods1,2. The ability to capture subtle morphological variations empowers researchers to inves-
tigate strain-specific characteristics, monitor environmental adaptation processes, and evaluate physiological 
responses to various stimuli3–5. These advancements are driving innovation across disciplines, from ecological 
studies of fungal communities to the development of fungal-based biotechnological applications in medicine 
and agriculture. Moreover, the precision of semantic segmentation is particularly valuable for establishing cor-
relations between morphological features and functional traits6, thereby deepening our understanding of fungal 
biology and its practical applications.

However, the field currently faces two major bottlenecks. First, the lack of public benchmark datasets 
has created a critical resource gap, slowing down the development of segmentation algorithm and making it 
extremely difficult to reproduce methods or compare performance across research groups7–11. Second, the low 
contrast and high complexity of mycelium edges present dual challenges for both annotation and segmentation. 
Despite advances in deep learning for general image segmentation12–14, the delicate and intertwined nature of 
hyphal edges and their blurred boundaries with the culture medium often cause traditional models to either 
under-segment, missing new hyphae, or over-segment, including unwanted noise. Manual annotation, which 
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requires expert knowledge to distinguish hyphae from the background pixel by pixel, takes three to five times 
longer than labeling conventional biological images. This cycle of scarce data and edge-processing difficulties has 
limited the translation of algorithms from laboratory settings to real-world applications.

To address these challenges, we developed and released the first large-scale benchmark dataset for mycelium 
semantic segmentation, referred as to MyceliumSeg. It comprises 20,176 RGB mycelium images from four fun-
gal species: Ganoderma lucidum, Ganoderma sinense, Trametes spp., and Pleurotus ostreatus. Images of myce-
lium were acquired under diverse culture conditions and span the full growth cycle from inoculation to full 
petri-dish coverage, capturing varied textures, colors, and morphological patterns. These images were captured 
using a self-developed and commercialized FPheno2000 imaging device15, which employs a dual-light system: 
a 360° shadowless top light eliminates optical interference, while a bottom light enhances mycelial edge con-
trast and three-dimensional structure. This configuration overcomes the common issue of low edge contrast in 
traditional imaging, generating high-resolution images with clearer boundaries. The images accurately capture 
subtle morphological differences, such as the faint edges of newly grown hyphae, providing a solid foundation 
for pixel-level annotation and deep learning model training.

For data annotation, pixel-level annotations with fine edge labeling were provided for 567 representative 
samples covering the four fungal species. A multi-dimensional precise annotation framework was introduced 
to enhance annotation quality, featuring cross-expert labeling guidelines, conflict-detecting algorithms, and 
expert quality control teams to ensure high-quality, reproducible datasets. We tested three mainstream seman-
tic segmentation algorithms including U-Net16, DeepLabv317, and SegFormer18 on this dataset. The results 
systematically revealed technical bottlenecks in hyphal edge segmentation: classic metrics such as mIoU and 
boundary-aware metrics like Boundary IoU19, the 95th percentile of Hausdorff distance (HD95)20,21, and 
Average Symmetric Surface Distance (ASSD)22, highlighted the unique challenges of edge processing in fungal 
image analysis. This benchmark offers quantifiable ways to compare algorithm performance and identifies edge 
segmentation as a core challenge in fungal semantic analysis.

The dataset and benchmark system established in this study offer the first end-to-end solution for mycelium 
semantic segmentation, spanning data acquisition, fine-grained annotation, and algorithm evaluation. Their 
value lies not only in the scale of 20,176 images but also in the precise edge labeling that supports various 
algorithmic paradigms (fully supervised, semi-supervised, and self-supervised), particularly for edge-refined 
segmentation. In the future, this resource will facilitate applications such as automatically analyzing fungal phe-
notypes and monitoring mycelial states in real time during fermentation. It will also speed up the combination 
of deep learning and fungal research across different fields.

Methods
In this section, we delve into the details of dataset construction and elaborate on the specific methods for data 
collection and the mycelium annotation. These methods are aimed at constructing a large-scale, high-quality 
mycelium dataset with pixel-level annotations and diverse data, so as to meet the research needs of precise 
segmentation.

Data collection.  We collected 20,176 mycelium images with distinctive edge morphology. The samples 
spanning four fungal species, were stored at 4 °C in sawdust tubes, and were incubated in the dark on 90-mm 
Petri dishes with malt yeast glucose medium (MYG) or potato dextrose agar (PDA) culture medium in different 
temperatures (see Table 1). Image of these samples span diverse morphological characteristics, including growth 
stages, sclerotium colors, hyphal features (Fig. 1). The mycelium images were acquired using a mature, com-
mercial data acquisition system named FPheno2000 developed by BORUIYUAN TECHNICAL (https://www.
brytech.cn/). Following data acquisition process in Li et al.15, we periodically placed mycelial petri dishes at a 
fixed position for image acquisition. Images with a resolution of 4,608 × 3,456 pixels are collected and saved in 
JPG format.

Data annotation.  Due to inherently mycelium semi-transparent edges and low-contrast morphological fea-
tures, precise pixel-level annotation and inter-annotator disagreements pose a significant concern. To achieve 
this, we proposed the mycelium annotation process comprising three steps: (a) a multi-blind refined annotation 
for manual error alleviation and pixel-level accuracy; (b) a disagreement disposal protocol containing a disa-
greement quantification method and disagreement solution; (c) expert review process ensuring the quality of the 
final annotation results (Fig. 2). Following this procedure, we produced 567 annotations, requiring a total of 37 
person-days of manual effort. Representative annotation results are illustrated in Fig. 3.

Species Ganoderma lucidum Pleurotus ostreatus Trametes spp. Ganoderma sinense

Culture medium MYG PDA PDA MYG

Temperature conditions 15 °C, 25 °C 25 °C 25 °C 25 °C

Storage conditions for sclerotium Stored at 4 °C in wood-chip test tube

Culture condition 90-mm Petri dishes

Light conditions Dark incubation

Table 1.  Summary of mycelium culture conditions. MYG stands for malt yeast glucose medium, and PDA 
stands for potato dextrose agar medium.
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Multi-blind refined annotation.  In the annotation process, multiple annotators independently label the same 
image without seeing other annotators’ work. Specifically, only the mycelium growing around the sclero-
tium is considered as foreground, and the outermost fine edge of the mycelium is defined as the boundary 
of ground truth mask. Internal structural details or void regions of the mycelium are ignored. Other regions, 
including Petri dishes and culture medium are uniformly treated as background. Multi-blind annotation is 
employed to alleviate impact of potential visual confusion and blind spots caused by mycelium’s weak features in 
single-annotator settings. In addition, a refinement operation, dedicated to label edge details after outlining the 
entire hyphal contour, is integrated into annotation process.

Disagreement disposal protocol.  Disagreement is inevitable in the mycelium annotation with multiple annota-
tors. We adopted a protocol combining disagreement quantification method and disagreement solution strat-
egy. The disagreement quantification method comprises two parts. The first part is Mutual Average Symmetric 
Surface Distance (mASSD). mASSD quantifies the disagreement between a sample’s designated annotation and 
all other annotations of that sample. The second part is sample level disagreement, which is defined as the sum of 
the mASSD values across all annotations of the same sample, and this total serves as an indicator of that sample’s 
annotation difficulty.

The metric mASSD is based on ASSD, which is used to measures the average bidirectional distance between 
two contours. ASSD is calculated by sampling points along one contour, finding the nearest Euclidean distance 
from each point to the other contour, and averaging all distances22. An increased ASSD value between two con-
tours signifies a correspondingly greater spatial divergence between them. As shown in Eq. 1, ASSD i j k( , ) ,  repre-
sents the ASSD between annotators i and j on sample k:
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+
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where Si k,  denotes point set of the k-th sample’s contour from annotator i, and point in the set is represented by 
x and y. Following all pairwise ASSDs have been obtained, the mASSD for a designated annotation is defined as 
the mean of its ASSD values to every other annotation of the same sample. mASSDj k,  quantifies the average dis-
agreement between the annotation of sample k produced by annotator j and the annotations of the same sample 
produced by all other annotators, i.e.
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where i is the sequence of annotator and N  is the total annotators. Sample level disagreement, indicating anno-
tation difficulty of a sample, is calculated as the sum of that sample’s mASSD values across all annotators (Eq. 3).

Sample level Disagreement mASSD j N, ( 1, 2, , ) (3)k j j k,∑  = = …

Fig. 1  Visualization of morphological diversity within MyceliumSeg. Column 1 shows variations in sclerotium 
color during the activation and germination stage. Column 2 presents representative morphologies from the 
three subsequent growth stages (hyphal expansion, network building, and maturation). Columns 3–5 highlight 
diverse visual characteristics observed in the network building and maturation stages.
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After the disagreement quantification method, we assembled a collaborative panel combining with statistical 
analyses to resolve the disagreements. An interquartile range (IQR)–based outlier detection was applied to the 
distribution of sample level disagreement values to identify samples exhibiting elevated annotation discrep-
ancies23. The panel would review the annotations of these samples to determine the necessity of re-annotation 
and would re-annotate together to ensure objective and accurate results. Moreover, for samples with disagree-
ment scores in the normal range, the annotation with the lowest mASSD is chosen as the final annotation. This 
approach ensure that final annotation diverges minimally from all other annotations.

Expert review process.  An expert team comprising mycologist and computer scientist reviewed and approved 
the annotations. If discrepancies or ambiguities remained, they would collaboratively re-annotate the data to 
ensure that these valuable cases are annotated with high precision and fully utilized.

Fig. 2  Annotation workflow. (a) Multi-blind refined annotation. Each image is first labelled independently by 
multiple annotators who cannot see one another’s work. They draw a coarse contour of each mycelium sample 
and then refine the boundary pixel by pixel. (b) Disagreement disposal protocol consists of disagreement 
quantification method and solution. Pixel-level mismatches among multiple refined annotations are quantified. 
Different disagreement-handling solutions are applied to each sample based on the quantified disagreement 
results. (c) Expert review process is used to ensure the annotation quality.
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Data Records
The dataset is accessible for download at Zenodo24. MyceliumSeg comprises five parts: ‘labeled-GL’, ‘labeled-GS_
PO_TS’, ‘labeled-MYG_PDA_TEMP’, ‘unlabeled-GL’, and ‘unlabeled-GS_PO_TS’. The ‘labeled-GL’ folder com-
prises 507 labeled Ganoderma lucidum images, which is divided into two subfolders, 457 images for ‘trainset’ 
and 50 images for ‘testset’. The ‘labeled-GS_PO_TS’ folder comprises 30 labeled images of Ganoderma sinense, 
Trametes spp., and Pleurotus ostreatus. The image is equally divided into three subfolders: ‘GS’, ‘TS’, and ‘PO’. The 
‘labeled-MYG_PDA_TEMP’ folder comprises 30 labeled images, equally split (10 each) among MYG-based 
medium (MYG), PDA-based medium (PDA), and 15 °C incubation (TEMP15), and is organized into the ‘MYG’, 
‘PDA’, and ‘TEMP15’ subfolders. Each of these labeled subfolders further comprises an ‘image’ and a ‘mask’ folder: 
the ‘image’ folder stores raw images in ‘.jpg’ format, whereas the ‘mask’ folder holds the pixel-wise annotations in 
binary ‘.png’ files (0 for background, 1 for mycelium). Filenames are identical across the paired image and mask 
files. The ‘trainset’ contains files numbered from ‘00000001’ to ‘00000457’. The ‘testset’ contains files numbered from 
‘00000458’ to ‘00000507’. The ‘GS’, ‘PO’, ‘TS’, ‘MYG’, ‘PDA’ and ‘TEMP15’ contains files numbered from ‘00018428’ 
to ‘00018437’, ‘00018438’ to ‘00018447’, ‘00018448’ to ‘00018457’, ‘00018458’ to ‘00018467’, ‘00018468’ to ‘00018477’ 
and ‘00018478’ to ‘00018487’, separately. The unlabeled data part consists of ‘unlabeled-GL’ and ‘unlabeled-GS_
PO_TS’. The former part consists of seven subfolders, ‘unlabeled-GL1’ through ‘unlabeled-GL7’, which hold 
17,920 Ganoderma lucidum original unlabeled ‘.jpg’ images with sequential filenames ranging from ‘00000508’ to 
‘00018427’. The latter part ‘unlabeled-GS_PO_TS’ contains 1689 unlabeled images of Ganoderma sinense, Trametes 
spp., and Pleurotus ostreatus, with filenames consecutively numbered from ‘00018488’ to ‘00020176’.

Technical Validation
This section presents statistical analysis of the collected data from lifecycle, sclerotium and hyphal visual fea-
tures. The disagreement distribution is demonstrated with boxplots. What’s more, the dataset is benchmarked 
across several seminal deep learning-based segmentation architectures.

Data statistical analysis.  MyceliumSeg provides image data that comprehensively span all stages of myce-
lial growth, showcasing the unique morphological diversity characteristic of each phase (Fig. 1).

Lifecycle analysis.  Table 2 provides statistics on the mycelial growth stages. Since the images were acquired 
throughout the mycelial cultivation process, the relative frequency of data in each growth stage proportionally 

Fig. 3  Overview of the raw image and its annotation at global and local scales. (a) Original image. (b) Edge map 
of the full annotation on the original image with the magnified region indicated. (c) Magnified view of the local 
original image; (d) Corresponding magnified view of the annotation edge.
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reflects the temporal duration of those phases. The majority of data (10,894, 53.99%) were acquired during 
hyphal network construction stage, followed by the next largest share (4,426, 21.94%) collected in mycelial 
maturation transition stage. Data from these two stages exhibit pronounced structural and color visual fea-
tures. In contrast, the smallest subset of images (2,204, 10.92%) was obtained during sclerotium activation 
and germination stage, characterized primarily by color‐based visual attributes. The remaining images (2,652, 
13.14%) correspond to primary hyphal expansion stage, whose visual characteristics lack distinctive analytical 
significance25–27.

Sclerotium analysis.  In the sclerotium activation and germination stage (2,204, 10.92%), the visual features are 
reflected in sclerotial color. Overall, 66.43% of sclerotium appear yellow (see Table 3). Among these, 50.91% are 
pure yellow and 15.52% are a yellow and black blend. The remaining sclerotium are 14.38% gray, 13.75% brown, 
and 5.44% black. These images illustrate the diversity of sclerotium color patterns prior to hyphal growth.

Hyphal feature analysis.  In hyphal network construction (10,894, 53.99%) and mycelial maturation transition 
stage (4,426, 21.94%), mycelium display distinctive structural or color signatures. Table 4 lists the visual features 
present in the dataset and describes them, while Table 5 summarizes their distribution across the 15,320 images. 
7,295 images (47.62%) exhibit a uniform density distribution, whereas 3,248 images (21.20%) show concen-
tric density zonation. Centripetal densification is evident in 1,283 images (8.37%), and peripheral densification 
in 557 images (3.64%). Edge morphology statistics reveal 1,169 mycelium (7.63%) with irregular edge. Less 
frequent yet informative traits include hyphal pigmentation (441), heterogeneous density distribution (400), 
wrinkling (297), rhizomorph (275), spiral stratification (238), and internal concavity (117), each accounting for 
under 3% of the dataset.

Evaluation metric.  In the design of evaluation system, dual considerations were incorporated: first, account-
ing for the methodological significance of edge segmentation precision in mycelium segmentation research. 

Morphological characteristic Subclass Counts

Growth stages

Sclerotium activation and germination stage 2,204 (10.92%)

Primary hyphal expansion stage 2,652 (13.14%)

Hyphal network construction stage 10,894 (53.99%)

Mycelial maturation transition stage 4,426 (21.94%)

Total 20,176

Table 2.  Distribution of mycelial growth stage frequencies in the dataset.

Morphological characteristic Subclass Counts

Sclerotium colors

Yellow 1,122 (50.91%)

Blended 342 (15.52%)

Grey 317 (14.38%)

Brown 303 (13.75%)

Black 120 (5.44%)

Total 2,204

Table 3.  Distribution of sclerotium color frequencies in the dataset.

Hyphal features Description

Uniform density distribution Biomass density remains even from center to edge.

Concentric density zonation Alternating dense-sparse rings record periodic growth pulses.

Centripetal densification Inner core compacts and darkens as mycelium growth.

Irregular edges Edge shows lobes, waves, or serrations.

Peripheral densification Thick, active growth band forms at outer rim.

Hyphal pigmentation Pigment deposition produces yellow-to-dark brown coloring.

Heterogeneous density distribution Patchy high- and low-density clusters across mycelium.

Wrinkling Surface folds or ridges from uneven aerial-hypha shrinkage.

Rhizomorph Rope-like cords carry nutrients and anchor mycelium.

Spiral stratification Concentric bands follow outward helicoidal spiral.

Internal concavity Central depression from autolysis and water loss.

Table 4.  Mycelial visual features and descriptions.

https://doi.org/10.1038/s41597-025-06265-1
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Second, addressing the limitations of classical segmentation metrics, which exhibit heightened sensitivity to mask 
interior regions while demonstrating insufficient sensitivity to edge segmentation accuracy.

The classical segmentation metrics used to benchmark the model are the F1-score (Eq.  5) and 
Intersection-over-Union (IoU) (Eq. 8). Because the dataset can be foreground-sparse, we report these metrics 
for the foreground class by default, i.e., the mycelium. F1-score of mycelium is defined as follows:

= ×
×

+
Mycelium F

Precision Recall

Precision Recall
2 ,

(5)

f f

f f
1

where Precisionf is the proportion of truly foreground pixels among all pixels predicted as foreground, and 
Recallf is the proportion of ground-truth foreground pixels that are correctly identified by the model. The 
Precisionf and Recallf are defined as follows:

Precision TP
TP FP

,
(6)f =

+

=
+

Recall TP
TP FN

,
(7)f

where true positive (TP), false positive (FP) and false negative (FN) are represent the number of foreground 
pixels predicted as foreground, background pixels predicted as foreground and foreground pixels predicted as 
background. With these quantities, IoU of mycelium is expressed in Eq. (8):

Mycelium IoU TP
TP FP FN (8)

 =
+ +

To resolve the limitation of classic metrics, edge accuracy quantification metrics including Boundary IoU19, 
HD9520,21 and ASSD22 (Eqs. 9–13) were systematically integrated to enable precise evaluation of edge segmenta-
tion performance from different aspects. Boundary IoU calculates the intersection-over-union for mask pixels 
within a certain distance from the corresponding ground truth or prediction boundary contours, i.e.

∩ ∩ ∩
∩ ∪ ∩

 =
| |
| |

Boundary IoU G P
G G P P
G G P P

( , )
( ) ( )
( ) ( )

,
(9)

d d

d d

where G is ground truth binary mask, P is prediction binary mask, and boundary regions Gd and Pd are the sets 
of all pixels within d pixels distance from the ground truth and prediction contours respectively. Boundary dila-
tion ratio is the hyper-parameter that specifies the proportion of d relative to the image diagonal, and a smaller 
ratio imposes a stricter criterion on boundary segmentation. HD95 and ASSD are used to provide comprehen-
sive evaluation for the results of edge segmentation from the view of the similarity between two masks. HD95 is 
used for measuring the impact of outliers or noise. It is defined as:

HD G P max HD HD95( , ) ( 95 , 95 ) , (10)GP PG=

HD percentile min a b a S G95 ( ), ( ),
(11)GP

b S P95 ( )
= − ∀ ∈

∈

Morphological characteristic Subclass Counts

Hyphal features

Uniform density distribution 7,295 (47.62%)

Concentric density zonation 3,248 (21.20%)

Centripetal densification 1,283 (8.37%)

Irregular edges 1,169 (7.63%)

Peripheral densification 557 (3.64%)

Hyphal pigmentation 441 (2.88%)

Heterogeneous density 
distribution 400 (2.61%)

Wrinkling 297 (1.94%)

Rhizomorph 275 (1.80%)

Spiral stratification 238 (1.55%)

Internal concavity 117 (0.76%)

Total 15,320

Table 5.  Distribution of hyphal characteristic frequency in the dataset.
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8Scientific Data |         (2025) 12:2015  | https://doi.org/10.1038/s41597-025-06265-1

www.nature.com/scientificdatawww.nature.com/scientificdata/

HD percentile min b a b S P95 ( ) , ( ),
(12)PG

a S G95 ( )
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where S(·) represents the set of points on the surface of mask, ||·|| denotes the Euclidean distance between two 
points, and percentile95 is the function returning the 95th percentile of distances. ASSD is a metric used to meas-
ure the average distance between the surfaces of ground truth and prediction masks, and it is mathematically 
formulated as:

∑ ∑=
| | + | |
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Implementation details.  The main goals of the experimental design on MyceliumSeg dataset are two 
folds. First, we aim to evaluate the performance of representative segmentation baseline on the dataset for 
boundary-aware segmentation measurement. Second, we aim to evaluate the robustness of model in mycelium 
boundary-aware segmentation under different fungal species and culture conditions. By achieving these, we hope 
to establish a benchmark for future work and promote further research in this field.

To cover both CNN- and Transformer-based architectures, we benchmarked three representative segmen-
tation baselines, U-Net16, DeepLabv317, and SegFormer18. For a fair comparison, we used AdamW28 (β1 = 0.9, 
β2 = 0.999) as the base optimizer with batch size of 4 per GPU for all models but allowed architecture-specific 
settings. We largely retained the default hyper-parameter settings in MMSegmentation29. For CNN-based archi-
tectures, vanilla U-Net and DeepLabv3 with ResNet-50 backbone were initiated with a learning rate of 2e-4 and 
a weight decay of 1e-5. The poly learning strategy with power of 0.9 was adopted. For Transformer-based archi-
tecture, SegFormer with MiT-B0 backbone adopted a lower initial learning rate of 6e-5, a higher weight decay of 
1e-2, and a 3,000-iteration linear warm-up (warmup ratio = 10e-6) before switching to a polynomial schedule 
with power of 1.0. We trained all models for 50,000 iterations and report the last performance measured in 
mycelium IoU, mycelium F1-score, HD95, ASSD and Boundary IoU. Boundary dilation ratio of Boundary IoU 
was fixed at 0.001 to impose a more stringent criterion on edge segmentation. All experiments are implemented 
by PyTorch30 based on MMSegmentation using four NVIDIA 4090 GPUs with 24 G memory.

The baseline models were constructed via fully supervised learning using 507 annotated images of 
Ganoderma lucidum (457 for training and 50 for testing). The model with the best performance was selected 
for multi-dimensional robustness evaluation. For the cross-species dimension, the model was directly applied 
to images of Ganoderma sinense, Pleurotus ostreatus, and Trametes spp. (10 images per species) for inference to 
assess its robustness, respectively. For the temperature dimension, model inference tests were conducted on 10 
images of Ganoderma lucidum cultured at 15 °C and the performance of baseline was referred as the result of 
25 °C. For the culture medium dimension, model inference tests were conducted on 10 images of Ganoderma 
lucidum grown on MYG plates and 10 images of Trametes spp. grown on PDA plates.

Disagreement solution.  We analyzed the distributions of the disagreement-related metrics and presented 
them in box plots accordingly to assess the consistency of different annotators’ results. Any instances with signifi-
cant disagreement would be addressed to ensure annotation quality. The annotation disagreements among anno-
tators, two computer science researchers and an externally contracted annotator, were quantified by analyzing the 
distributions of mASSD and sample level disagreement values.

The distributions of the disagreement-related metrics are presented in Fig. 4. In Fig. 4(a), the ASSD val-
ues between annotator 1 and annotator 2 are the lowest among all annotator pairs, indicating the high-
est level of agreement. In Fig. 4(b), annotator 1 achieves the lowest mASSD value, reflecting minimal 
relative disagreement with all other annotators. Additionally, guided by the sample level disagreement metric, 
a subset of high-disagreement, challenging samples was identified for collaborative annotation adjustments or 
re-annotating.

Benchmark evaluation.  Table 6 presents the test results of three segmentation models, UNet, DeepLabv3, 
and SegFormer, after they underwent supervised training using the trainset comprising 457 annotated images. 
While all three algorithms demonstrate respectable performance in global segmentation metrics such as 
Mycelium F1-score and Mycelium IoU (all scores exceeding 84%), their performance in critical boundary-focused 
metrics, including Boundary IoU, HD95, and ASSD, was notably insufficient. Specifically, SegFormer achieves 
the highest score 28.60% of Boundary IoU, whereas U-Net and DeepLabv3 achieve 27.74% and 27.31%, respec-
tively. The differences among the three models are minimal. The highest score indicates that SegFormer delivers 
finer edge segmentation than the other models, whereas the small margin suggests that the existing mainstream 
architectures remain inadequate for stringent fine-edge segmentation tasks. In contrast, DeepLabv3 outperforms 
U-Net and Segformer on the score of HD95 metric, achieving 63.53 compared with 139.34 and 75.95, respec-
tively. The lowest HD95 score for DeepLabv3 indicates far less impact to complexity boundary outliers and local 
extreme noise, whereas the much higher score for U-Net reflects its limited ability to delineate fine boundaries 
under complexity edge features or noisy conditions. As for ASSD metric, SegFormer records 15.28, while U-Net 
and DeepLabv3 obtain 45.44 and 18.50, respectively. The lowest ASSD score indicates that SegFormer’s predicted 
masks achieve the greatest similarity to the ground truth and that SegFormer is better able to capture the geomet-
ric characteristics of the mycelium.

The visualization in Fig. 5 qualitatively illustrates the quantitative trends reported in Table 6. In rows 1 and 2,  
where mycelium boundary is clear, all three models realize high Mycelium F1-score and IoU, and SegFormer 
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achieves the lowest ASSD. Nevertheless, the Boundary IoU values of the three remain tightly clustered near 
28% without following the tendency of ASSD. It demonstrates that although the ability of capturing geometric 
characteristics has improved with successive architectural updates, precise edge alignment has not yet bene-
fited from that. Row 3 describes a sample with jagged, low-contrast borders. The visible drift in the predictions 
reflects their elevated HD95 scores. SegFormer lowers the score compared with U-Net, yet the value remains 
too high for fine-grained tasks. This outcome underscores the challenge posed by complex edges. Row 4 shows 
condensation in the Petri dish that creates mist-like noise, raising HD95 for model prediction and revealing their 
shared weakness under noise.

Robustness evaluation.  Based on the benchmark results, we select SegFormer as the best performer for 
evaluating model robustness against species-related variations, different types of mycelium culture media, and 

Fig. 4  Distribution chart of disagreement related metrics. 1, 2, and 3 denote annotator indices corresponding 
respectively to computer researchers experienced in mycelium cultivation, computer researchers without 
cultivation experience, and outsourced personnel. (a) Distribution of ASSDs. (b) Distribution of mASSD and 
sample-level disagreements.

Model Mycelium F1-score ↑ (%) Mycelium IoU ↑ (%) Boundary IoU ↑ (%) HD95 ↓ (px) ASSD ↓ (px)

U-Net 91.61 84.52 27.74 139.34 45.44

DeepLabv3 97.33 94.80 27.31 63.53 18.50

SegFormer 97.55 95.22 28.60 75.95 15.28

Table 6.  The performance of various mainstream models.
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varying culture temperatures. The model maintains consistently stable segmentation performance across species 
on Ganoderma sinense, Pleurotus ostreatus, and Trametes spp. As shown in Table 7, classic metrics (F1-score and 
IoU) exceed 92% for all three species. The results of Boundary IoU (from 24.50% to 11.50%) and ASSD (from 
21.04 to 118.29) reveal the challenge of boundary-aware segmentation in various fungal species. Figure 6 illus-
trates model robustness under different types of mycelium culture medium, and varying culture temperatures. In 
Fig. 6(a), the model maintains robust performance with Mycelium F1-scores and Mycelium IoU both above 93% 
under 25 °C and 15 °C temperature settings. For boundary-aware metrics, the model performance show highly 
consistency, with Boundary IoU surrounding 29%, and ASSD value about 16 pixels across two temperature set-
tings. In Fig. 6(b), Mycelium F1-score and Mycelium IoU remain stably above 92% under MYG and PDA culture 
media settings. The range, in Boundary IoU from 30.50% to 11.50% and in ASSD from 14.10 to 43.77, indicates 
that boundary aware segmentation under different culture conditions still has substantial room for improvement.

The accuracy of boundary segmentation is crucial for mycelium segmentation research, as it directly affects 
the quality of studies on core scientific issues, such as quantifying growth patterns, monitoring environmental 
adaptation, and evaluating physiological responses to different stimuli. In this field, small errors in segmentation 
boundaries can cause significant inaccuracies in subsequent quantitative analysis results. This highlights the fact 
that mycelium boundary segmentation poses a highly challenging task.

Usage Notes
The public release comprises two components: a dataset hosted on Zenodo24 and a code repository available 
on GitHub. As for the dataset, researchers could unzip the downloaded archives to obtain two parts data, labe-
led data and unlabeled data. The labeled data part consists of ‘labeled-GL.zip’, ‘labeled-GS_PO_TS.zip’ and 
‘labeled-MYG_PDA_TEMP.zip’. ‘labeled-GL.zip’ contains ‘trainset’ and ‘testset’ subfolders, which can be used 
to reproduce the benchmark results or to train, infer, and test custom models. ‘labeled-GS_PO_TS.zip’ contains 

Fig. 5  Visualization of baseline model predictions. Blue, red, and white indicate the predicted mask, the 
ground truth mask, and their overlap, respectively. (a) Original image. (b) Predicted mask overlaid on the 
original image. (c) Ground truth and prediction overlap overlaid on the original image. (d) Magnified crop of 
the original image. (e) Predicted mask overlaid on the magnified crop. (f) Ground truth and prediction overlap 
overlaid on the magnified crop. All panels except (a) and (d) are produced by blending the corresponding masks 
with the underlying image using partial transparency.

Mycelium species Mycelium F1-score ↑ (%) Mycelium IoU ↑ (%) Boundary IoU ↑ (%) HD95 ↓ (px) ASSD ↓ (px)

Ganoderma sinense 96.37 92.99 18.72 97.36 21.04

Pleurotus ostreatus 97.67 95.44 24.50 512.53 118.29

Trametes spp. 95.93 92.18 11.50 175.08 43.77

Table 7.  The results of cross species robustness.
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‘GS’, ‘PO’ and ‘TS’ subfolders, which contains Ganoderma sinense, Pleurotus ostreatus and Trametes spp. labeled 
samples, separately. These can be used to cross-species robustness test. ‘labeled-MYG_PDA_TEMP.zip’ contains 
‘MYG’, ‘PDA’ and ‘TEMP15’ subfolders, which contains mycelium samples cultured under three conditions: 
on MYG agar plates, on PDA agar plates, and at 15 °C, respectively. These can be used to environment robust-
ness test. The unlabeled data part provides 19,609 additional images without annotations by eight subfolders. 
Seven of these named ‘unlabeled-GL1’ through ‘unlabeled-GL7’ provides 17,920 Ganoderma lucidum images. 
The remaining named ‘unlabeled-GS_PO_TS’ provides 1689 images of Ganoderma sinense, Pleurotus ostrea-
tus and Trametes spp. sample. These enable the evaluation of semi-supervised or self-supervised methods for 
boundary segmentation and supporting various segmentation tasks for further mycelium research. As for the 
code repository, the repository includes: (a) the ‘requirements.txt’ file listing all Python dependencies in the 
form of ‘package =  = version’; (b) the ‘local_configs’ folder with default MMSegmentation model, dataset and 
schedule configurations; (c) the ‘mmseg’ folder that extends default MMSegmentation with customized evalu-
ation metric function, ‘mmseg/core/evaluation/extra_metrics.py’, used in this study; (d) the ‘mycelium_model’ 
folder containing the dataset configuration file in the path ‘mycelium_model/dataset/EPA_mycelium.py’, and 
the model configuration files containing hyper-parameter and module settings for mainstream deep-learning 
models stored under ‘mycelium_model/model’; (e) two shell scripts, ‘script_train.sh’ and ‘script_inference.sh’, 
for training and inference, respectively. Before running the code, the ‘data_root’ variable in the dataset config-
uration and the paths in both train and inference scripts should be updated to match their local environment.

Data availability
The MyceliumSeg dataset used in this study is publicly accessible at Zenodo (https://doi.org/10.5281/
zenodo.15224240)24.

Code availability
The codes to reproduce the baseline results presented in the Technical Verified section is available at https://
github.com/yuanqianguang/MyceliumSeg-benchmark. More information can be found in the associated 
README.md file.
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