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High-resolution gridded CO2 and 
pollutant emission data from road 
traffic in Indian cities
Rohith Teja Mittakola   1,2, Philippe Ciais   1, Marc Barthelemy   2,3, Qinren Shi1, 
Xavier Bonnemaizon   1, Nicolas Megel   4, Harish C. Phuleria5, Kounik De Sarkar5 & 
Chuanlong Zhou   1 ✉

India has set an ambitious target of achieving net-zero carbon emissions by 2070. Road transport, 
contributing to 12% of India’s CO2 emissions, plays a significant role in exacerbating urban air pollution. 
Given India’s swift urbanization, CO2 emissions from this sector could potentially double by 2050, 
jeopardizing climate goals. We present CHETNA-Road, a comprehensive 500-meter gridded city traffic 
emissions dataset for 15 Indian cities derived from street-level floating car data (FCD) based on GPS 
position and speed of individual vehicles. We applied statistical and machine-learning techniques to 
improve data quality and extrapolated data to cover all city traffic instead of only the vehicles equipped 
with GPS using fuel consumption data. We estimated daily CO2 and ten major pollutant emissions using 
the COPERT model, which includes speed and vehicle-type dependent emission factors. Finally, we 
evaluated our dataset against global coarser resolution emission datasets, including Carbon-Monitor 
cities, EDGAR, and CAMS. Our dataset provides critical insights into India’s road traffic emissions and 
serves as a foundation for targeting congestion and pollution reduction strategies.

Background & Summary
India faces significant challenges in balancing economic development with environmental sustainability as the 
world’s most populous nation and a rapidly growing economy1. India has committed to achieving net-zero 
carbon emissions by 2070, suggesting transformative changes to key sectors, including road transportation. 
Road transport is a major contributor to urban air pollution and accounts for 12% of India’s energy-related 
CO2 emissions1. As India is projected to attain high middle-income status by 20472, the demand for private 
mobility, goods transportation, and fuel consumption is expected to rise significantly. India’s rapid urbanization 
would also drive the expansion of road transport networks to meet mobility demands. Although road network 
expansion is typically seen as a catalyst for socioeconomic development, it can further exacerbate the existing 
problem of urban air pollution and greenhouse gas emissions. If the current trends continue, the road transport 
CO2 emissions will likely double by 20501. The International Energy Agency (IEA) projects that India’s energy 
demand and CO2 emissions will peak in the 2040 s and decline marginally afterward. However, continued reli-
ance on gasoline and diesel by the increased use of private cars and trucks may challenge India’s long-term 
climate objectives. Hence, we see an urgent need for data-driven strategies to mitigate emissions and improve 
urban air quality.

Daily gridded high-resolution emission data provide several advantages to quantify city traffic emissions and 
improve the implementation of emission reduction policies. Such granular data enables us to identify emission 
hotspots at a street or neighborhood level and allows for targeted interventions to optimize the traffic flow 
in congested areas. For instance, a high-vehicle-density city (Mumbai) may require different strategies com-
pared to smaller cities (Guwahati), which has a relatively low vehicle density. Daily emission data also provides 
insights into temporal variations, including mobility differences between weekdays and weekends, seasonal 
trends, implementation of mobility restriction policies (COVID-19 lockdown), etc. Access to temporal mobility 
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patterns allows us to enforce dynamic measures like congestion pricing to reduce gridlocks and also improve 
air quality. The traffic demand management systems, for example, congestion relief zones, charge vehicles to 
access the roads during peak times. Such management systems have already been implemented in Manhattan, 
New York City3, London4, Stockholm, and Gothenburg5, among others. However, Indian cities have yet to adopt 
such congestion pricing policies, but there is a growing interest in considering these possibilities6. Implementing 
congestion pricing can be a sensitive topic depending on the acceptability among commuters. A study7 on the 
Indian perspective on congestion pricing found that individuals with higher income and education had a higher 
likelihood of accepting congestion pricing. The growing income levels among Indian demographics as a result 
of the country’s economic growth could make the implementation of such policies more feasible. In addition to 
the emission reduction, the major perceived benefits of these policies were reduced travel times and increased 
public transport occupancy.

To reduce urban emissions, India has implemented several policies, particularly in the road transport sec-
tor. India’s Ministry of Environment, Forest and Climate Change (MoEF&CC) launched the National Clean 
Air Programme8 (NCAP) in 2019 to improve the air quality in over 100 Indian cities. The measures include 
promoting public transport, cleaner fuel transition, and implementing strict vehicle emission norms. As India 
is the world’s fourth largest car manufacturer, the government is keen to promote the adoption of electric vehi-
cles (EV) through the Faster Adoption and Manufacturing of (Hybrid &) Electric Vehicles (FAME) scheme 
under the National Electric Mobility Mission Plan (NEMMP, 2020). This scheme provides financial incen-
tives for purchasing hybrid and electric vehicles and to develop charging infrastructure. The main goal is to 
reduce dependence on fossil fuels through EV adoption and to cut down vehicular emissions. India’s National 
Smart Cities Mission9 (2015) aimed to develop 100 smart cities across India, which are set to be sustainable and 
citizen-friendly. Despite these efforts, we find a gap in the literature about the availability of high-resolution 
open-source road transport emission datasets specific to India. For high-income countries like the United States, 
there are datasets like Vulcan10 and Hestia11 that provide high spatiotemporal CO2 emission data for US cities. 
Global transport emissions datasets exist: EDGAR12 (Emissions Database for Global Atmospheric Research) and 
CAMS13 (Copernicus Atmosphere Monitoring Service). These datasets provide limited insights into city-scale 
anthropogenic transportation emissions because they are based on downscaling national totals using simple 
proxies (road networks) and are available only at a monthly or annual frequency, lacking the granularity neces-
sary for city-level analysis in India. Carbon-Monitor Cities14 offers near-real-time daily gridded emission data 
for 1500 cities worldwide (including several Indian cities), but the methodology is not tailored to the unique 
characteristics of Indian cities. They used a city-wide average congestion index for daily variations, which had no 
clear geographical coverage and only covered a few cities in India, with the rest extrapolated using EDGAR data. 
A study15 on Delhi traffic flow estimates hourly emissions for major pollutants (oxides of nitrogen, particulate 
matter) for 2018. The data used in that study was limited to 72 survey locations spread throughout the city and 
did not focus on greenhouse gas emissions. Such limitations make it challenging to develop effective city-level 
policies to address traffic congestion and urban air pollution.

We present the CHETNA-Road16 (City-wise High-resolution Carbon Emissions Tracking and Nationwide 
Analysis) dataset to address these limitations. It is a street-level daily gridded city road transport emission 
dataset for 15 Indian cities at a 500-meter resolution, which includes CO2 emissions and ten major pollutants, 
namely nitrogen oxides (NOx), particulate matter (PM2.5 and PM10), carbon monoxide (CO), volatile organic 
compounds (VOC), methane (CH4), nitrous oxide (N2O), ammonia (NH3), lead (Pb), and black carbon (BC). 
Using street-level mobility data and advanced machine-learning techniques, we captured the spatial and tempo-
ral patterns in vehicle mobility. Subsequently, we used the COPERT17 model to estimate the vehicular emissions. 
Aggregated from a native resolution of individual street segments to a 500-meter gridded spatial scale, our 
dataset’s granularity would enable policymakers to design targeted policies, for instance, congestion relief zones, 
to reduce emission hotspots and gridlocks. Our dataset bridges the critical literature gap by offering city-level 
insights into CO2 and other major pollutants to align with India’s long-term climate and air quality goals.

Methods
We developed a bottom-up framework (shown in Fig. 1A–D) to construct a gridded CO2 and pollutant emis-
sion inventory for 15 major Indian cities. This framework uses mobility data collected from Nexqt18 and the 
COPERT17 model to construct a street-level daily emission grid at a 500-meter resolution.

Mobility data.  Our emission grid is based on the Nexqt18 mobility data for 2021. We collected mobility 
data, i.e., street-level floating car data (FCD), based on the GPS position and speed of individual vehicles. FCD 
refers to the data collected from vehicles equipped with geolocation technologies like GPS. It captures the times-
tamps, speed, count, and direction of travel. The data is anonymized for privacy protection, providing valua-
ble information for traffic analysis and insights into near-real-time road usage. We compiled GPS mobility data 
from individual vehicles (aggregation of unique vehicles observed on each road segment) for 15 Indian cities: 
Bengaluru, Chandigarh, Chennai, Delhi, Guwahati, Hyderabad, Indore, Jaipur, Kolkata, Lucknow, Mangaluru, 
Mumbai, Pune, Tiruppur, and Vadodara (Fig. 2A). These cities cover the full extent of the country, giving us a 
good representation of urban mobility diversity in terms of geography and demographics. This set also includes 
major metropolises (Delhi and Mumbai) and relatively smaller urban centers (Guwahati and Mangaluru). We 
set the boundaries of these urban areas (subdivided into wards) as defined by their respective municipal corpo-
rations, for instance, Brihanmumbai Municipal Corporation (BMC)19 for Mumbai. The floating car data reports 
the total vehicle count in a road segment (size ranging from 10–50 meters) and average vehicle speeds for all 
streets in the city. It is an hourly time series consisting of data related to two types of vehicle fleets: cars and trucks. 
The data covers all kinds of passenger cars. For trucks, it includes both light commercial vehicles (Gross Vehicle 
Weight Rating (GVWR) < = 3.5 tonnes) and heavy-duty trucks (GVWR > 3.5 tonnes). As this data accounts only 
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for a fraction of the vehicles fitted with geolocation sensors, there is a large proportion of unaccounted vehicles 
(around 50–80%, depending on the city and road segment). It is to be noted that the data doesn’t account for all 
vehicles fitted with the geolocation sensor. These unaccounted vehicles included cars, trucks, and other vehicle 
fleets commonly found on Indian roads: two-wheelers (motorcycles) and three-wheelers (auto-rickshaws). In the 
following sections, we explain how we extrapolated our GPS data from a subset of vehicles, including gaps in the 
data, to all the vehicles each hour, in each road segment, and city.

Data imputation.  The floating car data frequently have missing values, which we categorized into small 
and large gaps. Small gaps refer to instances where a few hourly records are missing in a day, while large gaps are 
missing data over longer periods, ranging from days to weeks within a year. Figure 1A shows the data processing 
steps, which is the first stage of our framework. To fill the missing gaps, we used two techniques corresponding 
to the type of gap. We applied statistical imputation on the small gaps using a threshold of 12 hours. If a day had 
at least 12 hours of data present, we filled the missing 12 hours of data using the global hourly distribution unique 
to each road segment. This process imputed around 10% of the missing vehicle count and speed values. Then, we 
used a machine-learning model to predict the missing hourly records in the large gaps. The machine-learning 
model was trained on date-time and street-related predictors collected from the mobility dataset. The date-time 
predictors include hour, day, month, and quarter, as well as time of day, day of the week, and week of the year. 
Street-related predictors include road type, lane number, speed limit, and the annual average of vehicle count and 
speed. We tested various machine learning models, and the Light Gradient-Boosting Machine20 (LightGBM) per-
formed best. Training of the machine learning model was done on 80% of data and tested on 20% of unseen data. 
The R2 values of LightGBM on the test set are 20–30% higher than a simple linear regression model. Considering 
the huge size of floating car data, ranging from tens to hundreds of gigabytes, we chose LightGBM for its high 
performance and low time complexity21 compared to other ensemble boosting (XGBoost) and bagging (Random 
Forest) machine learning models.

Imputation model performance.  We obtained R2 values on the testing set by predicting the missing vehi-
cle count and speed for 15 cities (Fig. 2B). We trained separate machine learning models (LightGBM) using the 
date-time and street-related predictors to predict vehicle count and speed. We averaged the R2 values (shown 
in Fig. 2B) to show the overall performance in predicting vehicle count and speed. For most cities, these val-
ues are greater than 0.60, and we observe from Fig. 2B that R2 increases with the increase in size of the dataset, 
implying that with a larger training set, the machine learning model performs better. Tiruppur city, having the 

Fig. 1  Flowchart of the framework. (A) Data preprocessing steps: imputation and scaling. (B) Emission 
modeling to generate the gridded emission dataset using the COPERT model. (C) Data validation with other 
standardized datasets. (D) Final gridded emission data (CHETNA-Road).
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lowest number of data records, shows the lowest performance. However, machine learning models require vast 
amounts of training data to perform optimally; their performance could be affected by many other factors, for 
example, unbalanced data distribution, noise, and the presence of outliers. Table 1 shows the performance metrics 
of the machine learning model. We showed standard regression metrics: the R2 and RRMSE (Relative Root Mean 
Squared Error) for 15 cities. Figure 2C,D shows the time series of actual and predicted variables in the mobility 
variables of interest: vehicle count and speed, respectively, for Chandigarh. The testing set is randomly selected, 
making up 20% of this time series in Fig. 2C,D. We observe that the model captures global trends and local fluc-
tuations well, both in the case of predicting vehicle count and speed. We show the mean percentage difference 
between the actual and predicted vehicle count values in Fig. 2E and vehicle speeds in Fig. 2F for 15 cities, along 
with their interquartile ranges. We observe that the predicted values deviate from the actual by around 10% more 
or less in both cases (count and speed prediction). This shows that our model is robust enough to capture the 
spatiotemporal patterns of vehicle counts and speeds to make a good prediction model. Note that we used mainly 
the R2 to evaluate the performance of the machine learning model as it is the most informative22 metric for the 
regression analysis, and a value usually greater than 0.6 is acceptable in climate sciences23. We also provided other 
metrics (RRMSE) for comparison, but they were not used in model evaluation.

Model predictive power analysis.  We used two techniques to understand our model’s prediction behav-
ior. First, we performed an analysis to understand the influence of temporal and spatial information on the model 
prediction. We show the Chandigarh streets from our dataset in Fig. 3A. Here, the streets are classified into five 

Fig. 2  Model performance in predicting vehicle count and speed in different Indian cities. (A) Map of Indian 
cities considered for this study (marker size corresponds to city population). (B) Average R2 scores for 15 Indian 
cities showing the performance of the machine learning model to gap-fill missing floating car GPS data for each 
road type and different periods (marker size shows city population). The number of data records in the X-axis 
was shown on a natural log scale. Time series showing actual and predicted (C) daily mean vehicle count and  
(D) daily mean vehicle speed in Chandigarh for 2021. Time series showing the percentage difference between the 
predicted and actual values for (E) vehicle count and (F) vehicle speed, with its interquartile ranges for 15 cities.
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types. The different road types are numbered from 1 to 5, where the major roads are categorized into 1–3 types 
(usually highways, arterials, primary roads) and the minor roads into 4–5 types (local roads). The proportion of 
road type 5 (in pink) is the highest in the city, which denotes the smallest streets (the lowest functional hierarchy 
of roads). To assess if the model’s prediction performance is influenced by the temporal or spatial information in 
the data: (i) we computed R2 scores for all temporal values (hourly values of the target variables: vehicle counts 
and speeds) in the city streets, comparing the observed and predicted temporal patterns (we subtract the mean 
value from the time series of each road segment to keep only the temporal patterns); (ii) we also computed R2 
scores for all spatial values (annual average of the target variables: vehicle count and speed per road segment) 
by comparing the temporal mean over one year of observed and predicted values for each street. In Fig. 3B, the 
major roads (1,2, and 3 types) have the highest R2 score, with the lowest being in road type 5. The major roads 
with good temporal R2 scores also correspond to the roads with the highest proportion of vehicle counts. This 
shows that our model captures the temporal variability well for the majority of the vehicles in the city. Figure 3C 
shows the density plots of the R2 scores for all types of roads, and noticeably, the temporal R2 scores for the major 
roads lie between 0.2 and 0.6, and for road type 5, the scores are mainly below 0.3. From Fig. 3D, we found that 
the model’s overall predictive power comes from spatial patterns, as the spatial R2 score is greater than 0.8. The 
temporal patterns also show their contribution to the model performance but to a greater extent in the major 
roads of the city. We note that the mean vehicle speed prediction in Fig. 2D appears to be underestimated. This 
speed prediction mean calculation is dominated by the smaller local roads (road type 5), which experience lower 
speeds. However, most of the traffic flow is in road types (1–4), where we have the higher R2 scores (Fig. 3B), and 
thus a good prediction model.

Second, we used the SHAP24 (SHapley Additive exPlanations) framework to understand the influence of 
predictors in predicting vehicle count and speed values for floating car data. It can be used to rank the predictors 
in order of their contribution to the model output. If a predictor has a significant impact on the outcome, the 
magnitude of the SHAP value is high (positive or negative). The computation of SHAP values for large datasets 
takes significant resources and is computationally expensive, so we selected 20000 data points using random 
sampling25 to analyze the SHAP influence. We showed the predictor significance as an influence percentage 
in Fig. 3E. Here, we ranked the predictors from the most influential to least in two categories: date-time and 
street-related predictors. The hour and week of the year are major contributors to the final prediction (in the 
date-time category). The mean variable value is the mean vehicle count or speed, depending on the prediction 
model (as we built separate models to predict vehicle count and speed) is the most important predictor for the 
model. The road type is the next most influential predictor in the street-related predictors category. We under-
stand how the magnitude of the predictor affects the model output from the beeswarm plot in Fig. 3F. A higher 
mean vehicle count or speed value (high and low values are in comparison to the median value of the predictor) 
positively impacts the model output. It also shows that the presence of low values of road type (1 to 3, i.e., major 
roads) adds to the model prediction power. We observe some instances in the week of the year and month pre-
dictors where lower values (values before June, considering the median) have some negative impact on the pre-
diction, while the day of the week (from Monday to Wednesday) shows a positive impact on prediction. Overall, 
the street-related predictors show the highest contribution to the model prediction.

Data scaling.  Our floating car data encompasses only vehicles fitted with a GPS sensor. To understand the 
proportion of vehicles counted in FCD, we computed the fuel consumed by vehicles present in the FCD and com-
pared it with the total city fuel consumption. The average proportion of fuel consumed by vehicles in FCD is 35% 
(see below for how this percentage is derived). This percentage varies depending on the city, as shown in Table 1. 
Guwahati shows the highest value (88.1%). Major cities: Bengaluru, Chennai, Delhi, and Hyderabad have FCD 

City R2 RRMSE FCD fuel %

Bengaluru 0.65 0.56 25.40

Chandigarh 0.64 0.49 11.94

Chennai 0.76 0.44 21.35

Delhi 0.68 0.74 39.22

Guwahati 0.74 0.47 88.10

Hyderabad 0.63 0.49 24.47

Indore 0.72 0.47 45.93

Jaipur 0.72 0.49 49.47

Kolkata 0.66 0.48 32.81

Lucknow 0.67 0.53 54.74

Mangaluru 0.68 0.52 30.86

Mumbai 0.76 0.55 10.94

Pune 0.72 0.48 22.95

Tiruppur 0.58 0.38 30.92

Vadodara 0.80 0.45 38.21

Table 1.  Table showing the performance metrics of Light gradient boosting machine learning model: R2 and 
RRMSE (Relative Root Mean Squared Error). The table also shows the percentage of fuel consumed by vehicles 
accounted for in the floating car data (FCD fuel %) for 15 Indian cities.
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fuel consumption in the range of 20–40%, while Mumbai only has 11%. So, a large chunk of vehicles was not pres-
ent in our dataset. We performed the data scaling process to complete the missing proportion of vehicles. We used 
fuel consumption data to estimate the proportion of unaccounted vehicles in the data. The Petroleum Planning 
& Analysis Cell (PPAC)26 of the Ministry of Petroleum & Natural Gas, Government of India, provides annual 
fuel consumption data for each state in India. Since this is state-level fuel consumption data, we used the gridded 
population data from the Global Human Settlement Layer (GHSL)27 to compute the city-level fuel consumption 
values (within the city boundary definitions provided by the respective city’s municipal corporation). PPAC also 
provides an annual report on fuel consumption in different states in India. This report includes the proportion 
of fuel used in different sectors, including ground transport, industry, etc. We used this information to adjust the 

Fig. 3  Model predictive power analysis. (A) Road map showing the different road types in Chandigarh city. 
Road types classified from 1 to 3 are major roads of the city (highways, arterials, primary roads), while road 
types 4 and 5 are the minor roads (local roads). (B) Mean R2 between the actual and predicted temporal values 
(hourly values of the target variables: vehicle counts and speeds) for all roads in each road type, and mean traffic 
counts for all road types. (C) Density plots of R2 between the actual and predicted temporal values for each 
road type. (D) Mean R2 between the actual and predicted temporal values; and the actual and predicted spatial 
values (annual average of the target variables: vehicle count and speed) for all roads. (E) Bar plot showing the 
percentage of SHAP influence in making predictions by individual predictors. The mean variable is the annual 
mean vehicle count and speed used to predict hourly vehicle count or speed, respectively. (F) Beeswarm plot 
showing the influence of predictor value on the final prediction.
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city fuel consumption values accordingly. Our fleet structure in the data comprises only cars and trucks, so we 
assumed all petrol is used for cars and all diesel for trucks (after adjusting the fuel proportion values).

We do not have information on vehicles running on compressed natural gas (CNG). However, CNG con-
sumption is relatively small compared to petrol, accounting for approximately 8.3% of petrol consumption in 
India. We based this estimate on a comparison between national annual fuel consumption values for petrol26 and 
CNG28. Our fleet composition is missing the two and three-wheelers often found in Indian streets. However, the 
estimated proportion of cars would act as a proxy for the missing two and three-wheelers. With the data scaling 
process, we estimated the total proportion of vehicles at an hourly frequency in the city streets.

To do this, we derived a correction factor (CF):

CF Count fuel consumption speed road length city( _ ( ) _ )/ (1)r t r t r t r fuel, , ,Σ= ∗ ∗

where, r is the road or street, and t is the time in hours. Count is the vehicle count from floating car data. Fuel 
consumption is a function that inputs vehicle speed to output the vehicle fuel consumption in grams per kilom-
eter using the equations from the COPERT17 model. Road length is the length of the road segment considered 
to make the vehicle count. Cityfuel is the city’s fuel consumption computed from PPAC data. We devised two 

Fig. 4  Emission analysis in different Indian cities. (A) Map showing total annual CO2 emissions (in tonnes/
year) in Chandigarh city for 2021. (B) Time series showing daily CO2 emissions (in tonnes) in Chandigarh 
city for 2021. (C) COPERT curves generated to compute CO2 emission factors as a function of vehicle speed. 
(D) Per distance annual CO2 emissions (in tonnes/km) (logged scale) in comparison with city vehicle density 
(logged scale). (E) Bar plot showing 10 different annual pollutant emissions (tonnes/year) in Chandigarh in 
2021. (F) Heatmap showing the 2021 annual pollutant emissions (X-axis) in 15 Indian cities (Y-axis).
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correction factors for cars and trucks separately using the petrol and diesel consumption data, respectively. We 
used this correction factor to estimate the missing proportion of vehicles (both cars and trucks).

= ∗Count Count CF (2)r t updated r t, ( ) ,

As shown in Eq. 2, we updated the hourly vehicle counts by multiplying them with the correction factor com-
puted from Eq. 1. The percentage of fuel consumed by vehicles in the floating car data shown in Table 1 (FCD%) 
can be derived by the following formula:

FCD CF% 1/ 100 (3)= ∗

Emission modeling.  After the data imputation and scaling process, we now had complete mobility data for 
all streets on an hourly scale in the city. Here, we estimated the CO2 and pollutant emissions using the COPERT17 
model on the hourly mobility data. COPERT is the European Union’s standard tool that follows the 2006 IPCC 
guidelines to calculate road transport greenhouse gas emissions. Their software provides an option to apply the 
model to different countries, including India. We used the COPERT-5.8.1 version to estimate Indian road trans-
port emissions at an hourly frequency and then aggregated the emissions to daily values. In Fig. 4A, we showed 
the gridded annual CO2 emissions for Chandigarh at a 500-meter resolution. We observe emission hotspots 
and the spatial emission patterns here. We showed the time series for 2021 daily CO2 emission estimates for 
Chandigarh in Fig. 4B. To estimate these emissions, we used the COPERT curves shown in Fig. 4C. We have two 
CO2 emission curves, one for the car fleet and the other for trucks. Our current methodology does not include 
emission factors for other vehicle species (notably, two-wheelers and three-wheelers) (as discussed in the previous 
section). The emission curves are mapped to the average vehicle speed values to output the corresponding emis-
sion factor for cars and trucks separately. We used the information on the Indian road fleet structure provided by 
the Parivahan29 portal from the Ministry of Road Transport and Highways of India, along with the temperature 
and humidity data collected from ERA530 gridded data, to construct these COPERT emission curves. Using the 
emission factors in Fig. 4C, we compute city-scale CO2 emissions with the following formula:

= Σ ∗ ∗CO Emission COPERT V C S( ) (4)r r t r t r2 , ,

where, V is the average speed of vehicles in the r road segment, C is the vehicle count, and S is the distance trav-
eled in the r road segment, t is time in hours. We obtain the emissions at an hourly scale and sum them up over 
the 24-hour period to produce daily totals. Then, the daily time series is transformed into a 500-meter gridded 
dataset. We divide the city area into uniform 500 × 500-meter grids using the city boundary polygon. To add 
the street-level emissions into the gridded dataset, we map the streets’ coordinates with the nearest correspond-
ing points on the grid and sum them. This way, we computed daily gridded CO2 emissions for all 15 cities at a 
500-meter resolution. Since our methodology involves the use of fuel consumption data from PPAC, we com-
pared the estimated annual CO2 emissions for 15 cities with the city fuel consumption values. We obtained the 
Pearson correlation coefficient of 0.94, which indicates a strong positive correlation between the annual city 
CO2 emissions and its fuel consumption. Hence, our emission estimates are consistent with the PPAC’s fuel 
consumption values.

We showed the scatter plot of vehicle density (number of vehicles per square km) to the CO2 emissions per 
km in Fig. 4D. We observe a linear trend where the increase in vehicle density increases the CO2 emissions per 
km. Vehicle density is computed by dividing the average total vehicle counts for all roads in the city by the city 
area. For CO2 emissions per km, we divide annual total CO2 emissions by the total road length of the city. The 
city with the highest vehicle density is Mumbai on our list, and as expected, it has the highest CO2 emissions per 
km (for 2021). Similarly, we built COPERT emission curves for 10 major vehicular pollutants, namely nitrogen 
oxides (NOₓ), particulate matter (PM2.5 and PM₁₀), carbon monoxide (CO), volatile organic compounds (VOC), 
methane (CH₄), nitrous oxide (N2O), ammonia (NH₃), lead (Pb), and black carbon (BC). We computed the 
pollutant emissions following the same approach that we used to compute CO2 emissions (see Eq. 4). Figure 4E 
shows the bar plot of ten major pollutants in Chandigarh for 2021. These emissions are lower than CO2 emis-
sions, and NOX is the second most significant pollutant. This pattern can be observed in the inter-city pollutant 
emission comparison made through a heatmap in Fig. 4F. Bengaluru, Chennai, Delhi, Hyderabad, and Mumbai 
showed high concentrations of NOX and CO. In Fig. 5, we showed CO2 emission maps for six major Indian cities. 
These cities include Bengaluru, Hyderabad, Kolkata, Mumbai, Chennai, and Delhi. Here, we used a common 
emission scale for all cities, and Mumbai shows the highest spatial distribution in CO2 emissions.

Data quality.  We observed some issues in data quality for the mobility data. The main issue was the artificial 
boosting of vehicle counts towards the end of the year, as the data provider likely enhanced the number of sources. 
This caused an abnormal spike in vehicle counts for some time period. We used the monthly national fuel con-
sumption data (for the year 2021) provided by the Petroleum Planning & Analysis Cell (PPAC) of India to correct 
these spikes during the data scaling process.

Data Records
The CHETNA-Road16 products are available at https://doi.org/10.6084/m9.figshare.28330067. The traffic emis-
sion data files are stored as netCDF files with the unit tonnes for each grid. We provided gridded values for 15 
Indian cities (Bengaluru, Chandigarh, Chennai, Delhi, Guwahati, Hyderabad, Indore, Jaipur, Kolkata, Lucknow, 
Mangaluru, Mumbai, Pune, Tiruppur, and Vadodara) with a spatial resolution of 500 meters and a temporal 
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resolution of daily. The CO2 emissions are published separately from other pollutants in the “CO2_emissions” 
folder. All 10 pollutant emissions (nitrogen oxides (NOₓ), particulate matter (PM2.5 and PM₁₀), carbon monox-
ide (CO), volatile organic compounds (VOC), methane (CH₄), nitrous oxide (N2O), ammonia (NH₃), lead (Pb), 
and black carbon (BC)) can be found in the “other_pollutant_emissions” folder. We structured the netCDF files 
to have three dimensions, namely time, latitude, and longitude. The time dimension includes daily intervals 
from January 1 to December 31, 2021. The spatial dimensions (latitude and longitude) have a uniform grid with 
a resolution of 0.005 degrees (approximately 500 × 500 meters) covering the entire city’s area. The emission data 
(CO2 or other pollutants) is stored under the data variable index in units of tonnes for each grid cell and daily 
time stamp. We also provide the file attributes: the title of the dataset, units of emissions, name of the city, name 
of the state, year, and the author.

Technical Validation
We evaluated the CHETNA-Road dataset with other coarser resolution datasets available on ground transport 
CO2 emissions. These include Carbon-Monitor Cities14, Emissions Database for Global Atmospheric Research 
(EDGAR version 8.0, or EDGARv8)12, and Copernicus Atmosphere Monitoring Service (CAMS-GLOB-ANT 
version 5, or CAMSv5)13. We ensured the reliability of our dataset with this multi-source comparison. 
Carbon-Monitor (CM) Cities is a near-real-time daily emission dataset built for 1500 cities worldwide. It focuses 
on emissions in five sectors, and here, we used emissions from ground transportation to compare with our 
results. CM-Cities estimated city emissions using a top-down approach by disaggregating the daily national 
emission inventories into grids using the EDGARv5 spatial activity data. Their process employed city-average 
TomTom31 congestion data for temporal daily variations without a clear definition of the exact city area repre-
sented by these TomTom data. CM-Cities provides emissions for the administrative jurisdiction area of each city 
and for the Functional Urban Area32, which groups a main city with smaller cities that commute with each other. 
Here, we used the Global Human Settlement Layer dataset33, which defines the boundary of the Functional 
Urban Area (FUA). We adjusted the values of CM-Cities based on the population within our city boundary (as 
defined by the city’s municipal corporation) and the FUA boundary. This way, we had the adjusted emission 
estimates for CM-Cities within our city boundary definition. The CM-Cities developers noted that input data 
for cities from less developed nations could possess inherent errors and missing values, impacting the final 
emission estimates. We showed the time series comparison of daily CO2 emissions in Jaipur for 2021 between 
CHETNA-Road and CM-Cities data in Fig. 6A. In Jaipur, CHETNA-Road captures slightly higher emission lev-
els than CM-Cities but has similar temporal trends. Notably, we observe the dip in emissions during mid-2021, 
corresponding to a reduced mobility period due to COVID-19 lockdowns34. This highlights the sensitivity of 
both datasets to real-world events.

EDGARv8 and CAMSv5 datasets are published on a monthly scale. EDGARv8 computes emission factors 
based on activity data to provide anthropogenic emissions of greenhouse gases and air pollutants on a spa-
tial grid. They estimate CO2 emissions using data from multiple sources35: national statistical institutes (which 

Fig. 5  CO2 emission maps using CHETNA-Road data for different major Indian cities in 2021.
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provide country-specific information), international associations (e.g., IEA for centralized data sources), and 
also from emission estimation tools like COPERT (to derive the emission factors). For India, additional data 
sources, including vehicle stock36, were incorporated into the COPERT model to estimate the emission factors. 
Subsequently, these emissions are simply downscaled using road network maps. EDGARv8 thus ignores conges-
tion patterns and assumes that all the cities of India have the same emission rate per unit of road length, which is 
not realistic. Although the CM-Cities dataset is exactly similar to EDGARv5 for its mean annual CO2 emissions 
aggregated over the jurisdiction of each city, it uses daily temporal data from TomTom daily congestion indices, 
assumed to be representative of the whole city jurisdiction (no hourly variation and no differences in daily 
variations between roads or districts within the same city). TomTom daily congestion data are only available for 
selected cities37 in India (including Ahmedabad, Bengaluru, Chennai, Ernakulam, Hyderabad, Jaipur, Kolkata, 
Mumbai, New Delhi, and Pune). For cities not covered by TomTom, the congestion data was extrapolated 
based on the average changes observed in other cities14 within the same country. This makes CM-Cities more 
precise in accounting for the daily temporal patterns in transport emissions for an entire city, but CM-Cities 
remains identical to EDGARv5 for spatial patterns within cities. CAMSv5 global anthropogenic emissions data 
(CAMS-GLOB-ANT) is based on the EDGARv5 data and the emissions provided by the Community Emissions 
Data System (CEDS)38. CEDS is an open-source annual emission estimates dataset developed at the Joint Global 
Research Institute in Maryland, USA. Here, they integrated multiple datasets and applied extrapolation tech-
niques to compile a high-resolution emission inventory from 2000 to 2023. Additionally, CAMSv5 also utilized 
the CAMS-GLOB-TEMPO39 dataset to add the monthly variability details. We used our city boundary polygons 
to clip and sum the emissions from the gridded EDGARv8 and CAMSv5 datasets. For cities that are too small 
to fit inside the coarser grids of EDGARv8 and CAMSv5, we used a small buffer (1–5 km extending outwards of 
our defined city limits).

In Fig. 6B, we compare monthly CO2 emissions in Jaipur for 2021 across CHETNA-Road, CM-Cities, 
EDGARv8, and CAMSv5 datasets. In the case of Jaipur, CHETNA-Road reports higher emissions (1.5 to 1.7 
times higher) than other datasets while having closer temporal patterns with CM-Cities than the EDGARv8 
or CAMSv5 datasets. Figure 6C–E, we show the scatter plots between CHETNA-Road’s logged emission val-
ues and those from CM-Cities (Fig. 6C), EDGARv8 (Fig. 6D), and CAMSv5 (Fig. 6E). The points around the 

Fig. 6  Comparison of CHETNA-Road emission dataset with other standardized datasets. (A) Time series 
showing daily CO2 emissions (in tonnes) from CHETNA-Road and Carbon Monitor cities data in Jaipur city for 
2021. (B) Time series showing monthly CO2 emissions (in tonnes) from CHETNA-Road, CM-Cities, EDGAR, 
and CAMS data in Jaipur city for 2021. Scatter plot of logged emission values (in tonnes) between CHETNA-
Road and (C) Carbon Monitor cities data, (D) EDGAR data, and (E) CAMS data. Jaipur, Mumbai, Delhi, and 
Bengaluru are annotated.
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diagonal line signify the correlation between CHETNA-Road and other datasets. Although the temporal pat-
terns of CHETNA-Road closely align with the CM-Cities data, we see the points relatively spread out because of 
the difference in emission magnitudes (Fig. 6E). Our dataset shows a higher correlation in emission magnitude 
when compared with EDGARv8 or CAMSv5. Overall, we observe strong correlations across all comparisons.

We compared CO2 emissions for all 15 cities across the four datasets in Fig. 7A. All cities show emissions 
from CHETNA-Road comparable in magnitude with EDGARv8 and CAMSv5 datasets. We observe that 

Fig. 7  (A) Bar plots showing the total annual emissions in 2021 for 15 Indian cities. Time series comparing the 
mean and the interquartile range of (B) daily CO2 emissions (in tonnes) between CHETNA-Road and CM-
Cities data for 15 cities in 2021. (C) monthly CO2 emissions (in tonnes) between CHETNA-Road, CM-Cities, 
EDGAR, and CAMS data for 15 cities in 2021.
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CM-Cities estimated higher emissions for Bengaluru, Chennai, and Delhi. In Fig. 7B, we compared the mean 
and the interquartile ranges (shaded) for daily CO2 emissions between CHETNA-Road and CM-Cities. We see 
that our emission dataset captures temporal patterns similar to those of CM-Cities. This effect is more clear in 
the monthly comparison between the two datasets in Fig. 7C, where we observe the drop in emissions during 
May 2021 due to COVID-19 mobility restrictions (as discussed before). We also noticed that the estimated range 
of emissions in CM-Cities is larger than that of other datasets (on average, CM-Cities have emission estimates 
2.7 times larger than CHETNA-Road).

Fig. 8  (A) Estimated mean CO2 emissions (in tonnes) and confidence intervals from road traffic in Indian cities 
using Monte Carlo simulations. (B) Per capita emissions (in tonnes) from road traffic in Indian cities. Cities are 
ranked in the order of increasing population from left to right.
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We would like to note that commercially available floating car data is increasingly being used in ground 
transport emission studies. For major European cities, there have been efforts to create high spatiotemporal 
traffic emission maps40 using commercial data. This private data was also used in validating open-source traffic 
data available for European cities41, which illustrated a high R2 score between the open data and the private 
floating car data for 75% of European cities included in the study. This shows that our workflow can be adapted 
to different data sources, including open-source data.

Uncertainty analysis.  The main sources of uncertainty in our dataset arise from (i) the data imputation 
process for missing GPS data using machine learning, (ii) the disaggregation of state-level fuel consumption data 
into city-level using the gridded population data from GHSL, and (iii) the estimation of the missing proportion 
of vehicles that do not have GPS reported to our dataset using city-wide fuel consumption data in the data scal-
ing process. The quality of the street-level mobility data: the vehicle count, speed, and fleet structure, is crucial 
to accurately estimate the daily CO2 and pollutant emissions. We employed a machine learning model to fill the 
missing gaps in the dataset, and the extent of uncertainty introduced here can be defined with the relative root 
mean squared error (RRMSE). The interquartile range of RRMSE (error range of the machine learning model in 
making predictions) is 0.47–0.52, and the mean value is 0.50 (Table 1). Also, our dataset lacked a comprehensive 
coverage of the vehicle fleet, mainly the count of two-wheelers and three-wheelers. We fixed this problem with 
the use of fuel consumption data to derive proxies for the missing vehicles. We substituted all the unaccounted 
vehicles in our data with either cars or trucks (depending on the fuel consumption data), so the overall estimation 
of CO2 emissions could be on the higher side. However, for the pollutant emissions, the effect is less clear as the 
two-wheelers and three-wheelers typically have higher emission factors42. So the pollutant estimates could be 
biased in either direction depending on the missing fleet composition. This use of fuel consumption data to esti-
mate the missing proportion of vehicles could introduce some uncertainties, as it might not match the real-world 
fuel usage patterns. Moreover, there are some uncertainties associated with the estimation of city-level fuel con-
sumption data (from state-level data) due to spatial mismatches between the population distribution and vehicle 
activity. In our analysis, we kept the uncertainty of emissions to a minimum by employing advanced techniques, 
including machine learning and COPERT models, in estimating the emissions. In the CM-Cities14, the 1-sigma 
uncertainty for road transport was estimated as ± 9.3%. We used this value to compute the confidence intervals 
of our CO2 emission estimates. To do this, we performed the Monte Carlo simulation, which is widely used in 
uncertainty analysis. Here, we generated 10000 random samples from a normal distribution using ± 9.3% as the 
1-sigma standard deviation. We took the mean, 5th, and 95th percentiles of the simulated data for each city to 
capture the range of uncertainties. Figure 8 shows the mean value of simulated data from 2021 annual CO2 emis-
sions for 15 cities, along with their confidence intervals.

Temporal uncertainty.  We also performed an analysis of the temporal and spatial uncertainty of 
CHETNA-Road data in comparison to the CM-Cities and EDGARv8 data. Since we had the daily emission time 
series data from CM-Cities, we compared our daily time series to calculate the temporal correlation or deviation 
from the CM-Cities data. First, we subtracted the mean for both time series and then normalized the values 
from 0 to 1 to preserve the temporal information. Then, we computed the Pearson correlation coefficient and the 
relative root mean squared error (RRMSE23) to understand how closely the time series are related. RRMSE is the 
square root of the ratio between the sum of the squared differences between the true values and predicted values, 

City

(A) Temporal (B) Spatial

GridsCorrelation RRMSE Correlation RRMSE

Bengaluru 0.52 0.39 0.77 0.42 9

Chandigarh 0.74 0.98 1.00* 0.58 1

Chennai 0.55 0.49 0.16 0.55 6

Delhi 0.71 0.16 0.58 0.92 25

Guwahati 0.63 0.84 1.00* 0.72 2

Hyderabad 0.65 0.96 0.65 0.50 9

Indore 0.70 0.62 0.46* 1.00 4

Jaipur 0.68 0.76 −0.95* 0.58 4

Kolkata 0.62 0.31 0.99* 0.63 3

Lucknow 0.68 0.39 0.78 0.72 6

Mangaluru 0.58 0.92 −1.00* 0.52 2

Mumbai 0.59 0.51 0.86 0.60 8

Pune 0.65 0.50 −0.96* 0.66 4

Tiruppur 0.62 0.94 1.00* 0.18 2

Vadodara 0.61 0.32 0.84* 0.42 4

Table 2.  Table showing the Pearson correlation and uncertainty (relative RMSE) between the CO2 emission 
time series of (A) CHETNA-Road and CM-Cities, (B) CHETNA-Road and EDGAR. Grids column refers 
to the number of coarsened grids used for spatial comparison. *Some cities only had a few emission points 
inside the city boundary, which was not enough to make a good comparison. This could lead to unmeaningful 
correlations. We marked them if the number of grids were lower than 6.
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and the sum of the squared predicted values. RRMSE is easier to interpret where 1 is the highest value, and 0 is the 
lowest. Table 2A shows the temporal correlation and RRMSE values for 15 cities. The higher correlation values 
indicate the closeness of the temporal patterns. We notice a high correlation among all cities, with the highest 
correlation being in Chandigarh (0.74) and Delhi (0.71). The RRMSE shows the uncertainty between the two 
datasets. In the case of Chandigarh, we see a high correlation (0.75) and also a high RRMSE (0.98). This means 
the temporal patterns are similar in both datasets, but the magnitudes are different. Meanwhile, Delhi shows a 
high correlation (0.71) and a low RRMSE (0.16), indicating closeness in both temporal patterns and magnitude.

Spatial uncertainty.  EDGARv8 transport emissions dataset is a gridded dataset. We compared the grid-
ded annual mean values in CHETNA-Road with the EDGARv8 gridded values. The resolution of both data-
sets is different. CHETNA-Road data has a resolution of 500 meters, while EDGARv8 has a resolution of 0.1° 
(approximately 10 km × 10 km grids). So, we coarsened the CHETNA-Road data to match EDGARv8’s resolu-
tion and then flattened the grids into one-dimensional vectors to compute the Pearson correlation coefficient 
and the RRMSE. Table 2B shows the results from the spatial uncertainty analysis for 15 cities. We notice many 
cities have a very high correlation, and a few cities show a negative correlation. During the aggregation of 
CHETNA-Road grids, we lost spatial detail, especially for the cities with smaller surface areas. Such small 
cities only had a few emission points inside the city boundary, which was not enough to make a meaningful 
comparison (the number of grid points per city is shown in Table 2). We concatenated all cities’ spatial grids 
and computed the correlation coefficient and the RRMSE. We have a stronger positive correlation (0.66), but 
also a relatively higher RRMSE (0.68). This is helpful to understand where the CHETNA-Road dataset stands 
in comparison to the EDGARv8 data.

Although Delhi shows a temporal correlation of 0.71 and spatial correlation of 0.58 (Table 2) with EDGARv8 
datasets, different spatial patterns can be observed (Fig. 9A–C). In the CHETNA-Road dataset (Fig. 9A), CO2 
emissions are concentrated in grids with higher road length and traffic activity, whereas EDGARv8 emissions 

Fig. 9  Comparison of spatial CO2 emission differences between CHETNA-Road and EDGAR data for Delhi 
(2021). CO2 emission grid map of (A) CHETNA-Road dataset (coarsened), (B) EDGAR dataset for Delhi.  
(C) Grid map showing the percentage difference between CHETNA-Road and EDGAR CO2 emissions. (D) Grid 
map showing the percentage of total road length in Delhi.
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appear more homogenously distributed across the urban area. Our emission estimates are derived from 
high-resolution Floating Car Data and detailed road network information, which allocates the emissions based 
on observed traffic activity. This makes sure we actually have higher emissions in grids with congested road 
segments and dense traffic. Whereas EDGARv8 relies on proxy information (population density, built-up area, 
and generalized road networks), which results in smoother spatial patterns. This contrast suggests that our 
activity-based emission model may better capture intra-urban emission heterogeneity than a proxy-driven 
approach. Finally, these comparisons confirm that CHETNA-Road captures temporal and spatial variations in 
CO2 emissions in urban areas effectively and aligns well with standardized datasets. The differences observed 
between the datasets highlight the different methodology and scope of CHETNA-Road, which focuses specifi-
cally on road transport emissions rather than broader sectoral aggregations.

Pollutant comparison.  We compared 9 pollutants available in EDGARv8 database (nitrogen oxides 
(NOₓ), particulate matter (PM2.5 and PM₁₀), carbon monoxide (CO), volatile organic compounds (VOC), 
methane (CH₄), nitrous oxide (N2O), ammonia (NH₃), and black carbon (BC)) with the pollutants estimated in 
the CHETNA-Road dataset in the Fig. 10. We observe a stronger correlation (R2 > 0.7) between the two data-
sets for all pollutants. A few pollutants namely, NOX, PM2.5, PM10, and BC are closer to the 1:1 line, which shows 
that the magnitudes of these pollutants are closer between the two datasets. For other pollutants, we notice that 
CHETNA-Road dataset underestimates when compared with EDGARv8 values. CHETNA-Road provides val-
ues for lead (PB) which is missing the EDGAR database, so this comparison could not be established.

Data availability
The CHETNA-Road16 dataset is openly available through figshare at https://doi.org/10.6084/m9.figshare.28330067. 
The repository contains the full dataset in netCDF format, including the 500-meter daily gridded CO2 emissions and 
10 pollutant emissions (nitrogen oxides (NOₓ), particulate matter (PM2.5 and PM₁₀), carbon monoxide (CO), volatile 
organic compounds (VOC), methane (CH₄), nitrous oxide (N2O), ammonia (NH₃), lead (Pb), and black carbon (BC)) 

Fig. 10  Comparison of pollutants estimated in the CHETNA-Road dataset with the EDGAR dataset. All values 
are in natural log.
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for 15 Indian cities (Bengaluru, Chandigarh, Chennai, Delhi, Guwahati, Hyderabad, Indore, Jaipur, Kolkata, Lucknow, 
Mangaluru, Mumbai, Pune, Tiruppur, and Vadodara). The CO2 emission data is found in the “CO2_emissions” folder, 
and the 10 pollutant emission data is found in the “other_pollutant_emissions” folder. The netCDF files have three 
dimensions, namely time, latitude, and longitude. The time dimension includes daily intervals from January 1 to 
December 31, 2021. The file attributes include the title of the dataset, units of emissions, name of the city, name of the 
state, year, and author.

Code availability
The code for plotting the emission maps, time series, and bar plots shown in the paper for 15 cities is included in 
the GitHub repository, available at https://github.com/rohithteja/CHETNA-ROAD.
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