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Evgeny Burnaev(®*

We introduce a novel dataset for visual recognition systems in retail automation, focusing specifically
on fruits and vegetables. The dataset comprises 34 species and 65 varieties, featuring fairly balanced
classes and including packed goods in plastic bags. We capture each sample from multiple viewpoints
and provide additional annotations, such as object count and total weight. Furthermore, a subset of
samples for each class includes segmentation masks. This dataset aims to overcome the limitations
of current open-access datasets by providing a more comprehensive and diverse set of training data.
A total of 72 annotators collected over 100,000 images of 370,000 objects across multiple shops and
cities. Around 9,000 images have manual segmentation masks. To facilitate research in this area,

we provide baseline results for zero-shot and supervised classification, instance segmentation, and
object counting tasks. We also investigate the impact of packaging and background type on model
performance. Ultimately, this dataset is designed to support the development of multitask models for
visual recognition in offline retail settings.

Background & Summary

The development of accurate and robust visual recognition systems for retail automation has gained significant
attention in recent years'. However, the lack of diverse and comprehensive datasets specifically tailored for this
domain presents a challenge®. Existing datasets often have limitations such as a narrow range of classes, insuf-
ficient annotations, or a lack of real-world variability, hindering the advancement of research in this area. To
address these gaps, we introduce PackEat, a novel dataset designed for visual recognition in retail automation,
with a particular focus on fruits and vegetables.

In retail settings, the ability to accurately identify and classify fruits and vegetables is crucial for various
applications, including inventory management?, quality control*, and customer experience enhancement®’.
However, this task poses several challenges due to the high intra-class variability and similarity between differ-
ent species and varieties®. Furthermore, the presence of packed goods in plastic bags or other packaging adds
another layer of complexity, as it alters the visual appearance of the products’.

Current open-access datasets often fall short in addressing these challenges. They may lack sufficient diver-
sity in terms of classes, neglect packed goods, or fail to provide comprehensive annotations'. This limits the
development and evaluation of robust models that can generalize well to different retail environments. To over-
come these limitations, we designed PackEat as a comprehensive and diverse dataset, aiming to support the
creation of adaptable and accurate visual recognition systems for retail automation.

In this work, we introduce PackEat, a novel dataset designed to advance visual recognition in retail auto-
mation, specifically for fruits and vegetables. PackEat addresses the limitations of current datasets by offering a
diverse range of annotated images, including packed goods. The dataset was collected by 72 annotators across
multiple cities, resulting in over 100,000 images with various annotations. It encompasses 34 species and 65
varieties of fruits and vegetables, including packed goods in plastic bags (Fig. 1). Each sample in the dataset is
captured from multiple viewpoints, providing a comprehensive view of the objects.
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Species pepper

Variety sweet (bell) green
Count 8

Contains True

spoiled

Packed False

Weight 600g

Scene layout # | 3744

Uniform True
background

City Saint-Petersburg
Shop ID 15

Image size 1080x1440

Overlapping | True
objects

Subset Training

Images of the same layout (different viewpoints)

Fig. 1 Examples of images from the dataset with the corresponding annotations.

One of the key features of PackEat is its hierarchical class structure, which includes both species and varie-
ties. This structure allows for a more nuanced evaluation of model performance and enables the investigation of
fine-grained recognition tasks. Furthermore, the dataset includes pixel-level annotations for instance segmenta-
tion, providing detailed information beyond object-level labels. The hierarchical class structure and pixel-level
annotations make PackEat a comprehensive resource for research and development.

To establish a benchmark and facilitate future research, we provide baseline results for various tasks, includ-
ing zero-shot and supervised classification, instance segmentation, and object counting. Experiments revealed
that while zero-shot methods offer reasonable accuracy, supervised learning with the ConvNext model achieved
the best performance. We also analyze the impact of factors such as packaging and background complexity on
model performance. By sharing our dataset and baseline results, we aim to foster advancements in computer
vision and retail automation, providing a valuable resource for the research community.

Additionally, we explored the impact of packaging and background type on model performance. Our find-
ings indicate that packed objects and complex backgrounds present greater challenges for accurate recognition.
This insight underscores the importance of considering these factors in model design and evaluation, particu-
larly when dealing with real-world retail scenarios.

The experimental results indicate that the recognition of packed fruits and vegetables is a feasible task for
supervised learning pipelines. However, there remains a significant performance gap for general-domain mod-
els, even when dealing with common classes. The introduction of packaging complicates the task, leading to a
notable performance decline for zero-shot methods. On the other hand, supervised tuning effectively addresses
this challenge, making the proposed dataset a valuable benchmark for evaluating and improving foundation
visual-language models (VLMs). The dataset’s inclusion of packaged items serves as a realistic representation
of real-world scenarios, providing a more comprehensive assessment of model capabilities beyond idealized
conditions.

The contributions of this work can be summarized as follows:

o Weintroduce PackEat, a large-scale dataset specifically designed for visual recognition in retail automation,
with a focus on fruits and vegetables, including packed goods.

o We provide comprehensive baseline results for various tasks, including zero-shot and supervised classifica-
tion, instance segmentation, and object counting, establishing a benchmark for future comparisons.

o We conduct extensive experiments to analyze the impact of factors such as packaging and background
complexity on model performance, offering insights into the challenges and opportunities presented by the
dataset.

In the following sections, we provide a detailed description of the PackEat dataset, present our experimental
setup and baseline results, and discuss the implications and potential future research directions enabled by this
dataset. Supplementary materials, including illustrations, dataset statistics can be found in ‘Retail dataset over-
view’ Section. Details about the tested models are in ‘Model detailes’ Section. Auxiliary results can be found in
‘Ablation results’ Section. The dataset is available and can be accessed and downloaded from*'.
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Related Work

The development of visual recognition systems for retail automation has garnered significant research
interest, leading to the creation of various datasets aimed at addressing the challenges in this domain.
Numerous visual retail datasets have been proposed, focusing on the recognition of packed goods on
shelves or in vending machines. This problem is relatively straightforward due to the consistent packag-
ing of the same product, with brands maintaining brand recognition and changing designs infrequently.
Moreover, the presence of barcodes simplifies recognition tasks'2. However, the recognition of unpacked,
weighted groceries, such as fruits and vegetables, presents a more complex challenge due to high intra-class
variability. Distinguishing between varieties of the same species further complicates the task due to high
inter-class similarity. The additional challenge of objects being packed in plastic bags exacerbates the dif-
ficulty of accurate recognition.

Retail Datasets. Grocery Datasets. Retail automation often entails auxiliary tasks beyond classification,
such as object counting and detecting spoilage or rotten items*. While there exist datasets containing agricul-
tural images of fruits, vegetables, and other edible plants in their natural environment, their direct applicabil-
ity to retail automation is limited!’. These datasets are typically designed for tasks like harvesting automation
or treatment recommendations and often focus on a single species. Meta-datasets, which aggregate multiple
existing datasets, offer a rich source of classes but may introduce biases if the data collection methods differ
significantly. The VegFru dataset' is a substantial collection of images, encompassing 292 varieties of fruits
and vegetables with a total of 160,000 images. However, it is important to note that the dataset was curated by
parsing images from the Internet, and as a result, many of the images may not accurately represent the retail
settings or the specific context in which the products are typically displayed and sold. This discrepancy could
introduce biases or challenges when utilizing the dataset for retail automation tasks. Ensuring a representative
and unbiased test set is crucial to prevent models from overfitting to background variations rather than learn-
ing to recognize target objects effectively. It has been demonstrated that when training on external datasets or
parsed data, combining them with in-domain data can yield beneficial results'®. In the referenced paper®, the
authors introduce a dataset specifically focused on rotten fruits, providing a comprehensive description for
each image. However, it is important to note that the dataset is relatively small. While there exist large datasets
for food recognition'®-18, the scope of this paper focuses specifically on the domain of fresh, unprepared fruits
and vegetables in retail settings.

Several datasets have been introduced specifically for retail product recognition, but many of them are
relatively small or created in artificial conditions with uniform backgrounds, limiting their applicability
in real-world settings. Background substitution'® and image synthesis**?! techniques can enhance their
robustness®. The Fruits-360 dataset®? is a substantial collection of fruit images designed for classification
tasks. However, it is important to note that the images in this dataset have been processed to remove their
backgrounds and are downscaled to a resolution of 100 x 100 pixels. This preprocessing may limit the appli-
cability of the dataset for tasks that require higher-resolution images or contextually relevant background
information.

Plastic Bags. There is a scarcity of datasets with packed goods, and existing ones often provide only image-level
annotations or localize the entire bag rather than individual objects within it. The dataset in** was gathered by
the authors, featuring apples covered in separate plastic bags within a fruit orchard that differs greatly from retail
environment. The dataset entitled “Fruits & Vegetable Detection for YOLOv4™ comprises goods in plastic bags
and is better suited for groceries detection in retail stores. However, the provided annotation for the packed
groceries does not include markup for individual objects. In*, the authors collected and annotated 1067 images
including samples with groceries in plastic bags. However, the dataset has limited variety of backgrounds that
makes it less appropriate for real life applications. Another example of a retail dataset with groceries in plastic
bags is shown in**. However, the annotations in this dataset assume only an image classification task, and the
collected samples also feature repetitive backgrounds. Some datasets artificially inflate their size by including

slightly rotated or shifted versions of the same object, which adds limited value and may lead to overfitting?>?%%",

Deep Learning for Retail. Computer vision models have become indispensable for retail automation, par-
ticularly in the task of grocery recognition. While classic computer vision approaches relied on handcrafted fea-
tures like SIFT?® and HOG? for object detection and recognition®, deep learning has brought about a paradigm
shift. Convolutional Neural Networks (CNNs), with their ability to automatically learn hierarchical representa-
tions, have been widely applied to grocery recognition. Transformers, known for their attention mechanisms,
have also been explored for this task, as they excel in understanding global context. The evolution of computer
vision models has enabled a range of tasks in retail automation, including classification (identifying grocery
items), object detection (locating products on shelves), and instance segmentation (distinguishing individual
items in a cluster). Generic classification algorithms, such as those based on CNN architectures like VGG?!,
ResNet?*?, Inception®?, and ConvNext*, have been fine-tuned for grocery recognition, achieving accurate results.
Metric learning®, which focuses on learning similarity between images, has also been employed, especially
useful for identifying similar products or different packaging of the same item***” and for product tracking®.
Contrastive pretraining® enhances representation learning and is beneficial for recognizing products with subtle
differences®. Additionally, VLMs, exemplified by LLaVA*!, open up possibilities for tasks like grocery list inter-
pretation and natural language-based product search.
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With uniform | With complex
Species Total Training | Testing | Packed | Non-packed | background | background
apple 11573 9029 2544 5465 6108 4818 6755
apricot 2249 1883 366 1091 1158 872 1377
avocado 3413 2746 667 1646 1767 1410 2003
banana 3178 2426 752 1552 1626 1269 1909
beet 2227 1687 540 1091 1136 679 1548
cabbage 6388 4900 1488 2881 3507 2551 3837
carrot 2262 1714 548 1106 1156 1071 1191
corn 1595 1215 380 780 815 900 695
cucumber 3351 2577 774 1623 1728 1593 1758
daikon 979 744 235 479 500 531 448
garlic 1255 1007 248 586 669 603 652
grape 5150 3991 1159 2782 2368 1874 3276
grapefruit 405 405 0 213 192 393 12
kiwi 1942 1574 368 946 996 846 1096
lemon 2943 2479 464 1380 1563 1524 1419
lime 1499 1164 335 716 783 511 988
mango 851 659 192 421 430 464 387
melon 1005 877 128 240 765 498 507
onion 3081 2453 628 1490 1591 1280 1801
orange 2268 1895 373 998 1270 1104 1164
nectarine 4036 3264 772 38 3998 48 3988
pomelo 1988 1636 352 0 1988 0 1988
pear 2666 2170 496 380 2286 274 2392
pepper 8805 6922 1883 4305 4500 3411 5394
plum 2827 2444 383 1335 1492 900 1927
pomegranate | 1349 1037 312 667 682 889 460
potato 1994 1522 472 971 1023 1046 948
pumpkin 984 748 236 240 744 0 984
radish 2275 1744 531 1074 1201 1165 1110
salad 2151 1635 516 1555 596 472 1679
tangerine 654 498 156 320 334 480 174
tomato 11879 9208 2671 5796 6083 4462 7417
watermelon 987 763 224 0 987 115 872
zucchini 3203 2473 730 1552 1651 1330 1873
Total 103412 | 81489 21923 45719 57693 39383 64029

Table 1. The number of images per species.

Methods

The primary objective of developing the PackEat benchmark was to provide a platform for evaluating the adapt-
ability of models in retail automation scenarios. The key consideration was to create a fair and unbiased test
subset. To achieve this, we employed a stratified sampling approach, where not only different samples were used
for training and testing, but also samples collected by distinct annotators in different shops or cities were split
to minimize bias. Furthermore, we ensured that the sets for different classes were balanced whenever possible.

Data Acquisition. For data acquisition, we engaged 72 annotators across 16 cities, and collected fruits and
vegetables from 132 different shops (Table 1).

Initially, we selected 34 common fruit and vegetable species (Fig. 2). Subsequently, we determined their avail-
able varieties in mass markets, resulting in a total of 65 varieties (Fig. 3). Consequently, the target classes exhibit
a hierarchical structure (Fig. 4). This approach allows us to control the difficulty of the recognition problem, as
distinguishing between different species is generally easier than distinguishing between varieties of the same
species.

The image collection process was designed to meet the following criteria:

Uniform shooting process.

Diverse shooting settings.

Recording available auxiliary information.

Balancing of the dataset with respect to varieties and auxiliary features, whenever possible.

Ll e
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Fig. 3 Varieties count distribution.

We collected images in portions, where each portion consists of a specified number of layouts for a single
variety. A layout is defined as a fixed placement of objects, and each layout is imaged from four different view-
points. To prevent data leakage during the splitting of training and testing subsets, we ensured that each annota-
tor was assigned data portions from different varieties.

To maintain a uniform shooting process, we provided annotators with instructions to collect a fixed num-
ber of layouts with varying numbers of objects within each data portion. Specifically, we requested 15 layouts
with four images each for the following scenarios: one object, two to three objects, four to six objects, and
seven or more objects. Half of the layouts were required to feature packed objects, where possible. Exceptions
included watermelons, which did not fit available plastic bags, and salad, which is typically sold in packaging.
Additionally, every image portion included 12 top-view images with a filled box of the selected variety, Figure 5.
Top-view images featuring single varieties of fruits or vegetables without background are used as supplementary
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Fig. 4 The relations between species and their varieties.

data for model development. Researchers may apply advanced augmentation techniques to generate addi-
tional training data by automatically delineating target object boundaries and copy-pasting them onto new
backgrounds®. Since these images lack annotations, they are excluded from the testing subset of the dataset.
However, they can be utilized in additional experiments to enhance training sample diversity by artificially
generated samples of the same fruits or vegetables varieties. We instructed annotators to utilize a varied range of
backgrounds, encompassing both shop and home interiors, in order to introduce environmental diversity into
the image dataset. However, we exempted top-view images from this requirement, as they were captured at close
range, thereby minimizing the presence of background elements.
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We incorporate images with varying orientations, specifically both landscape (horizontal) and portrait (ver-
tical) formats, to ensure robustness and invariance of our model to image rotation.

Data Annotation. During the imaging process, annotators recorded the following metadata: object species
and variety, layout ID, total weight of all objects, object count, and information about spoilage and packaging.
Subsequently, each image was supplemented with additional metadata, including city, shop, image size, overlap-
ping, and background type. Table 2 presents a comprehensive overview of the distribution of auxiliary annota-
tions across different species. It includes valuable information such as the number of unique layouts, approximate
number of objects, images with crowded scenes, cities represented, shops, and the number of annotators involved.
It is important to note that the object count is approximate due to the potential reuse of the same objects across
multiple layouts, which introduces a level of uncertainty in the exact count. This table provides insights into the
richness and variability of the dataset, highlighting the diverse conditions under which the annotations were
collected.

The overlapping flag enables the separation of images with numerous occlusions from those with evenly
spread objects. The background type is categorized as either simple or complex, which, although a subjective
measure, is shown to impact the performance of certain models in later experiments.

All images underwent a quality control process, where three assessors reviewed the species, varieties, and
image quality, and one assessor evaluated the remaining criteria. Following this quality and duplicates check,
some images were removed, resulting in a slightly smaller dataset than initially intended.

Following the formation of the classification dataset, we performed manual instance segmentation anno-
tation on a carefully curated subset of images from each variety, selecting samples that exhibited the highest
degree of diversity. On average, 135 images per variety were annotated, resulting in a total of approximately
9,000 annotated images.

In addition to the annotated images, we provide a comprehensive taxonomy for each variety, serving as
supplementary information to facilitate further analysis and exploration. The taxonomy file serves as a valuable
resource for domain specialists, enabling more precise identification of different fruit and vegetable varieties.
Unlike common datasets that typically list only generic product names (e.g., “apple” or “pepper”), this detailed
classification is essential for practical applications where distinguishing between specific varieties is crucial.
Furthermore, the comprehensive descriptions can support agronomists in downstream tasks such as plant
growth analysis and maintaining optimal growing conditions based on precise phenotypic.

Relationship between species and varieties. Figure 4 illustrates the relationships between species
(depicted on the left) and their corresponding varieties (on the right). In cases where a species has only one
variety, the variety name is identical to the species name. It is evident from the figure that the number of varieties
varies across different species. The dataset predominantly includes apples and tomatoes, followed by peppers and
cabbages. Consequently, there is a certain degree of imbalance in the sample numbers with respect to species
representation (Fig. 2), although the number of samples per variety remains relatively balanced (Fig. 3).

SCIENTIFIC DATA|

(2025) 12:2045 | https://doi.org/10.1038/s41597-025-06298-6 7


https://doi.org/10.1038/s41597-025-06298-6

www.nature.com/scientificdata/

Number of | Number of | Number of Number of | Number of | Number of

Species layouts objects crowded images | cities shops annotators
apple 2568 45676 1487 6 25 21
apricot 372 8530 80 2 5 4
avocado 674 14051 212 3 12 7
banana 760 12144 360 3 5 6
beet 546 8203 13 1 5 4
cabbage 1496 23219 460 4 17 15
carrot 550 8526 344 3 5 5
corn 384 5964 135 1 4 4
cucumber 782 12709 737 3 5 7
daikon 240 3568 176 2 6 2
garlic 254 5968 379 2 2 2
grape 1171 18421 813 3 9 10
grapefruit 101 1020 299 1 1 1
kiwi 371 10308 382 3 4 3
lemon 473 11272 239 3 12 7
lime 338 7586 75 2 5 3
mango 196 2499 183 2 7 2
melon 129 2894 81 1 4 2
onion 633 10900 241 2 6 6
orange 377 7460 226 2 4 4
nectarine 779 292 467 1 10 9
pomelo 356 356 136 2 4 4
pear 504 3234 380 4 7 7
pepper 1899 38036 1169 3 16 14
plum 393 10885 113 2 6 6
pomegranate | 316 4787 67 1 3 2
potato 485 7384 92 2 5 4
pumpkin 240 4048 12 1 2 2
radish 541 9632 108 1 6 5
salad 523 6950 391 1 11 4
tangerine 161 2556 58 1 4 1
tomato 2690 48088 1791 6 23 23
watermelon 231 3188 143 3 3 3
zucchini 741 11528 350 3 8 6
Total 22174 371526 12199 16 100+ 72

Table 2. The information about image annotations per species.

Table 1 presents detailed information regarding the image data for each species. The table includes the total
number of images, as well as the numbers allocated for training and testing splits. Additionally, it provides
insights into the number of samples packaged in plastic bags and those that are unpackaged. It is important
to note that for certain species, obtaining images in bags proved challenging, resulting in a smaller number or
absence of such samples. Our policy is to avoid splitting samples from a single portion into training and testing
sets to prevent data leakage. As a supplementary feature, the table also includes information on the number of
images with uniform and complex backgrounds, as subjectively assessed by the annotators.

Plants Taxonomy. Taxonomic hierarchies are often inconsistent and noisy across sources*>*, leading to
challenges in reproducibility**. To address this, we provide common and scientific names for all varieties in our
dataset, utilizing the basic taxonomic ranks: kingdom, phylum, class, order, family, genus, and species, with an
additional “subfamily” taxon for specific plant categories. For species with numerous variants, such as bananas or
those with hybrid parentage, we assign the genus as the most reliable taxon from the Catalogue of Life (CoL)*.

Data Analysis. Dataset Statistics. ~ As illustrated in Figure 6, our dataset exhibits a balanced distribution of
object counts and packaging presence across the images. Furthermore, we provide object counts for each image,
enabling researchers to select the most relevant subsets for their specific requirements. The explicit annotation of
packaging type, background type, and object count enhances the flexibility of the dataset, allowing for tailored
selections.

Furthermore, as depicted in Figure 7, the dataset demonstrates a balanced representation of images with
complex backgrounds and those with uniform or simple backgrounds. The variety of background types provides
a diverse set of scenarios, mimicking real-world conditions and facilitating a comprehensive evaluation of object
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Fig. 6 The number of images with different object counts and different packaging.
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Fig. 7 The number of images with different complexity.

detection algorithms. It is noteworthy that the background type classification is subjective, as it was determined
by the annotators.

Similarly, the measure of image crowdedness is also subjective, with images considered to have overlapping
objects if more than 30% of the area of some target objects occlude each other, as per the annotator instructions.
The dataset is intentionally designed to have a limited number of examples with overlapping objects.

Figure 8 reveals insights into the geographical distribution of sample collection. The majority of samples were
collected in Saint Petersburg, as indicated by the logarithmic scale. However, it is noteworthy that contributions
from other cities are evenly distributed, ensuring a diverse representation of different environments and lighting
conditions. This aspect enhances the generalization capabilities of models trained on the dataset, making them
more adaptable to varying real-world scenarios. The dataset’s diversity in terms of object counts, packaging,
background complexity, and geographical distribution makes it a valuable resource for training and evaluating
robust object detection models with broad applicability.

Figure 5 reveals that the majority of samples were collected in Saint-Petersburg, although the contributions
from other cities are evenly distributed.

CLIP Embeddings Analysis. Prior to conducting experiments, we employ visualization techniques to gain
insight into the complexity of tasks by analyzing CLIP embeddings*. Our primary objective is to understand
the expected performance of foundation models pre-trained on general domains in zero-shot inference scenar-
ios. In contrast to supervised training, where the latent space is optimized to fit the task-specific data, leading to
improved class distinguishability, we focus on zero-shot performance as a proxy for model generalizability and
the achievable quality without extensive data collection and annotation.

Figure 9 presents a visualization of latent space based on CLIP embeddings for the dataset, offering insights
into how a model trained on general domain data discriminates between different varieties. CLIP embeddings
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Fig. 9 UMAP visualization of CLIP embeddings.

serve as a proxy measure to assess the model’s ability to distinguish and categorize the varieties in our dataset.
To facilitate visualization, we employ Uniform Manifold Approximation and Projection (UMAP)*, a dimen-
sion reduction algorithm that preserves global data structure while providing efficient run times. UMAP
constructs a fuzzy topological representation of the high-dimensional CLIP embedding space and optimizes
a low-dimensional representation to match this topology. This technique enables us to visualize and analyze
the relationships between data points in a simplified 2-dimensional space. Therefore, Figure 9 presents two
exemplary visualizations, specifically for species and packaging classification tasks. The visualization results
suggest that, although most species are separable, their boundaries are not well-defined, and varieties are more
challenging to distinguish. As anticipated, the embeddings of packed and non-packed objects exhibit significant
differences, with packed object classes being more difficult to recognize.

Furthermore, we observe that CLIP embeddings struggle to separate images with varying object counts, indi-
cating limited object counting capabilities. Nevertheless, a notable exception is observed with top-view images
that exclusively feature multiple objects without any background context; these images are distinctly separated
from other images.
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Fig. 10 Examples of image crops from the dataset and potential of generation of diverse 3D views.

Additionally, we verify that images from different cities, shops, and annotators exhibit distinct characteris-
tics, thereby justifying the decision to split training and testing sets based on these factors to mitigate overfitting
due to annotator and shop biases.

Multi-View Data. A crucial aspect of our dataset design involves incorporating four viewpoints for each layout,
which enables us to investigate the impact of multi-viewpoint data on model performance. Specifically, we exam-
ine the effect of leveraging multiple viewpoints as a test-time augmentation (TTA) strategy to enhance model
accuracy in Experiments section. Moreover, we propose additional use cases for this type of data. Figure 10 illus-
trates a single layout featuring, a single unpacked bell pepper, and a single packed bell pepper, demonstrating the
potential to generate diverse 3D views from these layouts*’. Orange border on the first row marks four images
of the same layout. Purple border on the second row marks four photos of the same object packed in a plastic
bag. The most left photo on the third row is an image from the dataset without any background. The rest of the
photos on the third row are examples of 3D-generated samples based on the same object. Schemes on the last
row show the difference between the original and 3D-generated views for the corresponding photos above them.
This approach can provide an additional source of training samples, which can be exploited to further enrich the
dataset and potentially improve model generalizability.

Figure 5 also presents illustrative examples of top-view images encompassing several varieties of produce.
While these images can be advantageous for additional image augmentation scenarios, there may be instances
where researchers prefer to exclude them from the training set to tailor the dataset to specific requirements.
Consequently, these top-view images are not included in the testing set either, ensuring consistency and avoid-
ing potential biases. The inclusion of such images in the dataset offers flexibility, allowing users to incorporate or
omit them based on their particular research objectives and experimental designs.

Data Records

The PackEat Dataset is published on Zenodo and is associated with record number 16901177'!. All images
are presented in the jpg’ format. The segmentation images and annotations for them are stored in folders
with extension ‘segmentation’ To support reproducibility of results of machine learning models, we splitted
the dataset into ‘train’ and ‘test’ folders for classification and into ‘segmentation_train, ‘segmentation_test’ for
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Species (34 classes) Varieties (65 classes)

Supervision Model All Packed | NotPacked | All Multiview | All Packed | Not Packed | All Multiview

CLIP 0.43 0.28 0.58 0.58 0.28 |0.2 0.36 0.4

BioCLIP 0.3 0.12 0.48 0.46 0.1 0.04 0.15 0.17
Zero-Shot

BioCLIP (taxons) | 0.39 0.19 0.6 0.51 0.24 0.09 0.4 0.36

LLaVAl.5 0.58 | 045 0.73 — 0.24 0.17 0.3 —

CLIP 0.95 091 0.99 0.96 0.96 |0.94 0.98 0.96
Linear Probing

BioCLIP 0.88 0.78 0.97 0.92 0.88 0.82 0.95 0.9
Supervised ConvNext 0.96 | 0.96 0.96 0.98 0.95 0.94 0.96 0.97
Supervised with ConvNext 076 |0.54 0.98 0.85 071 |045 0.97 0.81
non-packet only

Table 3. Classification Baselines Results (F1-score).

segmentation, respectively. For the segmentation task, annotation is stored in ‘txt’ format to reduce the required
memory. We also provided two files in ‘CSV’ format describing taxonomy for each variety of the collected data
(‘taxonomy.csv’) and information for variety classification (‘variety_classification.csv’).

Technical Validation

This section establishes baselines for the primary objectives for which the PackEat dataset was designed. We
evaluate models with varying levels of supervision on our dataset, ranging from zero-shot to supervised learn-
ing. It is important to note that the term “baselines” refers to the utilization of widely adopted models with
default hyperparameters and pipelines, without extensive tuning or data engineering. Consequently, it is antic-
ipated that further optimization and data manipulation would yield improved outcomes. However, this aspect
falls beyond the scope of the present paper, as our primary focus is to establish a benchmark for investigating
model generalization capabilities.

Model Details.  Zero-Shot Scenario. For the zero-shot scenario, we utilize CLIP-based models due to their
renowned capability for effective image-text semantics matching in the general domain and efficient inference
on GPUs or even CPUs. Firstly, we employ the OpenAl implementation of CLIP with a ViT-B/32 backbone®,
using an image size of 224 x 224. We also experiment with BioCLIP, which is a variant of CLIP that utilizes a
ViT-B/16 backbone and has been trained on a large corpus of biological data. BioCLIP is tested in two modes:
common name mode and scientific mode. In common name mode, the answer options for species are the com-
mon fruit and vegetable names used in our dataset, such as ‘apple’ For varieties, we include the corresponding
variety in brackets, such as ‘apple (golden delicious)’ In scientific mode, BioCLIP is provided with a string that
includes the common name along with taxonomy details, such as ‘Malus domestica with common name apple
(golden delicious)’. We found that providing the full taxonomy resulted in poorer performance. For example,
‘Plantae Tracheophyta Magnoliopsida Rosales Rosaceae Amygdaloideae Malus domestica with common name
apple (golden delicious)’ did not yield better results. We share the complete taxonomy for each variety used in
our experiments.

Another CLIP-based model we employ is LLaVA1.5*, which combines the CLIP ViT-L visual encoder and
the LLaMA text decoder, trained for natural text instruction following. The image size used for LLaVAL.5 is
336 x 336. The prompt utilized for species classification is ‘What is on the image? Answer with a single option.
Options are: ’, followed by a comma-separated list of species. For varieties classification, the prompt is modified
to include the variety in brackets: ‘What is on the image? Answer with a single option including the specific
variety in brackets. Options are: ’, followed by a comma-separated list of varieties.

Linear Probing Scenario. In the linear probing experiments, we apply logistic regression with an L2 penalty
and a regularization strength of 0.316 to classify the embeddings obtained from both CLIP and BioCLIP visual
encoders. This approach allows us to evaluate the effectiveness of the embeddings in representing the images for
the classification task.

Supervised Learning Scenario. In the context of supervised learning, we employ a ConvNext-tiny model with
an image size of 224 x 224. ConvNext is a state-of-the-art convolutional neural network architecture that has
demonstrated impressive performance in various computer vision tasks. By utilizing the ConvNext-tiny variant,
we aim to strike a balance between model complexity and computational efficiency. This model is trained in a
fully supervised manner using the labeled images and their corresponding annotations from our dataset.

For the ConvNext model, we employ a learning rate of 5e-5, a batch size of 128, and utilize a 4-step gradient
accumulation strategy. The training process is relatively brief, spanning only 6 epochs. To enhance the model’s
performance and robustness, basic augmentation techniques are applied, including random rotations, horizon-
tal flipping, and contrast adjustments.

Classification Results. Experimental Setup. In this experimental setup, we compare different pipelines for
the classification problem under varying levels of supervision: zero-shot, linear probing, and supervised learning.
The results of this comparison are presented in Table 3. Zero-shot classification refers to the scenario where the
model has not been trained on any images from our dataset. Zero-shot models make predictions by selecting the
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Supervision Model Precision | Recall | mAP50 | mAP50-95
Zero-Shot Object Detection YOLOWorld | 0.15 0.27 0.1 0.088
Supervised Object detection YOLOVS 0.87 0.81 0.86 0.74
Supervised Instance Segmentation | YOLOv8seg | 0.86 0.81 0.85 0.73

Table 4. Species Localization Baselines Results.

most likely answer from a predefined set of categories. Linear probing, on the other hand, is a resource-efficient
approach where we employ a neural network to obtain latent representations (embeddings) of the images, and
then tune small machine learning models to classify these embeddings. Linear probing requires less training
data and computational resources than supervised learning, but it relies on the assumption that the embeddings
adequately represent the images for the specific task. As we will observe in a later section, this assumption does
not hold true for CLIP embeddings in the object counting task, highlighting the limitations of this method.
Supervised learning, on the other hand, refers to the generic training of a model using labeled data.

In a supplementary experiment, we explore the impact of training data composition on model performance.
Specifically, we conduct an experiment where only unpacked fruits and vegetables are used for model training,
while the entire dataset, including both unpacked and packed images, is utilized for testing. This experimental
design allows us to evaluate the models’ ability to generalize to more complex recognition.

To perform a comprehensive analysis, we conduct separate evaluations on subsets of varying complexity.
This includes different levels of label hierarchy granularity, such as species and varieties, and different packaging
types: not packed, packed in plastic bags, and a combination of both. It is worth noting that given a balanced
dataset with respect to packaging, the evaluation on all samples yields results that are close to the average of
packed and unpacked items.

Additionally, we take advantage of having four different viewpoints for each layout by evaluating a multi-view
pipeline that averages the predictions from individual images. However, due to the lengthy inference time, the
results for LLaVA in the multi-view setting are not included.

Result Discussions. The results presented in Table 3 are categorized according to the type of supervision
used, and the best results in the zero-shot group and overall are highlighted in bold. This distinction is made
to emphasize the varying data requirements for each method. Zero-shot pipelines do not require any training
data, while supervised learning with non-packed-only data is relatively easier to collect manually or obtain from
existing datasets. On the other hand, supervised learning and linear probing utilize the entire dataset.

The reported results in Table 3 demonstrate the F1-score metrics for each method. Overall, as expected,
approaches that leverage more data tend to yield better performance. Interestingly, zero-shot methods still pro-
vide reasonably accurate results. Furthermore, the results clearly indicate that species classification is an easier
task compared to varieties classification, and objects packed in plastic bags are generally easier to distinguish
than unpacked items. The benefit of utilizing multiple viewpoints is evident, as it consistently improves the per-
formance across all methods.

Among our observations, BioCLIP demonstrates improved performance on common fruits and vegetables
among zero-shot methods, but only when they are not packed. However, its performance declines significantly
on packed samples, and it lacks representation capabilities for linear probing. It is important to mention that
finding an effective textual representation for BioCLIP was challenging, and incorrect combinations of common
names and scientific taxons led to worse outcomes.

LLaVA, on the other hand, utilizes a more extensive and sophisticated language model built on top of
CLIP visual encoder, offering a more intuitive natural language interface and applicability beyond classifica-
tion tasks. LLaVA also enhances performance on species recognition. However, it is more resource-intensive
and time-consuming. Additionally, its performance on varieties recognition is lower, which we attribute to
the use of common species in the training of CLIP and LLaMA*, whereas varieties recognition requires more
domain-specific knowledge. This observation suggests that introducing rarer fruits and vegetables could poten-
tially lead to a significant decrease in accuracy.

The supervised pipeline, as expected, sets a high bar for other methods, effectively solving both species and
varieties classification with good scores. Notably, in certain cases, linear probing achieves equivalent or even
higher results compared to the supervised approach. Furthermore, when excluding packed samples from the
training subset, the performance on unpacked test images improves slightly compared to the full dataset, but the
results on packed samples deteriorate drastically.

Localization Results. Table 4 presents the results of our object localization experiments. For the zero-shot
setting, we employ the YOLOWorld model, a state-of-the-art on-device object detection system pre-trained on a
diverse set of classes. In contrast, for the supervised experiment, we utilize the YOLOv8 model for object detec-
tion and YOLOv8seg for instance segmentation. The metrics exhibited in the table differ significantly, providing
insight into the performance expectations for each approach. The zero-shot method, without fine-tuning, per-
forms poorly even on common species. It struggles to accurately localize and classify objects, particularly those
that are packed. This highlights the limitations of zero-shot object localization, especially when dealing with
specific classes or packed items. On the other hand, the supervised training of YOLOv8 and YOLOv8seg yields
excellent results, even on challenging samples. This confirms that our dataset is sufficiently large and clear to
enable effective supervised training for object localization tasks.
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#Train Samples | Packed | Not Packed
10 0.014 0.017

100 0.12 0.27

250 0.46 0.65

500 0.74 0.84

All 0.94 0.96

Table 5. Observations on Scaling Laws (F1-score).

Ablation Results. Object Counting. In addition to the primary classification task, we also evaluate the
models’ ability to perform object counting, specifically focusing on fruits and vegetables. Notably, we do not uti-
lize specialized object counting models, instead opting for more general-purpose models that can simultaneously
tackle the main classification task.

The results for the LLaVA model reveal a mean average percentage error (MAPE) of 70%, which is a relatively
modest performance.

Furthermore, we investigate the feasibility of linear probing the CLIP model on a simplified object counting
task, where objects are categorized into four bins: one object, two to three objects, four to six objects, and seven
or more objects. The results yield an F1-score of 0.78 for non-packed objects and 0.63 for packed objects.

An alternative approach to object counting involves post-processing the detection results, which are reported
in the preceding subsection.

Packaging Recognition. 'The presence of packed samples is a prominent feature of our dataset, prompting an
investigation into how models recognize packaging. Zero-shot LLaVA achieves an 89% accuracy rate in under-
standing that objects are packed, while supervised tuning of ConvNext yields an expected 99.96% accuracy. As
anticipated, there is minimal confusion with samples like salads, which may have plastic wrapping but are not
entirely packed.

Scaling Laws.  To substantiate the necessity of a large dataset for effective training, Table 5 presents the results
of an experiment where we train the ConvNext model for varieties classification using smaller subsets of our
dataset. This experimental setup allows us to assess the impact of dataset size on the model’s performance and
demonstrates the value of having a substantial amount of labeled data for achieving better generalization and
overall accuracy.

The Influence of the Background Type. We investigate the influence of background type on model accuracy by
evaluating zero-shot CLIP on non-packed species classification. The F1-score for images with simple, uniform
backgrounds is 0.583, while for complex backgrounds, it slightly decreases to 0.573. For the more challeng-
ing task of varieties classification, the F1-scores are 0.376 and 0.347, respectively. Our findings confirm that
background context plays a crucial role in prediction quality, with a more significant impact on more complex
tasks. These results highlight the importance of considering background information in model development
and evaluation.

Limitations. Despite its notable strengths, the PackEat dataset exhibits certain limitations. Firstly, the data-
set predominantly focuses on fruits and vegetables, thus limiting its scope in terms of product diversity. Future
expansions that encompass a broader range of retail products could enhance its applicability and versatility.
Additionally, while the dataset exhibits a relatively balanced distribution across varieties, there remain instances
of outliers that may introduce biases or challenges in model training. Furthermore, the dataset’s image back-
grounds, although varied, may not entirely reflect natural shop or storage environments. Another limitation lies
in the temporal scope of the dataset, as it was collected during a single month, neglecting seasonal variations
in product appearances throughout the year. However, it provides a good representation of the target vegetable
and fruit species, as the photos were captured in multiple stores and locations under varying sensing conditions,
including different cameras and lighting setups. These factors contribute to the dataset’s reliability. We assume
that the visual appearance of the vegetables and fruits remains generally consistent across seasons, as some are
grown in greenhouses and are therefore less affected by seasonal variations. Lighting conditions, however, are
a critical factor that can influence a neural network model’s performance. While the dataset already includes
diverse lighting scenarios, additional augmentation techniques could be applied to further enhance variability,
improving the model’s robustness to real-world conditions*.

The background complexity labels are currently subjective, reflecting the annotators’ general assessment. The
variety of background patterns is intended to help neural network models adapt to diverse and challenging con-
ditions, so even backgrounds that are unusual for grocery store environments are included to enhance dataset
diversity. In the future, background complexity could be assessed using general or specialized computer vision
techniques for homogeneity evaluation. For instance, texture uniformity could be measured using Local Binary
Patterns (LBP) or entropy-based measures, while gradient-based approaches such as edge density or Sobel fil-
ters could serve as fundamental tools for quantifying complexity. Additionally, community feedback could be
incorporated to improve dataset completeness and suitability for future versions, ensuring better adaptability to
various background conditions in real-world applications.
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Notwithstanding these limitations, PackEat offers significant value by facilitating the development and eval-
uation of multitask models in computer vision and retail automation. Its contribution lies in providing a special-
ized dataset tailored for the retail domain, thereby advancing visual recognition capabilities in real-world retail
environments. The dataset is expected to serve as a valuable resource for the research community, stimulating
innovative solutions and fostering advancements in the field.

Code availability
The code is available through the link: https://www.kaggle.com/datasets/sergeynesteruk/packed-fruits-and-
vegetables-recognition-benchmark/data.

Data availability

The dataset is available through the link: https://zenodo.org/records/16901177 with the record number 16901177
on Zenodo. It includes images in jpg’ format. The dataset is split into ‘train’ and ‘test’ folders. The segmentation
images and annotations for them are stored in folders with extension ‘segmentation’ For the segmentation
task, annotation is stored in ‘txt’ format to reduce the required memory. We also provided two files in ‘CSV’
format describing taxonomy for each variety of the collected data (‘taxonomy.csv’) and information for variety
classification (‘variety_classification.csv’).
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