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Concentrating solar power is a pivotal technology in global transition toward renewable energy,
providing a viable pathway for dispatchable and base-load electricity generation. An important

. component of the concentrating solar power system is molten salts, particularly NaCl-based mixtures,

 which serve as both efficient heat transfer fluids and high-capacity thermal energy storage media. The

. influence mechanisms of micro-ionic interactions and microstructure on physicochemical properties

. of NaCl-based molten salt mixtures play a decisive role in exploration of more efficient molten salt

. formulations. We present a dataset of microstructure and physicochemical properties of NaCl-based

. molten salt mixtures for concentrating solar power, which involves thermal expansion coefficient,

© thermal conductivity, specific enthalpy of fusion, specific heat capacity, density, and viscosity of

. mixtures, ionic self-diffusion coefficient, coordination bond angle and coordination bond length of ion
pairs, and coordination number of ions across varying elemental compositions and a wide temperature
ranges from 556 K to 1400 K, which significantly exceeds the current operating limits of commercial
nitrate-based solar salt. The dataset may help to integrate concentrating solar power with other
renewable energy technologies, which is essential for maximizing its impact on global climate change
mitigation efforts.

Background & Summary
Concentrating solar power (CSP) coupled with thermal energy storage (TES) has attracted significant attention
in recent decades as a promising renewable energy technology'?. CSP systems generate electricity by concentrat-
ing sunlight to heat molten salt, which serves as both an efficient heat transfer fluids and a high-capacity thermal
energy storage media, and subsequently converts thermal energy into electrical power®*. Currently, sodium
nitrate (NaNOj;) and potassium nitrate (KNO;), known for their high energy densities and low vapor pressures,
are typically blended in a 60:40 mass ratio to form the commercially available “solar salt”>S. This binary nitrate
. mixture has become one of the most widely used heat transfer fluids and thermal energy storage media in CSP
© plants. Although compatible with the operating range of existing steam turbines, these commercial nitrate salt
. mixtures face thermal stability challenges, as they begin to decompose when operating temperatures exceed
823K"8.
: To increase the thermal energy efficiency of CSP systems, which is fundamentally governed by the Carnot
© principle, operation at higher temperatures is essential. This drives the exploration of alternative molten salts
° with superior thermal stability. Among these, NaCl-based molten salt mixtures, such as NaCl—MgClz9’1°,
- NaCl-CaCl,'""2, and NaCl-KCl-MgCl,-LaCl;'?, have emerged as highly promising candidates for
. next-generation TES applications. These chloride-based systems exhibit superior thermal stability and thermal
: energy storage potential at elevated temperatures, significantly exceeding the thermal stability limit of con-
* ventional nitrate-based solar salt (~823 K). For instance, the thermal conductivity of the mixtures typically
ranges from 0.30 to 0.60 W-m™!-K ™! across a wide temperature range, from 1000 K to 1500K, highlighting their
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Step 1: Identification  Step 2: Screening Step 3: Eligibility elevation

® Records identified from ® Records after duplicates ® Full-articles assessed for
Web of Science (n=42) removed (n=51) eligibility (n=27)

® Additional records from ® Records screened (Title/Abstract) f ® Studies included in qualitative
citation tracking (n=67) and excluded (n=33) synthesis (n=21)

Fig. 1 Flowchart of the literature screening and selection process.

No. | Year | Reference DOI

1 2015 | https://doi.org/10.1016/j.molliq.2015.06.021'°

2 2017 | https://doi.org/10.1016/j.molliq.2016.12.091%

3 2017 | https://doi.org/10.1016/j.nanoen.2017.07.020%
4 2018 | https:/doi.org/10.1016/j.molliq.2017.11.068”

5 2020 | https://doi.org/10.1016/j.solener.2020.09.038%
6 2020 | https://doi.org/10.1016/j.s0lmat.2020.110696'°
7 2020 | https://doi.org/10.1016/j.solmat.2020.110504%
8 2021 | https://doi.org/10.1016/j.renene.2020.08.152'2
9 2021 | https://doi.org/10.1016/j.solmat.2021.111351°
10 2021 | https://doi.org/10.1016/j.molliq.2021.1173213!
11 2022 | https://doi.org/10.1016/j.jnucmat.2022.153916°
12 2022 | https://doi.org/10.1016/j.est.2022.104707>*

13 | 2022 | https://doi.org/10.1016/j.molliq.2021.117054%
14 2023 | https://doi.org/10.1021/acsami.3¢c13412%*

15 2023 | https://doi.org/10.1021/acsami.2c192721

16 2023 | https://doi.org/10.1039/d3ta03434h"’

17 2023 | https://doi.org/10.1002/adts.202200833

18 2023 | https://doi.org/10.1016/j.s0lmat.2022.112108%
19 2024 | https://doi.org/10.1016/j.solmat.2024.113091%
20 2024 | https://doi.org/10.1016/j.s0lmat.2024.112903%
21 2024 | https://doi.org/10.1007/s11630-024-2054-5""

Table 1. Details of remaining 21 available publications for in-depth analysis.

enhanced high-temperature performance. However, a key challenge in optimizing these materials lies in under-
standing the fundamental relationships between their microscopic ionic interactions, microstructure, and mac-
roscopic physicochemical properties*!*. Experimental characterization of molten salts at extreme temperatures
is often limited by technical constraints, leading to sparse and sometimes inconsistent data. To address this gap,
computational approaches, including the molecular dynamics simulations'® and the ab-initio calculations’®,
have become indispensable tools for elucidating the behaviour of molten salts and guiding the development of
advanced TES materials.

This work consolidates and analyses published data on NaCl-based molten salt mixtures, providing a dataset
on their microstructure and physicochemical properties. The dataset includes thermal expansion coefficient,
thermal conductivity, specific enthalpy of fusion, specific heat capacity, density, and viscosity of mixtures, ionic
self-diffusion coeflicient, coordination bond angle and coordination bond length of ion pairs, and coordina-
tion number of ions across varying elemental compositions and temperature ranges from 556 K to 1400 K. The
compiled information serves as a valuable resource for researchers and engineers, facilitating data-driven mate-
rial design, machine learning model training, and the development of optimized molten salt formulations for
advanced thermal storage applications. Furthermore, this work supports the integration of CSP industries with
other renewable energy technologies, a critical step toward maximizing its role in global climate change miti-
gation efforts.

Methods

Boundary definition and research strategies. We conducted a systematic and comprehensive pub-
lic publication search to identify relevant studies on the NaCl-based molten salt mixtures. The Web of Science
database (https://webofscience.clarivate.cn/wos/alldb/basic-search) was selected as the primary search platform
due to its extensive coverage of high-quality scientific publications. Academic interest in the microstructure and
physicochemical properties of molten salt mixtures for the CSP was notably lacking prior to 2015'*'”. This search
was restricted to Article and Review published from 2015-01-01 to 2025-03-31, to focus on recent advances in
computational and experimental methods for the molten salt mixtures.
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Fig. 2 Elemental composition of (a) binary mixtures and (b) ternary & quaternary mixtures in present dataset.

Name Symbol | Unit Definition
Elemental composition Atomic species and quantity of the molten salt mixtures
T Temperature used in experiment or calculation, a fundamental variable
emperature T K . . . .
influencing material properties
Thermal expansion coefficient | 3 K! Dimensional change rate under thermal stress
Thermal conductivity A WL | Ratio of heat flux density and temperature gradient to reflecting heat transfer
efficiency
Specific enthalpy of fusion AHy Jg! Latent thermal energy intensity of solid-fusion phase change
Specific heat capacity c Jg L K! Thermal energy required to raise the temperature by 1K of a unit mass
Density p g:em™? Mass of molten salt per unit volume
Viscosi Ratio of shear stress and velocity gradient of fluid to reflect internal friction
iscosity n Pa-s . X
resistance to fluid flow
Tonic self-diffusion coefficient | D m?s~! Tonic mobility within the molten salt
Coordination bond angle P o Local symmetry ?md geometrlcal bonding of the ion pairs that calculated from
angular distribution function
Coordination bond length r A Length of ionic bonds determined via the radial distribution function
Coordination number Average value of directly coordinated ions

Table 2. Explicit definitions and units of parameters for molten salt mixtures.

The search strategy employed a combination of keywords, including “NaCl-based molten salts”,
“high-temperature molten salts”, “molecular dynamics simulation”, “first-principles calculation”, and “computa-
tional thermodynamics” to ensure broad retrieval of potentially relevant studies. The backward citation tracking,

examining references of the key publications, and forward citation tracking, identifying newer studies citing the
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Fig. 4 Flowchart of entire processing procedure of the present dataset.

retrieved works, were employed to identify the additional relevant publications, to minimize selection bias and
to capture important contributions that might have been missed in the initial database search.

The indexed publications were first filtered through the title and abstract relevance screening to identify stud-
ies providing both sufficient methodological details and quantitative data on either microstructure parameters
or physicochemical properties of NaCl-based molten salt mixtures. And then, the publications with extractable
and reproducible results were further filtered by the full-text evaluation. With this rigorous screening process,
as shown in Fig. 1, only 21 high-quality publications, detailed in Table 1, were retained for in-depth analysis.

Data collection and management. The NaCl-based molten salt mixtures in this dataset encompass a
variety of compositions, including the binary mixtures, such as NaCl-MgCl, salt, NaCl-CaCl, salt, NaCl-LiCl salt,
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Number Name Details

Details of the thermal expansion coefficient, thermal conductivity, specific enthalpy of
1 physicochemical properties dataset | fusion, specific heat capacity, density, and viscosity of NaCl-based molten salt mixtures in
different temperature ranges

Details of the ionic self-diffusion coefficient, coordination bond angle, coordination bond
2 microstructure parameters dataset | length, and coordination number of different ion pairs of NaCl-based molten salt mixtures
in different temperature ranges

Table 3. Overview of two Excel files in present dataset.
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Fig. 5 Correlations heatmap of physicochemical properties vs. temperature of NaCl-based molten salt mixtures
from 556 K to 1400 K.

NaCl-KCl salt, and NaCl-ZnCl, salt, the ternary mixtures, like NaCl-MgCl,-KCl salt, NaCl-MgCl,-CaCl, salt,
NaCl-KCI-NaF salt, and NaCl-KCI-LiCl salt, as well as the quaternary mixture, such as NaCl-KCl-MgCl,-LaCl,
salt. The elemental composition of the above-mentioned NaCl-based molten salt mixtures is systematically sum-
marized in Fig. 2, providing a clear overview of their ionic constituents.

The computational or experimental results in the publications for the molten salt mixtures are typically
presented in two formats: tabular data and graphical representations. Numerical values listed in tables can be
directly extracted for analysis, whereas data presented in figures often require digitization to ensure the data
can be further processed. For this purpose, tools such as WebPlotDigitizer (https://plotdigitizer.com) are widely
used to accurately extract numerical values from plotted curves or scatter points.

We systemically extracted available data from the publications, including the thermal expansion coefficients,
thermal conductivity, specific enthalpy of fusion, specific heat capacity, density, and viscosity of the molten salt
mixtures, the ionic self-diffusion coeflicient, the coordination bond angle and coordination bond length of the
ion pairs, and the coordination number of ions, with various elemental compositions in different temperature
ranges. The explicit definitions and units of those parameters for molten salt mixtures were provided in Table 2.
And two distinct datasets were meticulously compiled to facilitate: the physicochemical properties dataset and
the microstructure dataset, which illustrated in Fig. 3. It is important to note that certain data records may
exhibit missing parameters due to limitations in the source literature, including instances where specific proper-
ties were not computed or reported incompletely. The entire processing work of the present dataset is described
in Fig. 4.

The relative uncertainties of those parameter data are below 1.0%, as reported in the referenced
publications!®1.

Data Records. Two Excel-based datasets were created and are presented in Table 3. The details of the ther-
mal expansion coeflicient, thermal conductivity, specific enthalpy of fusion, specific heat capacity, density, and
viscosity of the NaCl-based molten salt mixtures in different temperature ranges are recorded in an Excel file
named physicochemical properties dataset. And another Excel file named microstructure parameters dataset con-
tains the details of the ionic self-diffusion coefficient, coordination bond angle, coordination bond length, and
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Fig. 6 Ionic self-diffusion coeflicients of (a) Na*, (b) Mg?" and Ca**, (c) K* and F, and (d) Cl" in molten salt

mixtures from 556 K to 1400 K.

coordination number of different ion pairs for the mixtures in different temperature ranges. The database was
uploaded and publicly available at the Figshare repository® and is available for download in Excel format.

Technical Validation

Physicochemical properties vs. temperature of the NaCl-based molten salt mixtures.

A

Pearson correlation analysis was conducted in this dataset, accompanied by a heatmap to display the correla-
tions between the physicochemical properties vs. temperature of the NaCl-based molten salt mixtures, as shown
in Fig. 5. The heatmap analysis reveals that the thermal expansion coefficient, thermal conductivity, and spe-
cific enthalpy of fusion exhibit significantly positive temperature dependence with higher Pearson correlation
coefficients of r =1.00, r =0.98, and r = 0.99, respectively. In contrast, density and viscosity display significant
inverse correlations with temperature with negative Pearson correlation coefficients r= —1.00 and r = —1.00,
respectively?!. The heat capacity shows moderate positive correlation with an intermediate Pearson correlation
coefficient r =0.53.

lonic self-diffusion coefficient vs. temperature of the NaCl-based molten salt mixtures. The
ionic self-diffusion coefficients could be calculated via the mean-squared displacement method??. Consistent
with fundamental thermodynamic and diffusion principles, the elevated temperatures promote ionic thermal
agitation, resulting in a monotonic increase in the ionic self-diffusion coefficients with increasing temperature in
Fig. 6, which illustrates the temperature dependence for the ionic self-diffusion coefficients of Na™, Mg?*, Ca**,
K*, F, and Cl in molten salt mixtures, respectively. The trends not only align with theoretical expectations but
also demonstrate the internal consistency and thermodynamics validity in the present dataset.

Coordination bond length of ion pairs vs. temperature of the NaCl-based molten salt mix-
tures. The coordination bond length of ion pairs servers as a crucial parameter for characterizing the
microstructure of the molten salt mixtures?»**. These bond lengths are typically determined through the radial
distribution function analysis in molecular calculations. Figures 7, 8 present the temperature dependence of
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Fig.7 Coordination bond lengths of like-charged ion pairs (a) Na*-Na*, (b) K™-K*, (c) Mg**-Mg?", and (d)
CI"CI" in molten salt mixtures from 556 K to 1400 K.

the coordination bond lengths for different ion pairs from 556 K to 1400 K. Notably, the cation-cation pairs
(Na*-Na*, K*-K*, and Mg?*-Mg?") and the anion-anion pairs (CI"Cl') exhibit consistent decrease trends in
the coordination bond lengths with increasing temperature, as shown in Fig. 7. All examined cation-anion pairs
(Na™-CI', K™-CI', and Mg?"-Cl') demonstrate opposite trends in Fig. 8, showing gradual elongation of the coor-
dination bond lengths at elevated temperature. These two contrasting trends suggest fundamentally different
temperature-dependent interactions between like-charged and oppositely-charged ions in the NaCl-based molten
salt mixtures.

Usage Note
This dataset serves as a critical resource for researchers and engineers in material screening and design. It ena-
bles the rapid identification of promising NaCl-based or MgCl,-based molten salt compositions with desired
thermophysical properties for next-generation CSP plants. Concurrently, it functions as a benchmark for val-
idating the molecular dynamics and the ab-initio simulations, as well as a high-quality training dataset for
developing machine learning models in materials informatics. Furthermore, the dataset provides essential input
parameters for system-level modeling and simulation of the CSP thermal energy storage and heat transfer loops.
Although the data is structured in two separate Excel files at the Figshare repository to allow for focused anal-
ysis, it is recommended that users consult the original publications that provided in Table 1 for more detailed
results and to facilitate effective use. The dataset will be periodically updated to include new compositions and
properties, maybe not only limited to NaCl-based mixtures.

Data availability
The dataset can be downloaded online directly from the repository: https://doi.org/10.6084/m9.figshare.28869017.v4.
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Fig. 8 Coordination bond lengths of oppositely-charged ion pairs (a) Na*-Cl;, (b) K™-Cl', and (c) Mg*"-Cl" in
molten salt mixtures from 556 K to 1400 K.

Code availability
There was no code used in the generation of the data in this work, an only Microsoft Excel is employed to process
all the data. And the data in all figures were extracted by Web Plot Digitizer (https://plotdigitizer.com).
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