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Heatwaves are becoming more intense and frequent as global temperatures rise, affecting 

vulnerable populations, particularly in low-income communities. Addressing the impacts of 

heatwaves requires high-resolution data to assess their influence on labour productivity, public 

health, and climate risk. We introduce the Comprehensive Heat Indices (CHI) dataset, a high-

resolution (0.1° × 0.1°) hourly dataset from 1950 to 2024, derived from the ERA5 and ERA5-Land 

reanalyses. The CHI dataset encompasses thirteen heat stress indices, including wet-bulb 

temperature, universal thermal climate index, mean radiant temperature, wind chill, and lethal heat 

stress index (Ls). Thresholds for Ls are empirically linked to mortality, enabling the identification 

of life-threatening heat events. Ls is sensitive to soil moisture variability, improving assessments 

in agricultural regions. The CHI dataset supports indoor and outdoor applications and is sensitive 

to humidity, radiation, and wind. Covering the global land area from 60°S to 75°N and 180°W to 

180°E, it provides a unique, long-term perspective on spatial and temporal trends in heat stress, 

which are critical for climate impact research and adaptation planning. 

Background & Summary 

Heat stress is the net heat burden an individual experiences, resulting from the combined thermal 

influences of environmental factors, including air and radiant temperatures, humidity, wind, and 

physical activity and clothing.1,2 Understanding and mitigating heat stress impacts is crucial in 

rising global temperatures, especially given its implications for heat-related mortality3,4,5,6,7,8,9,10 

and reduced work capacity11,12.  

A good and useful heat stress dataset should provide fine spatial and temporal resolution with 

global coverage. Such a resolution is essential for accurately assessing heat stress and its spatial 

variability, capturing acute peak periods shaped by geography13, vegetation14,15, and 

meteorological factors13. The existing heat-stress datasets often fail to capture moisture-related 

dynamics and long-term trends across diverse climates, highlighting the need for more detailed, 

humidity-inclusive data and globally consistent frameworks16. A comprehensive heat stress dataset 

should also include a range of indices, as many currently in use vary in their structure. Some heat 
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stress indices account for radiation and wind, while others do not. Some are tailored for dry 

environments, others for humid ones, and some follow linear relationships, while others follow 

nonlinear ones. As a result, different indices disagree on important questions, such as the 

effectiveness of evaporative cooling strategies (e.g., whether irrigation reduces or amplifies heat 

stress) due to their differing sensitivities to soil moisture. Although an ideal index would perform 

optimally across all conditions, no single index consistently outperforms the rest. Thus, selecting 

an appropriate heat index is crucial for assessing the impact of heat on human health2. Most heat 

stress indices are developed for specific environmental conditions17 and should be used with 

caution in other contexts18. The choice of an optimal heat index depends on the usage context, as 

its suitability can vary across age groups, seasons, demographics, and geographic regions19, and 

should therefore be selected accordingly. 

Each heat index has its strengths and limitations, making it essential to incorporate multiple indices 

in a dataset to capture the uncertainty in heat-related impacts across diverse environmental 

conditions2. For instance, indices like Wet-Bulb Globe Temperature (Twbg) may not always 

adequately reflect human physiological responses to heat, potentially underestimating health risks. 

Twbg underestimates heat stress in low wind and high humidity conditions18 and cannot capture 

the harmful effect of high wind in extremely hot and dry environments20. The Universal Thermal 

Climate Index (UTCI) provides a more robust assessment by focusing on human heat balance and 

offers a nuanced understanding of physiological responses to thermal conditions2. However, UTCI 

struggles to provide accurate results under certain climatic conditions, particularly in environments 

with significant microclimatic variations, such as urban areas, where it may yield inconsistent 

assessments, thereby complicating public health and occupational safety decision-making 

processes21. Further, the UTCI is undefined under extreme conditions, specifically when the water 

vapour pressure is less than or equal to 5 kPa, the air temperature exceeds ±50 °C, or the difference 

between the mean radiant temperature (Tmrt) and the 2-metre air temperature (T2m) lies between 

–30 °C and 70 °C.22 Moreover, for most conditions, UTCI responds less to humidity changes than 

Wet-Bulb Temperature (Twb), with Twb being more humidity-sensitive, especially at lower 

temperatures and lower humidity23. Thus, providing a wide range of heat stress metrics is crucial 

to allow users to select the one that best suits their application scenarios. 

Current heat stress datasets, while valuable, have notable limitations. For instance, the ERA5-

HEAT22 (Human thErmAl comforT) dataset provides Tmrt and UTCI derived from the ERA5 

reanalysis24 since 1940, at a spatial resolution of 31 km and an hourly temporal resolution. 

Although ERA5-HEAT22 offers global coverage, it lacks a comprehensive suite of heat-stress 

indices essential for assessing heat-related impacts at high resolution across different climates. 

Studies like those by Yan et al.1 and Spangler et al.25 have focused on specific regions with daily 

indices at a fine spatial resolution of 0.1° × 0.1°; however, they do not offer comprehensive global 

coverage or the hourly resolution necessary for detailed night-time heat stress assessments, which 

are crucial for understanding diurnal temperature effects on human health26. Jian et al.27 recently 
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utilised ERA5-Land28,29 and ERA524 to compute the UTCI. However, while global from 2000 to 

2023, their dataset lacks a diverse set of indices and comprehensive historical coverage from 1950. 

The mortality-based human lethal heat stress index30 (Lsi) is an empirical index that links air 

temperature, humidity, and heatwave-related deaths. Derived from Twb, a physical measure of the 

body's cooling limit under given atmospheric conditions30, Lsi outperforms indices like UTCI, 

Heat Index (HI), Humidex (Hu), and Twbg in identifying dangerous heatwave days, particularly 

in low-humidity conditions31. Since Twb tends to rise in irrigated areas32, soil moisture plays a key 

role in lethal heat stress. It can increase risk in irrigated regions30 since wet soils lower temperature 

but raise humidity, while dry soils raise temperature and reduce humidity, both of which can 

worsen heat stress30,33. The increased sensitivity of Lsi to humidity offers a more accurate 

reflection of heat stress in diverse climates, especially in agricultural zones. Therefore, we 

calculated and provided global Lsi estimates in this study. 

Thus, to overcome the abovementioned gaps, the present work introduces the Comprehensive Heat 

Indices (CHI) dataset, which aims at enhancing the accuracy of existing heat stress datasets by 

using 2-m wind speed instead of the commonly used 10-meter wind speed and by calculating the 

average cosine of the solar zenith angle (cosθ) only over the sunlit part of each model interval. In 

contrast, previous studies use 10-meter wind speed1,25 and average cosθ1,22,25,27 over the employed 

model interval.  The 2-m wind speed better captures near-surface conditions relevant to human 

heat stress than the 10-m wind speed, which is measured higher above ground. For instance, an 

increase in wind speed from 0.5 m/s to 1.5 m/s can lead to a median Twbg decrease of 2.3°C34, 

indicating that even modest changes in wind speed can significantly impact Twbg calculations. 

Using sunlit-only cosθ prevents overestimation of solar radiation and unrealistic spikes in heat-

stress indices. In Yan et al.1, the Twbg was calculated under indoor conditions and does not account 

for the effects of solar radiation, rendering it incompatible with outdoor heat stress assessments. 

In the CHI dataset, we explicitly calculate outdoor Twbg, incorporating full radiation inputs. 

Additionally, while Yan et al.1 estimated indoor Twb using the Stull35 approximation, we provide 

both indoor and natural wet-bulb temperatures (Tnwb) using the physically-based model of 

Liljegren et al.36. Moreover, Yan et al.1 do not offer heat stress indices such as globe temperature 

(Tg), Tnwb, Lsi, and outdoor Twbg for their Southeast Asia study region. Similarly, Spangler et 

al.25 do not provide key thermal indices, including Tg, Tnwb, Tmrt, Twb, apparent temperature 

(AT), wind chill (WC), and HI. 

Moreover, the impacts of global warming are profoundly felt and projected in poor and low-

income countries37, particularly in the tropics and subtropics12,38. Regions such as the Middle East 

and North Africa are experiencing rapid warming39, facing heat-related mortalities5, and lack high-

resolution data. This gap highlights the urgent need for data to monitor and analyse the precise 

impacts of heat stress in these vulnerable regions. 

Therefore, we introduce CHI as the first long-term (1950-2024) comprehensive and diverse dataset 

of high-resolution heat stress indices derived from ERA5 and ERA5-Land reanalyses, offering 
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hourly resolution with a 9 km grid (0.1° × 0.1°). We provide a set of 13 heat stress indices (Tmrt, 

Tg, Twbg, UTCI, Twb, Tnwb, indoor and outdoor Lsi, Hu, NET, AT, WC, HI) suitable for diverse 

environmental conditions to assess heat-related impacts. Importantly, our study provides the first 

dataset on Lsi, addressing critical gaps in regional heat stress research. This dataset aims to 

enhance the accuracy of heat stress assessments by providing crucial insights into the temporal 

and spatial dynamics of heat stress and its impacts, particularly in under-resourced regions 

vulnerable to climate extremes. 

Methods 

Input Data Description 

We utilised two high-resolution global reanalysis products developed by the European Centre for 

Medium-Range Weather Forecasts (ECMWF) to calculate heat stress indices. These are: (i) 

ERA524,40 (https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-

levels?tab=overview), the fifth generation of European reAnalysis, and (ii) ERA5-Land28,29,41 

(https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=overview). Both reanalyses 

from the Copernicus Climate Change Service (C3S) provide data at an hourly temporal resolution. 

ERA5 combines model output with various observational datasets through data assimilation, 

providing a spatial resolution of 31 km (0.25° × 0.25°)24,40. ERA5-Land, on the other hand, 

provides a finer spatial resolution of 9 km (0.1° × 0.1°). It is generated by integrating the ECMWF 

land surface model at high resolution globally, using downscaled meteorological inputs (air 

temperature, pressure and humidity) from the ERA5 climate reanalysis. It includes an elevation 

correction to accurately represent the thermodynamic state near the surface29. We used both 

reanalysis products from 1950 to 2024 at an hourly resolution.  

As detailed in Table 1, various atmospheric variables were required to calculate heat stress indices. 

All variables in Table 1 were obtained from ERA5-Land, except for the total sky direct solar 

radiation (tsdsrs), which was sourced from ERA5, as ERA5-Land does not provide this variable. 

The tsdsrs was interpolated onto the ERA5-Land grid to ensure consistency across all variable 

grids following Yan et al.1 and Spangler et al.25. The nearest-neighbour method was employed 

because it conserves the original data values1. Some other variables listed in Table 2, such as 

relative humidity (rh), cosθ, wind speed at 2 m (ws2), direct radiation from the sun (dsrp), and the 

ratio of direct solar radiation (fdir), were calculated from the variables listed in Table 1.  

Data for Technical Validation 

To evaluate the quality of the CHI dataset, we compare it with three existing gridded heat stress 

index datasets: ERA5-HEAT22,42 (https://cds.climate.copernicus.eu/datasets/derived-utci-

historical?tab=overview) at 0.25° × 0.25° resolution, HiTiSEA1,43 (High-spatial-resolution 

Thermal-stress Indices over South and East Asia; https://doi.org/10.6084/m9.figshare.c.5196296) 

at 0.1° × 0.1°, and HiGTS27,44 (High temporal resolution Global Thermal Stress metrics; 

https://figshare.com/collections/HiGTS_A_high-

resolution_global_gridded_dataset_of_human_thermal_stress_indices/6948135), also at 0.1° × 
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0.1° resolution. To see the differences between the CHI dataset and ERA5-HEAT, the ERA5-

HEAT data were bilinearly interpolated to a 0.1° × 0.1° spatial resolution.  

We use daily maximum values of UTCI and Tmrt from ERA5-HEAT and UTCI from HiGTS for 

comparison with CHI data over the geographic domain 60°S–75°N and 180°W–180°E. 

Additionally, we compare Tmrt, WC, UTCI, Twb, Hu, NET, AT, and HI from HiTiSEA with 

corresponding CHI outputs over South and East Asia (SEA; 3°N–58°N, 65°E–155°E). 

 

Codes Used for Calculating Heat Stress Indices 

We calculated 13 heat stress indices, as detailed in Table 3, utilising established methods and 

already published codes with some modifications. Specifically, we integrated codes developed by 

Brimicombe et al.45 and Kong et al.46 to compute these indices. 

Brimicombe et al.45 developed thermofeel, a Python library from ECMWF, which facilitates the 

computation of various heat stress indices. thermofeel employs the same methods as those used 

for ERA5-Heat22 to calculate Tmrt and UTCI. thermofeel is available for download on GitHub 

(https://github.com/ecmwf/thermofeel), and comprehensive documentation, including a user 

guide, can be found in the thermofeel documentation  

(https://thermofeel.readthedocs.io/en/latest/). 

On the other hand, Kong et al.46 developed a Python code (https://zenodo.org/records/5980536) to 

calculate various heat stress indices, with a primary focus on Tnwb and Twbg. This code enhances 

the earlier formulation by Liljegren et al.36, which relied solely on surface solar radiation 

downward (ssrd) as the radiation input. Kong et al.45 expanded this by incorporating five radiation 

components (see Table 1) into the method developed by Liljegren et al.36. This modification 

provides a more comprehensive and accurate calculation using a complete set of radiation inputs. 

For detailed information on these components and their application in calculating Tnwb and Twbg, 

refer to Tables 1–3.  

Hourly Solar Radiation Conversion: J/m2 to W/m2 

The five radiation components listed in Table 1 were available from C3S as hourly-accumulated 

energy, measured in joules per square meter (J/m²). To calculate the heat stress metrics, we 

transformed this accumulated energy into average power flux, 𝑃(𝑡), in watts per square meter 

(W/m²). The conversion was done as follows47: 

𝑃(𝑡) =
𝐸(𝑡) − 𝐸(𝑡 − 1)

𝛥𝑡
 (1) 

 

𝐸(𝑡) = Energy measured in J/m2 at time 𝑡. 

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

https://github.com/ecmwf/thermofeel
https://thermofeel.readthedocs.io/en/latest/
https://zenodo.org/records/5980536


 

 
 

𝐸(𝑡) − 𝐸(𝑡 − 1) = Change in accumulated energy from the previous hour to the current hour 

𝛥𝑡 = 3600 s (time interval in seconds over which the energy difference was calculated) 

The solar radiation accumulated up to the first hour of the day was directly divided by 𝛥𝑡 to get 

the average power flux for the first hour 

(https://confluence.ecmwf.int/pages/viewpage.action?pageId=197702790). 

Cosine of the Solar Zenith Angle (𝐜𝐨𝐬 𝜽)  

For calculating Tmrt and Tnwb, cosθ was required as an input variable (Table 3) as it affects the 

amount of solar radiation a standing person receives22. The cosθ converts direct solar radiation 

from a flux passing through a horizontal plane to a plane perpendicular to the incoming solar 

rays46,47. This conversion can be done by dividing tsdsrs with cosθ (Table 2). Since ERA5 

reanalyses radiation data are accumulated hourly, cosθ was required for each interval46. If the 

interval includes sunrise or sunset time, zeros from sun-below-horizon periods can make cosθ too 

small, leading to overestimated solar radiation and spiked values of heat stress indices that depend 

on radiation components46,48. Following Kong et al.46 and using their code, we averaged cosθ only 

during the sunlit portion of the hourly interval. Kong et al.46 employed the method described by Di 

Napoli et al.47 to calculate cosθ (Table 2).   

Calculation of Heat Stress Indices 

We calculated all heat stress indices using thermofeel45, except for Tnwb, which was calculated 

using the code provided by Kong et al.46. The following section outlines the methods and equations 

used to calculate heat stress indices. 

Mean Radiant Temperature (Tmrt) 

The Tmrt for a person in a specific environment, posture, and clothing is defined as the uniform 

temperature of an imaginary black-body enclosure (with an emissivity ε = 1) that would produce 

the same net radiant energy exchange with the person as the actual, more complex radiative 

surroundings47,49. Tmrt reflects how humans perceive thermal radiation (total net shortwave and 

longwave radiation) from their surroundings22,50. We calculated the Tmrt using the framework 

described by Di Napoli et al.47, which was also used to produce ERA5-Heat22,42. This framework 

computes Tmrt globally for a human body exposed to both direct and diffuse components of short-

wave and longwave radiation, and it accounts for variations in the sun's position during the 

numerical model's accumulation interval. Incorporating the direct solar radiation from the sun 

(dsrp; see Table 2), the Tmrt was calculated using the following equation47,51.  
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𝑇𝑚𝑟𝑡 = {
1

𝜎
[𝑓𝑎  × 𝑠𝑡𝑟𝑑 + 𝑓𝑎  × 𝑠𝑡𝑟𝑢

+
𝑎𝑖𝑟

𝜀𝑝
(𝑓𝑎  × 𝑠𝑠𝑟𝑑𝐷𝑖𝑓 + 𝑓𝑎  × 𝑠𝑠𝑟𝑢 + 𝑓𝑝  × 𝑑𝑠𝑟𝑝)]}

0.25

 

 

(2) 

Where σ is the Stefan–Boltzmann constant (5.67×10-8 W/m2K4), strd is surface thermal radiation 

downwards, stru is surface thermal radiation upwards, ssru is surface solar radiation upwards 

(reflected), ssrdDif is the diffuse component of the surface solar radiation downwards (ssrd). When 

exposed to solar radiation, the human body surface, including clothing and skin, is assumed to 

have a shortwave absorptance (αir) of 0.7 and a longwave emissivity (εp) of 0.9751. 

𝑓𝑝 is the surface projection factor, representing the fraction of the body surface directly exposed to 

solar radiation. This factor depends on the angle of incoming radiation (γ) relative to body posture. 

The posture considered is that of a standing or walking person, assumed to be rotationally 

symmetric47,52,53. In most cases, the detailed structure of a person's surrounding environment is 

unknown. Therefore, the person is assumed to be on an unshaded horizontal plane with equal solid 

angles (𝑓𝑎) of 0.5 assigned to both the sky and the surrounding surface51. 

𝑓𝑝 = 0.308 𝑐𝑜𝑠(𝛾(0.998 − 𝛾2/50000))54, 𝛾 =  90° − 𝜃: solar elevation angle, and 𝜃 = solar 

zenith angle during only the sunlit part of the interval, which is the angle between the zenith and 

centre of the sun's disc and affects the amount of solar radiation received by a standing person47. 

Globe Temperature (Tg) 

Tg is the equilibrium temperature measured at the centre of a black-painted, hollow copper sphere 

that absorbs radiant heat from all directions55. It was designed to reflect the temperature perceived 

by humans, capturing the combined effects of radiation, air temperature, and wind 55. Tg is often 

used as input to calculate heat stress indices, especially the Twbg. However, a significant challenge 

in estimating the Twbg from meteorological data is the lack of Tg measurements at most weather 

stations worldwide56,57. Tg has some limitations. Increased air movement can raise Tg in cold 

environments, leading to an incorrect perception of improved comfort when the actual sensation 

is colder. Furthermore, when air and surrounding surfaces are at the same temperature, Tg remains 

unchanged with varying wind speeds, despite increased wind affecting thermal sensation17. 

thermofeel calculates Tg by solving the equation from Brimicombe et al.48 using Tmrt, T2m, and 

ws2 as inputs. 

𝑇𝑚𝑟𝑡 = √𝑇𝑔 
4 +

ℎ𝑐𝑔

𝜀 × 𝐷0.4
× (𝑇𝑔 − 𝑇2𝑚)

4

 

 

(3) 

where, ℎ𝑐𝑔 = 1.1 × 108 × 𝑤𝑠20.6 (mean convective coefficient), ε is the emissivity of the globe, 

and D is the globe's diameter. 
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Universal Thermal Climate Index (UTCI) 

UTCI is a biometeorological index that quantifies the physiological response of the human body 

to an outdoor thermal environment. It is defined as the temperature of a reference environment that 

would elicit the same dynamic physiological response as the actual environment58. UTCI expresses 

how hot or cold a person feels based on air temperature, wind speed, humidity, and radiant heat 

(Tmrt), using a detailed thermophysiological model of the human body. The UTCI was calculated 

using the same method as for ERA5-Heat by Di Napoli et al.22. In ERA5-Heat, UTCI was based 

on the approximation function developed by Bröde et al.59 using the following sixth-order 

polynomial regression function27,59:  

 𝑈𝑇𝐶𝐼 = 𝑇2𝑚 + 𝑓(𝑇2𝑚, ws10, Tmrt, e)    

 

(4) 

Where 𝑓 is the offset between UTCI and T2m (𝑖. 𝑒., 𝑇𝑚𝑟𝑡 − 𝑇2𝑚)  calculated using sixth-order 

polynomial regression27, and it depends on T2m, Tmrt, wind speed, and humidity, expressed as 

either water vapour pressure (e) or rh59. The physiological model used to calculate UTCI includes 

a formula that converts wind speed measured at 10 meters to wind speed at the body level59. 

Therefore, we use the 10-meter wind speed as input for UTCI calculation. 

 

Natural Wet-bulb Temperature (Tnwb) 

Tnwb is measured using a sensor fitted with a wetted wick that is fully exposed to the environment, 

allowing it to respond to heat transfer via evaporation, solar radiation, and convection36,60. Thus, 

Tnwb is a useful proxy for assessing how environmental conditions affect the body's ability to cool 

through sweating36. The Tnwb was calculated using the following equation: 

𝑇𝑛𝑤𝑏 = 𝑇2𝑚 −
∆𝐻

𝑐𝑝

𝑀𝐻2𝑂

𝑀𝐴𝑖𝑟
(

𝑃𝑟

𝑆𝑐
)

0.56

(
𝑒𝑤 − 𝑒𝑎

𝑃 − 𝑒𝑤
) +

∆𝐹𝑛𝑒𝑡

𝐴ℎ
 

 

(5) 

where, 

∆𝐹𝑛𝑒𝑡 =
1

2
𝜋𝐷𝐿𝜀𝑤(𝑠𝑡𝑟𝑑 + 𝑠𝑡𝑟𝑢) − 𝜋𝐷𝐿𝜎𝜀𝑤𝑇𝑤

4 + (𝜋𝐷𝐿 +
𝜋𝐷2

4
) (1 − 𝛼𝑤)(1 −

𝑓𝑑𝑖𝑟)𝑠𝑠𝑟𝑑 + (𝐷𝐿 sin 𝜃 +
𝜋𝐷2

4
cos 𝜃) (1 − 𝛼𝑤)𝑓𝑑𝑖𝑟

𝑠𝑠𝑟𝑑

cos 𝜃
+ 𝜋𝐷𝐿(1 − 𝛼𝑤)𝑠𝑠𝑟𝑢   

 

(6) 

Where, ΔH: Latent heat of vaporisation of water; 𝑐𝑝: specific heat capacity of dry air; 𝑀𝐻2𝑂: molar 

mass of water vapour; 𝑀𝑎𝑖𝑟: molar mass of dry air; Pr: Prandtl number; Sc: Schmidt number; 𝑒𝑤: 

vapour pressure at the wick surface (Pa); 𝑒𝑎: ambient vapour pressure; P: surface pressure (Pa); 

ΔF: net radiative gain by the wick; D: diameter of the wick or globe; L: length of the wick; 𝜀𝑤: 

emissivity of the wick surface; 𝛼𝑤: albedo of the wick; fdir: ratio of the direct solar radiation; A: 

surface area of the wick; h: convective heat transfer coefficient. In the original physical model of 
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Liljegren et al.36, the radiation components, such as strd, stru, ssru, and fdir, were approximated 

due to data limitations46. In contrast, the present study uses these components directly, as they are 

readily available, eliminating the need for approximation. 

Indoor or Shaded Wet-bulb Temperature (Twb) 

Twb is measured as a function of T2m and rh by following an empirical expression developed by 

Stull35: 

𝑇𝑤𝑏 = 𝑇2𝑚 𝑎𝑡𝑎𝑛 [0.151977(𝑟ℎ% + 8.313659)
1

2] + 𝑎𝑡𝑎𝑛(𝑇2𝑚 + 𝑟ℎ%) −

𝑎𝑡𝑎𝑛(𝑟ℎ% − 1.676331) + 0.00391838(𝑟ℎ%)
3

2 𝑎𝑡𝑎𝑛(0.023101𝑟ℎ%) − 4.686035  

 

(7) 

where, 5% ≥ 𝑟ℎ ≤ 99% and −20℃ ≤ 𝑇2𝑚 ≤ 50℃.  

Lethal Heat Stress Index (Lsi) 

The Lsi captures the relationship between temperature, humidity, and heatwave-related mortality 

while remaining comparable to the physical wet-bulb metric. It enables the assessment of how soil 

drying affects fatal heat stress across various climates30. Wouters et al.30 defined Lsi by the 

following equation: 

𝐿𝑠𝑖 = 𝑇𝑤𝑏 + 4.5 (1 − [
𝑟ℎ

100
]

2

) 

[Figure 1 goes here] 

 

(8) 

The adjustment term 4.5(1−[rh/100]2) was added to improve Twb under low humidity conditions. 

This term becomes zero at 100% relative humidity (rh), at which point cooling by sweating is no 

longer effective30. Wouters et al.30 used Twb to calculate Lsi in equation (8); however, we present 

two versions: one using Twb for indoor or shaded conditions and another using Tnwb, which 

improves accuracy by accounting for wind and radiation effects for outdoor conditions. We refer 

to the latter as the natural lethal heat stress index (Lsin).  

Wet-Bulb Globe Temperature (Twbg) 

Twbg was developed for the US Army to assess heat stress risk under direct sunlight and to guide 

protective measures to prevent heat-related risks36,61. Twbg is widely used for monitoring the 

impacts of heat stress on public health62, labour productivity45, and sports activities63. Simple 

approximations of Twbg largely overestimate heat stress in hot and humid conditions and 

underestimate it in subtropical dry regions46. Therefore, we utilise the physically based Twbg 

model developed by Liljegren et al.36 and modified by Kong et al.46 to incorporate the influence of 
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direct solar radiation. The outdoor Twbg was calculated as a weighted sum of Tnwb, Tg, and T2m, 

as shown in the following equation (9) 

𝑇𝑤𝑏𝑔 = 0.7 × 𝑇𝑛𝑤𝑏 + 0.2 × 𝑇𝑔 + 0.1 × 𝑇2𝑚 

 

(9) 

Humidex (Hu) 

Hu is an index developed in Canada to quantify how hot it feels to a person, considering both air 

temperature and humidity64. The Hu is defined as a number that represents the perceived 

temperature, taking into account both the actual air temperature and the moisture content in the 

air64. It was calculated using the following equation (10)64: 

𝐻𝑢 = 𝑇2𝑚 +
5

9
(𝑒 − 10) 

 

(10) 

Where 𝑒 is the vapour pressure of water. Hu can be easily calculated from two meteorological 

parameters, T2m and Td2m, and its value is always equal to or greater than T2m64. 

Normal Effective Temperature (NET) 

NET is a thermal comfort index that combines T2m, rh, and ws2 into a single value, reflecting 

human thermal stress in both hot and cold conditions65. It is expressed by the following equation 

(11)65: 

𝑁𝐸𝑇 = 37 −
37 − 𝑇2𝑚

0.68 − 0.0014 × 𝑟ℎ +
1

(1.76 + 1.4 × 𝑤𝑠1.20.75)

− 0.29 × 𝑇2𝑚(1 − 0.01 × 𝑟ℎ) 

 

(11) 

Thermofeel calculates the wind speed at 1.2 m (ws1.2) by equation (12). 

[Figure 2 goes here] 

𝑤𝑠1.2 = 𝑤𝑠10 (
𝑙𝑜𝑔10(1.2

𝑧0
⁄ )

𝑙𝑜𝑔10(10
𝑧0

⁄ )
) 12 

Z0 is the surface roughness length, set to 0.01 m, representing smooth open terrain. Like wind chill 

and apparent temperature, NET rises with higher temperature and humidity in hot weather but 

drops with stronger winds. In cold weather, NET decreases as temperature drops and humidity and 

wind speed increase65. 

Apparent Temperature (AT) 

AT is calculated using the empirical equation (4), which approximates the perceived temperature 

to the human body based on T2m, rh, and wind speed. The AT adjusts the T2m based on air 

moisture content, which affects the evaporative cooling capacity of the human body66. 
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𝐴𝑇 = 𝑇2𝑚 + 0.33 × 𝑟ℎ − 0.70 × 𝑤𝑠1.2 − 4 

 

(13) 

The thermofeel takes ws10 as input and converts it to wind speed at 1.2 m (ws1.2) using the 

following empirical approximation. 

𝑤𝑠1.2 = 𝑤𝑠10 ×
4.87

ln (67.88 × 𝑧𝑤𝑠 − 5.42)
 (14) 

 

Where zws is the height at which the wind speed was measured (here, 10 m), thus, AT provides 

heat stress values at human height.  

Wind Chill (WC) 

WC quantifies heat loss from the human body caused by the combined effects of wind and low 

temperatures in cold environments67. It estimates the cooling power of the atmosphere, reflecting 

how cold it feels to the human body when exposed skin is subjected to cold air and wind68. WC 

was calculated using the equation (15) given in Coccolo et al.68: 

𝑊𝐶 = 13.12 + 0.6215 × 𝑇2𝑚 − 11.37 × 𝑤𝑠20.16 + 0.3965 × 𝑇2𝑚 × 𝑤𝑠20.16 

 

(15) 

While useful in cold, windy conditions, WC overlooks solar radiation and individual 

characteristics, overestimating cooling for bare skin and underestimating it for clothed 

individuals68. 

Heat Index Adjusted (HI) 

Heat Index Adjusted is a measure of human-perceived equivalent temperature that accounts for air 

temperature and humidity, with correction terms applied under specific extreme conditions to 

enhance accuracy, as described by the US National Weather Service (NWS) methodology. The HI 

equation69 (Eq. 16) was developed using multiple regression analysis of T2m and rh, based on the 

original version of Steadman66,70. thermofeel calculates HI using the Rothfusz69  

[Figure 3 goes here] 

[Figure 4 goes here] 

regression equation and applies three adjustments to it under specific conditions described by the 

US NWS (https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml). The Rothfusz69 

empirical regression equation for HI is as follows:  

𝐻𝐼𝑅 = −42.379 + 2.04901523 × 𝑇2𝑚 + 10.1433312 × 𝑟ℎ − 0.22475541 × 𝑇2𝑚 × 𝑟ℎ
− 0.00683783 × 𝑇2𝑚2 − 0.05481717 × 𝑟ℎ2 + 0.00122874 × 𝑇2𝑚2 × 𝑟ℎ
+ 0.00085282 × 𝑇2𝑚 × 𝑟ℎ2 − 0.00000199 × 𝑇2𝑚2 × 𝑟ℎ2 

 

(16) 
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Adjustment 1 is an initial approximation for low heat index values when environmental conditions 

are not excessively hot or humid, and a simplified formula is used to estimate the heat index more 

appropriately. 

𝐻𝐼𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.5 × (𝑇2𝑚 + 61 + 1.2(𝑇2𝑚 − 68) + 0.94 × 𝑟ℎ) 

 

(17) 

  

𝑇𝑎𝑣𝑔 =
𝑇2𝑚 + 𝐻𝐼𝑖𝑛𝑖𝑡𝑖𝑎𝑙

2
 

 

(18) 

If 𝑇𝑎𝑣𝑔 < 80℉, then 𝐻𝐼 =  𝐻𝐼𝑖𝑛𝑖𝑡𝑖𝑎𝑙; otherwise, 𝐻𝐼 =  𝐻𝐼𝑅 − 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡[2 𝑜𝑟 3], i.e. subtract 

Adjustment 2 or 3 from 𝐻𝐼𝑅 based on T2m and rh values. 

Adjustment 2 (Low humidity, high temperature) applies if rh < 13% and 80°F < T2m < 112°F 

 

𝐻𝐼 = 𝐻𝐼𝑅 − (
13 − 𝑟ℎ

4
) × √

17 − |𝑇2𝑚 − 95|

17
 

 

(19) 

Adjustment 3 (high humidity, moderate temperature) applies if rh < 85% and 80°F < T2m < 87°F 

𝐻𝐼 = 𝐻𝐼𝑅 − (
𝑟ℎ − 85

10
) × (

87 − 𝑇2𝑚

5
) 

 

(20) 

Data Records 

The CHI71 dataset is provided in NetCDF format, with monthly files containing hourly data for 

each heat index. Each monthly file is approximately 5.6 GB, totalling roughly 73 TB and 11,700 

files over 75 years (1950-2024). The CHI71 data are available for access and download via Globus 

(https://www.globus.org/), hosted in the KAUST (King Abdullah University of  

[Figure 5 goes here] 

Science & Technology) Data Repository – Datawaha. To download the data, users must sign in to 

Globus using one of the following options: a Globus ID, ORCID, GitHub, Google account, or 

institutional credentials. The user can freely access the data, along with the user guide, description, 

and metadata from https://doi.org/10.6084/m9.figshare.30539867. 

Each heat index dataset spans from 00:00 UTC on January 2, 1950, to 23:00 UTC on December 

31, 2024. Files follow the naming convention: CHI_<IndexName>_YYYY-MM.nc, where  
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<IndexName> is the abbreviation of the specific index as listed in Table 3. For example, the file 

containing UTCI data for June 2015 would be named: CHI_UTCI_2015-06.nc. 

Technical Validation 

A comprehensive technical validation of the generated heat stress indices would require high-

quality, globally observed gridded or station-based data, which is not thoroughly available for all 

indices. However, the ECMWF reanalysis products (ERA524 and ERA5-Land28,29), the 

computational methods, and the codes45,46
 used in this study are well documented, widely accepted, 

and have been previously validated25. Therefore, in this work, we present maps of each heat stress 

index for January and July, shown as daily maximum values, except for WC, which is presented 

as both daily minimum and maximum. All results are averaged over the 1950–2024 period, and 

we include their averaged spatial range from minimum to maximum. We encourage users to 

conduct region-specific validation using locally available observational data, depending on their 

geographic location and application context. 

Figures 1 and 2 present the daily maximum values for January and July, respectively, averaged 

from 1950 to 2024, for all calculated heat stress indices except the WC index. These figures also 

illustrate the average global spatial range of each index. Figure 3 displays the daily minimum and 

maximum WC values for the same months and period. These figures demonstrate that all heat 

stress indices have been reliably computed, with their spatially averaged minimum and maximum 

values falling within physically reasonable and valid ranges. As expected, Lsin exhibits higher 

values than Lsi due to the inclusion of radiative effects, which Lsi does not account for. 

We compare the CHI71 dataset with ERA5-Heat22 and HiGTS27 for the global heatwave on June 

20, 2015 (Figs. 4–5). This date was selected due to a widespread heatwave event affecting parts of 

Europe, North America, Asia, and South America72. CHI's UTCI is compared with ERA5-Heat 

and HiGTS (Figs. 4a, c, e and 5a, c, d, f), while Tmrt is compared only with ERA5-Heat (Figs. 4b, 

d and 5b, e). 

Figure 4 shows that CHI successfully captures the spatial pattern of the heatwave and aligns well 

with ERA5-Heat and HiGTS. However, Figure 5 reveals notable differences in colder regions such 

as Greenland, Canada, the Tibetan Plateau, northern Russia, and southern South America. The 

differences between CHI and ERA5-Heat (HiGTS) for UTCI range between -22.3 (-6.5) and +20 

(+10) °C, respectively. These discrepancies may arise from differences in  

[Figure 6 goes here] 

spatial resolution—CHI at 0.1° versus ERA5-Heat at 0.25°—which can smooth terrain, alter 

coastal gradients, and affect wind fetch, contributing to spatial differences. Interpolation to a 

common grid can also introduce artificial warm/cool biases around steep terrain or coastlines, 

appearing as positive or negative UTCI differences. 
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We present histograms of the bias distribution (Fig. 5d–f), which show that the 95th and 99th 

percentile differences of CHI UTCI relative to ERA5-Heat (HiGTS) UTCI are 2.49°C (1.21°C) 

and 4.57°C (2.49°C), respectively, indicating that only a small fraction of grid points exhibit larger 

differences. For Tmrt, the corresponding 95th- and 99th-percentile biases are 2.9°C and 6.8°C, 

respectively. 

Figure 6 compares CHI with HiTSEA for the heat stress indices common to both datasets on June 

10, 2019, during a severe heatwave over India and Pakistan. Both datasets show consistent spatial 

patterns, capturing the extent and intensity of the heatwave across all indices. Most indices exhibit 

near-zero bias across the region; however, larger differences are noticeable for Tmrt and UTCI, 

particularly over the Tibetan Plateau and other relatively colder areas (Fig. 7). These differences 

may be attributed to CHI using 2 m wind speed. In contrast, HiTSEA uses 10 m wind speed (except 

for UTCI and NET), which can influence convective cooling. Also, HiTSEA applies a slightly 

different formulation for the projected area factor,  𝑓𝑝, which may contribute to these differences 

in Tmrt and UTCI. 

These differences are particularly pronounced because the comparison focuses on a single 

heatwave event. Such discrepancies would likely decrease over extended periods, such as for 

annual or multi-year averages. 

Usage Notes 

We provide high-resolution hourly data for 13 heat stress indices from 1950 to 2024, suitable for 

assessing both heat and cold waves for indoor and outdoor environments across diverse climatic 

conditions and applications. Each index has its own range of normal-to-extreme threshold values 

to evaluate heat stress. Further details on interpretation scales can be found in the thermofeel45 

documentation (https://thermofeel.readthedocs.io/en/latest/) and related studies70,73. 

Wouters et al.30
 identified two key thresholds for Lsi, derived from global mortality data: Lsi = 

19°C indicates the onset of excess mortality ("lethal"), while Lsi = 27°C reflects conditions where 

mortality becomes highly likely ("deadly"). These thresholds are based on daily mean values and 

align well with historical patterns of heatwave mortality. 

Indices such as Twb, Lsi, Hu, NET, AT, and HI are most applicable to indoor or shaded 

environments, while UTCI, Tnwb, Lsin, and Twbg are better suited for assessing outdoor, 

radiation- and wind-exposed conditions. The Lsi and Lsin indices are particularly relevant for 

evaluating heat-related risks in low-humidity areas, including agricultural zones, arid regions, and 

wetlands. 

[Figure 7 goes here] 
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The CHI dataset supports multidisciplinary applications in climate science, public health, labour 

productivity, climate risk assessment and adaptation planning, as well as indoor and outdoor heat-

stress assessment.   

The urban heat island (UHI) effect, which refers to the temperature difference between urban areas 

and their surrounding rural areas74, intensifies heat stress, posing a significant threat to  

vulnerable populations75. While high-resolution data is ideal for identifying intra-urban heat 

hotspots, moderate-resolution datasets, such as 9 km, are effective for regional-scale heat island 

characterisation. Although Tmrt has a spatial resolution of 9 km, it still offers advantages over air 

or surface temperatures by accounting for radiative effects more comprehensively50,76. Thus, CHI 

Tmrt data and complementary heat indices can enable comparative assessments of broad regional 

thermal contrasts. 

Data Availability 

The user can freely access the data, along with the user guide, description, and metadata from 

https://doi.org/10.6084/m9.figshare.30539867. 

Code Availability 

The Python library thermofeel45, used to calculate most of the heat stress indices, is freely available 

on GitHub at https://github.com/ecmwf/thermofeel. We used thermofeel to compute rh and all heat 

indices except Tnwb. For Tnwb, along with variables such as cos θ, ws10, ws2, dsrp, and fdir, we 

utilised the Python code developed by Kong et al.46, which is available at 

https://zenodo.org/records/5980536. Both the thermofeel45 and Kong et al.46 codes were optimised 

and adapted to meet the requirements of CHI dataset production. The modified and integrated 

version of these codes is available for download and further use from the GitHub repository at 

https://github.com/masabhathini/CHIdatasets. 
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Tables 

Variable Abbreviation Units Source Data 

Eastward 

component 

of 10 m 

wind 

u10 m s-1 ERA5-Land28,29 

https://cds.climate.copernicus.eu/datasets/reanalysis-

era5-land?tab=overview 

 

Northward 

component 

of 10 m 

wind 

v10 m s-1  〃 

2 m 

temperature 

T2m K 〃 

2 m 

dewpoint 

temperature 

Td2m K 〃 

Surface 

pressure 

sp  Pa 〃 

Surface net 

solar 

radiation 

Snsr J m-2 〃 

Surface net 

thermal 

radiation 

Sntr J m-2  〃 

Surface 

solar 

radiation 

downwards 

Ssrd J m-2 〃 

Surface 

thermal 

radiation 

downwards 

Strd J m-2 〃 

Total sky 

direct solar 

radiation at 

the surface 

Tsdsrs J m-2 ERA524,40 

https://cds.climate.copernicus.eu/datasets/reanalysis-

era5-single-levels?tab=overview 
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Table 1. Input variables from ERA5 and ERA5-Land used for calculating heat stress indices in the 

CHI dataset. Variables include wind components, surface radiation fluxes, and near-surface 

meteorological parameters, with their units and data sources. 

 

 

 

 

 

 

 

Calculated 

Variable 

Abbreviation Units Source Code Method 

Relative 

humidity 

rh % thermofeel45 

 
𝑟ℎ = (

𝑒

𝑒𝑠
) × 100 

𝑒 = 𝑣𝑎𝑝𝑜𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

= 6.11 × 10
(

7.5×(𝑇𝑑2𝑚−273.15) 
237.3+(𝑇𝑑2𝑚−273.15)

)
 

𝑒𝑠 = 𝑠𝑎𝑡𝑢𝑟𝑎𝑡𝑒𝑑 𝑣𝑎𝑝𝑜𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

= 6.11 × 10
(

7.5×(𝑇2𝑚−273.15) 
237.3+(𝑇2𝑚−273.15)

)
 

 

Average 

cosine of 

the solar 

zenith 

angle 

during only 

the sunlit 

part of the 

interval 

cos 𝜃 unitless Kong et al.46 cos 𝜃 = 𝑠𝑖𝑛𝛿𝑠𝑖𝑛𝛷 +
1

ℎ𝑚𝑎𝑥−ℎ𝑚𝑖𝑛
cos𝛿cos𝛷(sin ℎ𝑚𝑎𝑥 − sin ℎ𝑚𝑖𝑛)   

 

δ = solar declination angle 

Φ = geographic latitude 

h = hour angle 

Di Napoli et al.47 

Wind 

speed at 10 

m 

ws10 m s-1 Kong et al.46  ws10 = √(𝑢10)2 + (𝑣10)2 

Spangler et al.25   

Wind 

speed at 2 

m 

ws2 m s-1 Kong et al.46  𝑤𝑠2

= 𝑚𝑎𝑥 (𝑤𝑠10 (
𝑧𝑤𝑠2

𝑧𝑤𝑠10
)

𝑢𝑟𝑏_𝑒𝑥𝑝[𝑠𝑡𝑎𝑏_𝑐𝑙𝑎𝑠𝑠−1]

 ,0.13) 

𝑧𝑤𝑠2

𝑧𝑤𝑠10
: ratio of the sensor heights 

𝑢𝑟𝑏_𝑒𝑥𝑝: urban exponent 

𝑠𝑡𝑎𝑏_𝑐𝑙𝑎𝑠𝑠: is the atmospheric stability class and is 

a function of cos 𝜃, ws10, and ssrd 

0.13 is the minimum ws2 threshold 

See Liljegren et al.36 

Direct   

radiation 

dsrp W m-2 Kong et al.46 
𝑑𝑠𝑟𝑝 =

𝑡𝑠𝑑𝑠𝑟𝑠

cos 𝜃
 𝑓𝑜𝑟 cos 𝜃 > 0 

Di Napoli et al.47 
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from the 

sun 

Ratio of 

direct solar 

radiation 

fdir unitless Kong et al.46 
𝑓𝑑𝑖𝑟 =  

(𝑠𝑠𝑟𝑑 − 𝑠𝑠𝑟𝑑𝐷𝑖𝑓)

𝑠𝑠𝑟𝑑
=

𝑡𝑠𝑑𝑠𝑟𝑠

𝑠𝑠𝑟𝑑
; 

𝑓𝑑𝑖𝑟 = {
0 𝑖𝑓 cos 𝜃 ≤ 0 𝑜𝑟 𝑓𝑑𝑖𝑟 < 0 

0.9 𝑖𝑓 𝑓𝑑𝑖𝑟 > 0.9
 

𝑡𝑠𝑑𝑠𝑟𝑠 = (𝑠𝑠𝑟𝑑 − 𝑠𝑠𝑟𝑑𝐷𝑖𝑓)  
𝑠𝑠𝑟𝑑𝐷𝑖𝑓: Diffuse component of ssrd 

Di Napoli et al.47 and Yan et al.1 

Surface 

thermal 

radiation 

upwards 

stru W m-2  𝑠𝑡𝑟𝑢 = 𝑠𝑡𝑟𝑑 − 𝑠𝑛𝑡𝑟 

Di Napoli et al.47 

Surface 

solar 

radiation 

upwards 

ssru W m-2  𝑠𝑠𝑟𝑢 = 𝑠𝑠𝑟𝑑 − 𝑠𝑛𝑠𝑟 

Di Napoli et al.47  

Diffuse 

solar 

radiation 

ssrdDif W m-2  𝑠𝑠𝑟𝑑𝐷𝑖𝑓 = 𝑠𝑠𝑟𝑑 − 𝑡𝑠𝑑𝑠𝑟𝑠 

Di Napoli et al.47  

Table 2. Derived variables and radiation parameters computed for intermediate processing in the 

CHI workflow. These variables are not directly available from ERA5 or ERA5-Land but were 

calculated using source code and methods cited.  

Sr. 

No 

Heat Stress 

Metric 

Abbreviation Units Input 

Variables 

Method Source Code 

1 Mean Radiant 

Temperature 

Tmrt K ssrd, snsr, 

dsrp, strd, 

tsdsrs, sntr, 

cos 𝜃 

Di Napoli et. 

al.47 

thermofeel45 

2 Globe 

Temperature 

Tg K T2m, Tmrt, 

ws2 

Guo et al.77; 

de Dear78, 

Brimicombe 

et al.48 

thermofeel45 

3 Universal 

Thermal 

Climate Index 

UTCI K T2m, ws10, 

Tmrt, svp 

Bröde et 

al.59; Di 

Napoli et 

al.47  

thermofeel45 

4 Natural Wet-

bulb 

Temperature 

Tnwb K T2m, rh, sp, 

ws2, ssrd, 

snsr, strd, 

sntr, fdir, 

cos 𝜃 

Liljegren et 

al.36 method, 

as modified 

by Kong et 

al.46 

Kong et al.46 

5 Indoor Wet-

Bulb 

Temperature  

Twb K T2m, rh Stull et al.35 thermofeel46 

6 Indoor Lethal 

Heat Stress 

Index 

Lsi K Twb, rh  Wouters et 

al.30 

 

7 Natural Lethal 

Heat Stress 

Index 

Lsin K Tnwb, rh  Wouters et 

al.30 

 

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS

https://link.springer.com/article/10.1007/s00484-011-0454-1#auth-Peter-Br_de-Aff1


 

 
 

8 Wet-Bulb 

Globe 

Temperature 

Twbg K T2m, Tmrt, 

ws2, Td2m  

Liljegren et 

al.36; 

Minard61  

thermofeel45  

9 Humidex Hu K T2m, Td2m Masterson et 

al.64 

thermofeel45 

10 Normal / Net 

Effective 

Temperature 

NET K T2m, ws2, 

rh 

Li et al.65 thermofeel45 

11 Apparent 

Temperature 

AP K T2m, rh, 

ws2 

Steadman66 thermofeel45  

12 Wind Chill WC K T2m, ws2 Coccolo et 

al.68 

thermofeel45  

13 Heat Index 

Adjusted 

HI K T2m, Td2m Rothfusz69, 

NOAA79 

thermofeel45 

 

Table 3. List of heat stress indices calculated in the CHI dataset, including their abbreviations, 

units, required input variables, computation methods, and source code used. 

 

 

 

 

 

Figure legends/captions 

Fig. 1. Spatial distribution of daily maximum values for January, averaged over 1950–2024, for 

all calculated heat stress indices except WC. Numbers in each subplot show global variability 

(minimum and maximum), highlighting regional contrasts. 

Fig. 2. Same as Figure 1 but for July, showing the spatial distribution of peak summer heat stress 

indices over global land areas. 

Fig. 3. Daily minimum and maximum values of WC for January (left column) and July (right 

column), averaged over 1950–2024.  

Fig. 4. Comparison of daily maximum UTCI and Tmrt on June 20, 2015, across three datasets: 

CHI, ERA5-Heat, and HiGTS. Panels (a), (c), and (e) show UTCI values from CHI, ERA5-Heat, 

and HiGTS, respectively, while panels (b) and (d) present Tmrt values from CHI and ERA5-Heat, 

respectively. The ranges in the panel titles indicate the minimum and maximum values (in °C) 

across the global domain for each dataset on the specified date.  

Fig. 5. Spatial distribution (left panels) and histograms (right panels) of bias between CHI and 

other datasets for UTCI and Tmrt on June 20, 2015. Panels (a) and (b) show UTCI and Tmrt biases 
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between CHI and ERA5-Heat, respectively, while panel (c) shows UTCI bias between CHI and 

HiGTS. Panels (d–f) show the corresponding percentage distributions of biases. The values in 

parentheses in the titles of panels (a–c) represent the mean bias and root mean square (RMS) error 

in °C. The histograms indicate the 95th and 99th percentile bias thresholds with green and magenta 

lines, respectively. Positive values indicate that CHI yields higher index values than HiTSEA and 

vice versa. 

Fig. 6. Comparison of the spatial pattern of daily maximum values of various heat stress indices 

from CHI and HiTSEA datasets during the heatwave over South East Asia (SEA) on June 10, 

2019. Panels (a–d, i–l) display indices from CHI, while panels (e–h, m–p) show the corresponding 

index from HiTSEA. The ranges in the panel titles indicate the minimum and maximum values (in 

°C) across SEA for each index on the specified date.  

Fig. 7. Spatial distribution of bias between CHI and HiTSEA (CHI minus HiTSEA) datasets for 

daily maximum heat stress indices over SEA on June 10, 2019. The values in parentheses in each 

panel title denote the mean bias and RMS error in °C. Positive values indicate that CHI yields 

higher index values than HiTSEA and vice versa. 

ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS



ARTI
CLE

 IN
 P

RES
S

ARTICLE IN PRESS


