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Abstract

Human activity recognition (HAR) with wearable sensors is widely applied in health monitoring, fitness
tracking, and smart environments, but the choice of sensor configuration remains a critical factor for
balancing recognition performance with usability and comfort. Existing datasets often lack the full-body
coverage required to systematically evaluate sensor placement strategies. We present a comprehensive
dataset of 12 daily activities performed by 30 participants, recorded using 17 inertial measurement units
(IMUs) distributed across the entire body. Each IMU provides tri-axial acceleration and angular velocity
signals at 60 Hz, aligned within a standardized global coordinate system. The dataset further includes
detailed anthropometric metadata, structured annotations of activity and effort level, and processing
scripts to support feature extraction, segmentation, and baseline model training. Benchmark
experiments with both machine learning and deep learning models demonstrate the usability of the
dataset across multiple temporal windows and sensor subsets. This resource enables systematic
evaluation of sensor layout strategies and supports the development of practical, generalizable HAR
systems.

Background & Summary
Human Activity Recognition (HAR) has emerged a vibrant research field with wide-ranging applications
in medical monitoring?3, fitness tracking*®, and intelligent living environments’®. While vision-based
methods have shown impressive performance, HAR systems based on wearable sensors remain more
robust for long-term monitoring, privacy-preserving scenarios, and settings involving unconstrained
movement. Among these, inertial measurement units (IMUs) are particularly attractive due to their
lightweight design, portability, and ability to capture accurate motion signals'®. A central challenge in
IMU-based HAR, however, lies in the choice and configuration of sensor placement across the body.
Over the past decade, several public datasets have advanced the study of HAR using IMUs. The
Skoda dataset!!, one of the earliest contributions, employed 19 accelerometers on the arms to classify
10 industrial gestures, explicitly exploring dynamic sensor selection but remaining restricted to upper-
body tasks. The PAMAP2'213 dataset recorded 18 physical activities from 9 participants using 3 IMUs on
the wrist, chest, and ankle—providing coverage of both torso and limbs, though at a relatively sparse
density. The Opportunity'* dataset extended this paradigm with a more complex multimodal setup of 7
IMUs, 12 accelerometers, and 4 localization sensors across the back, arms, and legs to support context-
aware recognition in smart home environments. However, its heterogeneous sensor layout across body
regions, combined with pronounced data imbalance, limit its generalizability. In contrast, widely used
benchmarks such as WISDM® and HCI-HAR'® adopt a single-device paradigm, focusing on using
smartphone-based sensing from the pocket or waist. While convenient, these configurations provide



only a narrow view of whole-body dynamics. Similarly, the Capture-24 dataset! offered ecologically

valid recordings under free-living conditions with more than 200 fine-grained activity labels, but relies
solely on a single wrist-worn accelerometer, thereby restricting analyses of multi-sensor layout and
trade-offs.

Despite their impact, existing datasets exhibit notable limitations in sensor coverage and layout.
Some datasets emphasize specific regions, such as arms or legs, while others attempt full-body
monitoring but suffer from uneven sensor distribution. Consequently, the effects of sensor placement
on recognition performance remains insufficiently characterized %1, To address these gaps, we present
a new IMU-based dataset collected from 30 participants performing 12 daily activities spanning a range
of intensities. Each subject was equipped with 17 IMUs uniformly distributed IMUs, enabling
comprehensive coverage of full-body motion. Alongside activity labels, we provide detailed annotations
of physical intensity, supporting detailed analysis of human movement. Crucially, the dataset is designed
to facilitate systematic evaluation of sensor subsets—such as upper- or lower-body only, or wrist-based
sensing alone—allowing researchers to quantify the trade-offs between recognition accuracy, sensor
density, and deployment practicality. By expanding both the scale and uniformity of sensor coverage,
this dataset establishes a new foundation for exploring efficient sensor layouts in real-world HAR
applications.

Methods

Participants. Participants were recruited via campus advertisements. Thirty healthy adult participants
volunteered to participate in this study. None reported neurological or musculoskeletal disorders that
could affect motion performance. Participant characteristics are summarized in Table 1. All procedures
were approved by the Ethics Committee of Fudan University, China (Application No. FE21124, approval
date: 16 August, 2021), and informed consent for both their participation in the study and the open-
access publication of their anonymized data was obtained from each participant prior to data collection.
To protect privacy, all personally identifiable information was removed, and participants were assigned
random ID codes (e.g., P01, P02).

Data collection. To minimize motion artifacts from clothing, participants wore athletic shirts and shorts,
as well as athletic footwear to prevent injuries during physical activities. Prior to sensor placement,
anthropometric measurements—including age, sex, height, weight, handedness, and body segment
lengths—were recorded from each participant.

A total of 17 IMUs from the Perception Neuron Studio motion capture system (Noitom Technology
Ltd., Beijing, China) were affixed to standardized anatomical landmarks, following the manufacturer’s
guidelines. Sensor locations were as follows: (1) posterior head; (2&3) shoulders (upper scapula), (4)
mid-upper back (medial scapular area), (5&6) dorsal upper arms (midpoint between shoulder and
elbow), (7&8) dorsal forearms (2/3 distal from elbow to wrist), (9&10) center of dorsal wrists, (11) lower
back (L5 vertebra), (12&13) lateral

Table 1. Participant demographics

Characteristics MeantSD
Participants (n) 30

Sex (M/F) 20/10
Age (years) 24.613.1
Height (cm) 172.1+8.7
Weight (kg) 63.9+10.2

BMI (kg/m?) 21.5+2.4



Dominant hand 29 right / 1 left
thighs (just below the hips), (14&15) anterior shanks (just below the knees), and (16&17) center of
dorsal feet. Sensors were secured with manufacturer-provided straps to minimize interference from
muscle stretching or vibration (Figure 1(a)). Temporal synchronization across the 17 IMU nodes is
ensured natively by the hardware architecture. The system utilizes a centralized receiver that aggregates
and synchronizes data packets from all nodes.

Before recording, each participant performed two calibration poses, A-pose and T-pose (Figure
1(a)), following the system’s user guide. In the A-pose, participants stood with palms resting against the
thighs and feet parallel. In the T-pose, participants abducted their arms to 90° with palms facing
downward. Data were transmitted wirelessly to a remote desktop at a sampling frequency of 60 Hz
(Figure 1(b)).

Participants then performed 12 daily activities: lying, sitting, standing, slow walking, moderate
walking, brisk walking, ascending stairs, descending stairs, cycling, running, jumping, and rowing, as
depicted in Figure 1(c). Details descriptions of each activity are provided in Table 2. To reduce fatigue
and ensure consistent performance, activities were divided into shorter trials based on their metabolic
equivalent of tasks (MET)?>%3, Activities of varying intensity were interleaved to form seven protocols
(Figure 1(d) and Table 3), thereby balancing workload across sessions and minimizing error due to
fatigue.

Figure 1 goes here

Benchmarks. To demonstrate the usability of the dataset for HAR, we conducted benchmarking

experiments using both traditional machine learning classifiers and modern deep learning models.

Models were evaluated under varying temporal window sizes and sensor configurations, and

performance was assessed on two tasks: activity classification and intensity classification.

Tasks. The activity classification task required recognition of 12 activity categories, illustrated in
Figurel(c). Transient or irrelevant movements were excluded from labeling. The intensity classification
task aimed to distinguish activity intensity level, defined according to MET?%%, Activities were grouped
into four categories:

(i) Sedentary effort (< 1.5 METs): lying and sitting;

(ii) Light effort (1.5-3.0 METs): standing and slow walking;

(iii) Moderate effort (3.0-6.0 METs): moderate walking, brisk walking, descending stairs, cycling, and
rowing;

(iv) Vigorous effort (> 6.0 METs): ascending stairs, running, and jumping.

All benchmark experiments used only the raw inertial signals (accelerometer and gyroscope) as
model inputs. Quaternion data, available from the motion capture system, was deliberately excluded to
ensure comparability with typical wearable-sensor datasets.

Models. We evaluated four representative models widely used in HAR research:

(i)  Random forest (RF): A balanced random forest classifier with 100 trees was implemented using the
default hyperparameters provided by scikit-learn?*, which have been shown to be robust for similar
tasks.

(ii) Support vector machine (SVM): A radial basis function (RBF) kernel was used, with default values
for the regularization parameter, kernel coefficient, and other hyperparameters.

(i) Convolutional neural network (CNN): We adopted a 1D variant of ResNet-18%, in which 2D
convolutional blocks were replaced with 1D convolutions to capture temporal dependencies. The
architecture consists of four residual stages with {2,2,2,2} basic blocks, followed by global average
pooling and a fully connected output layer.



(iv) Recurrent neural network (RNN): A bidirectional Long Short-Term Memory (LSTM) network with
two layers and 128 hidden units per direction was implemented. The output from the final time
step was passed through a dropout layer (p=0.5) and a fully connected classifier.

Table 2. Detailed descriptions of 12 daily activities

Activity  Activity Description
1 Lying Lying quietly and still, allowing only slight movement, such as changing
the lying posture
5 Sitting Sitting in a chair in any posture the participant finds comfortable,
allowing adjustments to sitting postures
3 Standing Standing still or talking while standing still, possibly gesticulating
4 Slow walking Walking at a low speed of 0.9 m/s on an indoor treadmill
5 Mod_erate Walking at a moderate speed of 1.2 m/s on an indoor treadmill
walking
6 Brisk walking Walking at a fast speed of 1.5 m/s on an inside treadmill
7 Ascending Performed at moderate intensity indoors, requiring crossing two floors
stairs when ascending
8 Descending Performed at moderate intensity indoors, requiring crossing two floors
stairs when descending
Performed indoors on a stationary bicycle at a slow to moderate pace,
9 Cycling as if the participant were commuting to work or cycling for leisure
(rather than as a sport activity)
10 Running Jogg'in'g on an indoor treadmill, with speed adjusted according to the
participant’s personal preference
1 Jumping T.he basic jump actior.1 perforr.ned b.y jumping with both feet
simultaneously, possibly gesticulating
Performed indoor on a rowing machine at slow to moderate pace, as if
12 Rowing the participant were engaged in leisurely rowing (rather than as a sport
activity)
0 Other Transient or irrelevant activities
Table 3. Data collection protocols
Protocol Action MET Iteration
Standing for 1 minute 1.8 MET
Protocol 1 Slow walking for 2 minutes 2.5 MET 5 times
Running for 2 minutes 7.0-8.0 MET
Resting for 2 minutes -
Standing for 1 minute 1.8 MET
Protocol 2 Moderate walking for 2 minutes 3.3 MET 5 times
Brisk walking for 2 minutes 3.8 MET
Resting for 1 minute -
Sitting for 1 minute 1.8 MET
Protocol 3 Jumping for 1 minute 8.0-10.0 MET 10 times
Resting for 1 minute -
Protocol 4 Lying for 10 minutes 1.0 MET 1time
Protocol 5 Row'ing for1l m'inute 7.0 MET 10 times
Resting for 1 minute -
Protocol 6 Cycling for 3 minutes 4.0 MET A times

Resting for 1 minute -




Ascending stairs for 30 seconds 8.0 MET
Protocol 7 Descending stairs for 30 seconds 3.0 MET 20 times
Resting for 1 minute -

Input representations. For RF and SVM classifiers, we extracted handcrafted features from the tri-
axial accelerometer and gyroscope signals of each IMU channel. A total of 18 features, commonly
adopted in prior HAR literature®”25, were considered. These include 14 time-domain features—mean,
variance, maximum, minimum, range, skewness, energy, entropy, interquartile range (IQR), median
absolute deviation (MAD), root mean square (RMS), signal magnitude area (SMA), zero-crossing rate
(ZCR), and mean-crossing rate (MCR)—and 4 frequency-domain features: spectral centroid, spectral
variance, spectral entropy, and dominant frequency.

To systematically examine the effects of feature engineering and dimensionality on classification
performance, we designed four feature subsets with increasing complexity:

(i) Set of 4 features: mean, variance, spectral centroid, spectral variance (24 features per IMU per
window).
(ii) Set of 7 features: Set of 4 features + maximum, minimum, dominant frequency (42 features per

IMU per window).
(iii) Set of 9 features: Set of 7 features + ZCR, MCR (54 features per IMU per window).
(iv) Set of 18 features: Full set of 18 features (108 features per IMU per window).

In addition, we benchmarked RF and SVM classifiers directly on raw inertial signals to evaluate the
benefit of feature extraction. For the deep learning models (ResNet1D and bidirectional LSTM), raw
accelerometer and gyroscope signals were used exclusively, without handcrafted features, in line with
standard practice.

Evaluation Protocol. To ensure robust and subject-independent evaluation, we adopted a subject-
wise 5-fold cross-validation. In each fold, data from five participants were held out for testing, while the
remaining 20 are used for training. Sliding-window segmentation with 50% overlap was applied,
ensuring that all data from a given participant were strictly assigned to either training or testing set,
thereby eliminating the risk of data leakage?.

To examine the effect of temporal granularity on classification performance, we evaluated model
performance under eight window sizes: 0.5, 1, 1.5, 2, 2.5, 5, 7.5, and 10 seconds. These windows span
short to long temporal contexts commonly employed in HAR tasks. Windows containing multiple
activities were excluded. Each model was trained independently for each window size, and performance
was reported as the average accuracy across the five folds. For RF and SVM trained on raw data, only
the four longest windows (2.5s to 10s) were considered due to computational constraints.

Sensor Configuration Analysis. To quantify the impact of sensor placement on classification
accuracy, we evaluated six reduced configurations (Figure 1(f)): an upper-body setup (10 IMUs), a lower-
body setup (7 IMUs), an L5-thigh-shank setup (3 IMUs located at L5 vertebra, left thigh, and left shank),
and three single-IMU setups located at the left thigh, left foot, and left wrist.

These reduced configurations were designed to simulate practical scenarios with constrained
sensor deployment. For each configuration, the best-performing model identified in the full-body
experiments was retrained using only the corresponding subset of sensors. The resulting performance
provides baseline references for sensor selection studies and offers insight into the sufficiency of partial-
body input for real-world HAR applications.

Implementation Details. All experiments were conducted in Python (Python Software Foundation,
https://www.python.org/). The RF and SVM classifiers were implemented using the scikit-learn library?,
while the DL models (ResNet1D and LSTM) were implemented in PyTorch?® and trained on a single
Nvidia GeForce RTX 2080 Ti GPU. For the DL models, optimization was performed using the Adam
algorithm with a learning rate of 0.001 using cross-entropy loss. Training was subject to early stopping



with a patience of 10 epochs to prevent overfitting. All input signals were Z-score normalized using the
mean and standard deviation of the training set, ensuring feature scaling within the range 0-1 prior to
model training.

Data Records

Each IMU provides multi-channel signals, including tri-axial acceleration from an accelerometer (Acc)
and tri-axial angular velocity from the gyroscope (Gyr). In addition, the motion capture system computes
the sensor’s orientation in four quaternions (Quat). All signals are expressed relative to a world
coordinate system established during calibration. In this system, the Z-axis points forward, aligned with
the participant’s facing direction during calibration (from back to front), the Y-axis points vertically
upward, and the X-axis completes the right-handed coordinate system, pointing laterally to the
participant’s left. The origin is defined as the horizontal projection of the sensor positioned at the L5
vertebra during calibration.

The raw readings are stored as CSV files in the ‘data’ folder, available at Figshare?®. Each
participant’s trial data file is named as ‘P#.csv’, where ‘# denotes the participant identifier. The total
size of the dataset is approximately 21.2 GB. Anthropometric information for all participants is provided
in a separate CSV file ‘anthropometric information.csv’. The structure of the trial data files is
summarized in Table 4, which lists the columns definitions for accelerometer, gyroscope, and
guaternion channels.

Table 4. Data columns description. ‘BodyPart*’ represents 17 body parts equipped with IMUs, including:
LowerBack, RightThigh, RightShank, RightFoot, LeftThigh, LeftShank, LeftFoot, UpperBack, Head, RightShoulder,
RightUpperArm, RightForeArm, RightWrist, LeftShoulder, LeftUpperArm, LeftForeArm, and LeftWrist

Columns Format Units Descriptions

Activity Int N/A Activity ID

Acc_X_BodyPart* Float m/s? Acceleration along the X-axis
Acc_Y_BodyPart* Float m/s? Acceleration along the Y-axis
Acc_Z_BodyPart* Float m/s? Acceleration along the Z-axis
Gyr_X_BodyPart* Float rad/s Angular velocity about the X-axis
Gyr_Y_BodyPart* Float rad/s Angular velocity about the Y-axis
Gyr_Z_BodyPart* Float rad/s Angular velocity about the Z-axis
Quat_X_BodyPart* Float N/A X-component of orientation quaternion
Quat_Y_BodyPart* Float N/A Y-component of orientation quaternion
Quat_Z_BodyPart* Float N/A Z-component of orientation quaternion
Quat_W_BodyPart* Float N/A Scalar component of orientation quaternion

Data Overview

Figure 2 illustrates acceleration and angular velocity data from 6 sensors (head, upper back, left wrist,
lower back, left thigh, and left foot) captured within a 3-second window from participant PO1 during a
moderate walking trial, serving as an example of raw data. Table 5 provides the average duration and
standard deviation of each activity across participants. Table 6 lists the number of resulting samples for
each activity when using the window sizes ranging from 0.5 to 10 seconds (with 50% overlap).

Figure 2 goes here



Technical Validation

Benchmark Results and Analysis. We validate the usability of the dataset for HAR through extensive

benchmarking experiments spanning classification tasks, model families, temporal window sizes, and
sensor configurations.



Table 5. Activity durations

Activity_ID Activities Duration(s) Activity_ID Activities Duration(s)
1 Lying 564.3+285.5 | 7 Ascending stairs 473.4+157.6
2 Sitting 719.0+416.6 | 8 Descending stairs 440.8+152.5
3 Standing 652.9+210.6 | 9 Cycling 610.7+130.6
4 Slow walking 612.1+153.0 | 10 Running 609.6+114.8
5 Moderate walking 610.0+176.3 | 11 Jumping 571.2+160.2
6 Brisk walking 633.1+95.2 12 Rowing 566.6+193.8
0 Others 332.7+194.3

Table 6. Number of samples for each activity and window size

Activity_ID Activities 0.5s 1s 1.5s 2s 2.5s 5s 7.5s 10s

1 Lying 67647 33783 22501 16853 13475 6699 4441 3312
2 Sitting 86011 42864 28482 21290 16975 8353 5484 4043
3 Standing 77748 38560 25510 18983 15065 7273 4701 3409
4 Slow walking 73362 36632 24393 18267 14594 7244 4798 3576
5 Moderate walking 73101 36503 24297 18201 14535 7218 4774 3557
6 Brisk walking 75872 37885 25225 18892 15098 7498 4967 3700
7 Ascending stairs 54589 26154 16685 11961 9103 3418 1581 698

8 Descending stairs 50541 24060 15229 10834 8164 2888 1241 521

9 Cycling 73198 36554 24343 18234 14578 7248 4804 3579
10 Running 72996 36410 24220 18121 14469 7153 4712 3498
11 Jumping 68126 33853 22426 16710 13285 6443 4153 3024
12 Rowing 67909 33913 22580 16919 13515 6717 4451 3323

Activity Classification. Figure 3 illustrates the performance of RF, SVM, ResNet1D and LSTM on the
12-class activity recognition task across window sizes ranging from 0.5 to 10 seconds. Among traditional
machine learning classifiers, the SVM with 18 handcrafted features achieves the highest accuracy,
exceeding 95.8% across all window sizes and peaking at 97.1% with a 7.5-second window. The RF
classifier demonstrates competitive performance, reaching 95.8% with 18 features at 2 seconds, while
also achieving 95.8% with only 9 features on longer windows (10 seconds).

Figure 3 goes here

Both models show sensitivity to feature richness: SVM benefits significantly from richer feature
representations, with accuracy dropping by 2.8£0.5% when reduced to only 4 features. RF is less
sensitive, showing a 0.910.2% reduction when features are reduced from 18 to 4. In contrast, when
trained on raw signals without feature engineering, both SVM and RF models degrade significantly—
particularly SVM, which falls below 70% accuracy on longer windows—highlighting the necessity of
handcrafted features for traditional classifiers. DL models, by contrast, are generally more robust to raw
input. ResNet1D perform competitively, particularly on shorter windows, reaching 95.1% accuracy with
raw data on a 2-second window. LSTM models trail slightly, plateauing around 94.5%.

Figure 4 depicts normalized confusion matrices for the best-performing traditional classifier (SVM
with 18 features) and DL model (ResNetlD, raw input), both evaluated at the 2-second window. A
common source of confusion occurs between static postures, particularly the distinction between sitting
and standing. This is expected because the static nature of the signals can be highly similar across these
classes. Another notable confusion arises in fine-grained categories, such as walking activities at



different speeds—through varying in intensity, they exhibit similar patterns. Overall, SYM demonstrates
stronger performance, as reflected by the higher diagonal values. However, SVM also shows a distinct
misclassification pattern: running mislabeled as jumping. This confusion occurs due to the similar
impulsive vertical acceleration peaks and lower-limb dynamics shared by these two high-intensity
activities. It suggests that SVM with handcrafted features emphasizes localized signal characteristics and
is less effective at capturing the global movement differences. In contrast, the ResNet1D captures global
temporal patterns and is better able to separate such distinct activities, resulting in minimal confusion
between jumping and running. In addition, note that both models encounter challenges with rowing-
sitting/lying confusion pair. Unlike the confusion between running and jumping that stems from
dynamic properties, the confusion between rowing and sitting/lying arises from quasi-static phases. The
catch and recovery phases of rowing involve a seated posture with a brief reduction in speed, potentially
leading classifiers to misinterpret them as static sitting. Additionally, participants may exhibit brief
pauses during the recovery phase of the stroke. In a 2s window, these phases are statistically difficult to
distinguish from static postures. This limitation is effectively mitigated by increasing the window size.
When the window is extended to 10s, the SVM results in only a single instance of rowing being
misclassified as sitting. Under the same 10s window, ResNet1D misclassifies 28 rowing samples (0.8% of
all rowing samples) as sitting and 6 samples (0.2% of all rowing samples) as lying.

Figure 4 goes here

Intensity Classification. Figure 5 summarizes model performance on the four-level intensity
classification task across window sizes ranging from 0.5 to 10 seconds. Here, the SVM with 18 features
again achieves the highest overall accuracy, reaching 97.9% with a 5-second window. RF models with 18
features also performs competitively, achieving 97% at 1.5 seconds, with only marginal gains for longer
windows. Deep learning models exhibit similar trends, with ResNetlD peaking at 96.2% and LSTM
trailing slightly.

Figure 5 goes here

Across all models, intensity classification accuracy is consistently higher than activity recognition
accuracy, except SVM using raw data at 2.5s. Moreover, the gap between handcrafted-feature models
and raw-input DL models is narrower. This is likely because, for intensity classification task, grouping
activities into broader intensity levels reduces inter-class confusion and lowers task difficulty.

Effects of Window Sizes. We further investigated the effects of temporal granularity on
classification performance. In both tasks, performance improves with increasing window size, but gains
saturated beyond moderate durations across all tasks, models, and input types. For activity
classification, accuracy rises noticeably between 0.5s and 2's, beyond which improvements became
marginal. Intensity classification follows a similar trend, with modest gains between 0.5 s and 5 s, and
negligible or even negative changes beyond 5 s. These findings suggest that longer windows capture
richer temporal context, windows of 2~5 seconds provides an effective balance between recognition
accuracy and latency. This balance is especially beneficial for real-time and wearable applications, where
responsiveness is critical.

Effects of Sensor Configuration. To evaluate the trade-off between recognition accuracy and
sensor deployment, we evaluated six reduced sensor configurations: an upper-body setup (10 IMUs), a
lower-body setup (7 IMUs), a L5-thigh-shank setup (3 IMUs: L5 vertebra, left thigh, left shank), and three
single-IMU setups (left thigh, left foot, left wrist). Figure 6 and Figure 7 respectively show classification
performance for activities and intensities across these configurations.



Figure 6 goes here
Figure 7 goes here

Overall, the lower-body configuration demonstrates exceptional performance, even surpassing the
full-body setup in certain cases. Particularly in intensity classification, for both SVM and ResNetl1D,
accuracy achieved using only lower-body inputs outperforms the full-body configuration in nearly all
cases (with only three cases in SVM showing slight decreases in accuracy < 0.1%). The slight drop in
accuracy of the full-body setup can be attributed to two factors: redundancy in certain activities and the
curse of dimensionality. On one hand, the activity protocol is dominated by lower-body driven
locomotion (e.g., running, cycling), in which upper-body movements are often rhythmically coupled with
lower-body motion, providing limited additional discriminative information. On the other hand,
expanding the sensor set from 7 to 17 significantly increases the feature space dimension, which may
introduce noise or lead to overfitting, thereby degrading generalization performance compared to more
compact, informative sensor subsets. The L5-thigh-shank configuration also achieves strong results,
exceeding 90% accuracy on both tasks, indicating its potential as a lightweight yet effective sensor
setup. By contrast, the upper-body configuration shows notable performance drops: 7.4+2.1% lower
accuracy in activity recognition and 6.9+1.6% lower in intensity recognition compared to full-body
configuration. The observed accuracy drop can be explained by the fact that upper-body motion
contributes less to distinguishing the predominantly locomotor activities in this dataset. Single-IMU
setups exhibit the steepest declines in performance, with the wrist-only condition performing worst.
However, the thigh-only and the foot-only setups yield moderate accuracies, particularly when paired
with deep learning models. Notably, ResNet1D mostly outperforms traditional classifiers in single-sensor
conditions, highlighting the capability of deep architectures to extract richer temporal features from
limited inputs.

The above results demonstrate that full-body sensor coverage is not always necessary for robust
HAR. Carefully selected subsets of sensors, can give rise to competitive performance while substantially
reducing hardware requirements, setup complexity, and energy cost. This finding has practical
implications for the design of lightweight, efficient HAR systems suitable for real-world deployment.

Usage Notes

Data Storage and Processing. All participant data are stored directly within the dataset directory.
Anthropometric metadata is stored in a single file, anthropometric_information.csv. To support
reproducible pre-processing, we provide scripts alongside the dataset. The script extract_features.py
processes raw signals to compute all 18 handcrafted features across eight window sizes (0.5s~10s),
generating participant-specific feature files (features_P#.csv) stored in a separate feature directory. For
traditional machine learning, train_base_traditional_models.py trains SVM and RF classifiers across all
feature subsets, window sizes, and sensor configurations. For deep learning experiments,
train_base_nn.py first segments raw data into eight window sizes and stores training samples
(P#_X.npy), activity labels (P#_Y_act.npy), and intensity labels (P#_Y_int.npy) in subdirectories organized
by window sizes within the dataset directory. It then trains ResNetlD and LSTM models across all
combinations of window sizes and sensor configurations.

Limitations. While the dataset provides a rich set of full-body inertial measurements for a diverse set of
daily activities, certain limitations should be noted. All recordings were recorded in a controlled indoor
environment, and all participants were young healthy adults (age range: 18-32 years) without mobility
impairments. As a result, generalizability to outdoor environments, older populations, children, or
individuals with disabilities remains untested. These factors should be considered when applying the



dataset to real-world scenarios. Consequently, applying models trained on this data to populations with
markedly different activity patterns (e.g., elderly or clinical groups) would require domain adaptation
techniques like transfer learning. To address this limitation and enhance generalizability, future versions
of this dataset plan to incorporate participants across a broader age range. Furthermore, this dataset
focuses on exercises and locomotion. Fine-grained Activities of Daily Living (ADLs) involving complex
hand-object interactions, such as cooking or typing, are not included. Consequently, this dataset is more
suitable for research into gaits and whole-body exercises rather than fine-grained gesture analysis.

Research directions. This dataset is intended as a flexible benchmark for a wide range of HAR research
problems. It focuses on basic postures, locomotion, and exercise activities. Beyond standard activity
recognition, the inclusion of structured intensity levels enables the study of effort-based classification
tasks, which have been less commonly explored. The comprehensive full-body coverage further
supports investigations into sensor subsets optimization, enabling researchers to evaluate the trade-off
between recognition accuracy and deployment cost. Such studies could leverage advanced methods
including reinforcement learning, attention-based feature selection, or multi-task learning. More
broadly, the dataset may contribute to advancing research in transfer learning, personalized HAR
models, and domain adaptation across sensor layouts and populations.

Data Availability

The dataset described in this study is available on Figshare® (DOI: 10.6084/m9.figshare.30234940)
under a non-commercial license. The repository contains CSV files for each participant’s trial and a CSV
file providing anthropometric information.

Code Availability

All project code including data segmentation, feature extraction, and model training process is released
under a non-commercial license on the project’s repository at
https://github.com/FudanBSRL/Comprehensive-IMU-Dataset.
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Figure legends

Fig. 1 Overview of the dataset creation and benchmark: (a) Placement of 17 IMU sensors on the participant’s body,
including the A-pose and T-pose used for calibration. (b) Data transmission setup, including wireless connection of
sensors to the receiver and data streaming to a laptop. (c) The twelve activities included in the dataset. (d)
Intensity levels of these activities are defined based on METs and grouped into four levels: sedentary, light,
moderate, and vigorous. (e) Signal processing pipeline. Raw accelerometer and gyroscope signals are segmented
into overlapping windows (50% overlap) of various lengths (0.5s to 10s). Handcrafted features are extracted from
each window and combined into four feature sets of increasing dimensions. These feature vectors or raw signals
are then fed into different models: random forest, support vector machine, ResNet1D, and LSTM. All models are
evaluated using subject-wise 5-fold cross-validation. (f) Sensor configurations, including the full-body setup and six
reduced configurations: upper-body, lower-body, L5-thigh-shank, left-thigh, left-foot, and left-wrist.

Fig. 2 Tri-axial (a) acceleration and (b) angular velocity data from 6 sensors captured within a 3-second window
from participant PO1 during a moderate walking trial.

Fig. 3 Accuracy across different window sizes for activity classification. (a) RF using handcrafted features (4, 7, 9,
18) and raw data. (b) SVM using handcrafted features (4, 7, 9, 18) and raw data (note that SVM using raw input
exhibits substantially lower accuracy and is therefore shown in an embedded inset for better visibility). (c) Deep
learning models (LSTM and ResNet1D) trained on raw input.

Fig. 4 Normalized confusion matrices (in %) for (a) SVM with 18 features and (b) ResNet1D with raw input, both
using a 2-second window in the activity classification task.

Fig. 5 Accuracy across different window sizes for intensity classification. (a) RF using handcrafted features (4, 7, 9,
18) and raw data. (b) SVM using handcrafted features (4, 7, 9, 18) and raw data (note that SVM using raw input
exhibits substantially lower accuracy and is therefore shown in an embedded inset for better visibility). (c) Deep
learning models (LSTM and ResNet1D) trained on raw input.

Fig. 6 Accuracy for activity classification under different sensor configurations. (a) SVM trained with 18 features
using seven sensor configurations: full-body (17 IMUs), upper-body (10 IMUs), lower-body (7 IMUs), L5-thigh-shank
(3 IMUs), left-thigh (one IMU), left-foot (one IMU) and left-wrist (one IMU). (b) ResNet1D trained on raw input
using the same seven sensor configurations.

Fig. 7 Accuracy for intensity classification under different sensor configurations. (a) SVM trained with 18 features
using seven sensor configurations: full-body (17 IMUs), upper-body (10 IMUs), lower-body (7 IMUs), L5-thigh-shank
(3 IMUs), left-thigh (one IMU), left-foot (one IMU) and left-wrist (one IMU). (b) ResNet1D trained on raw input
using the same seven sensor configurations.
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