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Abstract 
Human activity recognition (HAR) with wearable sensors is widely applied in health monitoring, fitness 
tracking, and smart environments, but the choice of sensor configuration remains a critical factor for 
balancing recognition performance with usability and comfort. Existing datasets often lack the full-body 
coverage required to systematically evaluate sensor placement strategies. We present a comprehensive 
dataset of 12 daily activities performed by 30 participants, recorded using 17 inertial measurement units 
(IMUs) distributed across the entire body. Each IMU provides tri-axial acceleration and angular velocity 
signals at 60 Hz, aligned within a standardized global coordinate system. The dataset further includes 
detailed anthropometric metadata, structured annotations of activity and effort level, and processing 
scripts to support feature extraction, segmentation, and baseline model training. Benchmark 
experiments with both machine learning and deep learning models demonstrate the usability of the 
dataset across multiple temporal windows and sensor subsets. This resource enables systematic 
evaluation of sensor layout strategies and supports the development of practical, generalizable HAR 
systems. 
 

Background & Summary 
Human Activity Recognition (HAR) has emerged a vibrant research field with wide-ranging applications 
in medical monitoring1–3, fitness tracking4–6, and intelligent living environments7–9. While vision-based 
methods have shown impressive performance, HAR systems based on wearable sensors remain more 
robust for long-term monitoring, privacy-preserving scenarios, and settings involving unconstrained 
movement. Among these, inertial measurement units (IMUs) are particularly attractive due to their 
lightweight design, portability, and ability to capture accurate motion signals10. A central challenge in 
IMU-based HAR, however, lies in the choice and configuration of sensor placement across the body.  

Over the past decade, several public datasets have advanced the study of HAR using IMUs. The 
Skoda dataset11, one of the earliest contributions, employed 19 accelerometers on the arms to classify 
10 industrial gestures, explicitly exploring dynamic sensor selection but remaining restricted to upper-
body tasks. The PAMAP212,13 dataset recorded 18 physical activities from 9 participants using 3 IMUs on 
the wrist, chest, and ankle—providing coverage of both torso and limbs, though at a relatively sparse 
density. The Opportunity14 dataset extended this paradigm with a more complex multimodal setup of 7 
IMUs, 12 accelerometers, and 4 localization sensors across the back, arms, and legs to support context-
aware recognition in smart home environments. However, its heterogeneous sensor layout across body 
regions, combined with pronounced data imbalance, limit its generalizability. In contrast, widely used 
benchmarks such as WISDM15 and HCI-HAR16 adopt a single-device paradigm, focusing on using 
smartphone-based sensing from the pocket or waist. While convenient, these configurations provide 
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only a narrow view of whole-body dynamics. Similarly, the Capture-24 dataset17 offered ecologically 
valid recordings under free-living conditions with more than 200 fine-grained activity labels, but relies 
solely on a single wrist-worn accelerometer, thereby restricting analyses of multi-sensor layout and 
trade-offs. 

Despite their impact, existing datasets exhibit notable limitations in sensor coverage and layout. 
Some datasets emphasize specific regions, such as arms or legs, while others attempt full-body 
monitoring but suffer from uneven sensor distribution. Consequently, the effects of sensor placement 
on recognition performance remains insufficiently characterized 18–21. To address these gaps, we present 
a new IMU-based dataset collected from 30 participants performing 12 daily activities spanning a range 
of intensities. Each subject was equipped with 17 IMUs uniformly distributed IMUs, enabling 
comprehensive coverage of full-body motion. Alongside activity labels, we provide detailed annotations 
of physical intensity, supporting detailed analysis of human movement. Crucially, the dataset is designed 
to facilitate systematic evaluation of sensor subsets—such as upper- or lower-body only, or wrist-based 
sensing alone—allowing researchers to quantify the trade-offs between recognition accuracy, sensor 
density, and deployment practicality. By expanding both the scale and uniformity of sensor coverage, 
this dataset establishes a new foundation for exploring efficient sensor layouts in real-world HAR 
applications. 
 

Methods 
Participants. Participants were recruited via campus advertisements. Thirty healthy adult participants 
volunteered to participate in this study. None reported neurological or musculoskeletal disorders that 
could affect motion performance. Participant characteristics are summarized in Table 1. All procedures 
were approved by the Ethics Committee of Fudan University, China (Application No. FE21124, approval 
date: 16 August, 2021), and informed consent for both their participation in the study and the open-
access publication of their anonymized data was obtained from each participant prior to data collection. 
To protect privacy, all personally identifiable information was removed, and participants were assigned 
random ID codes (e.g., P01, P02). 
 
Data collection. To minimize motion artifacts from clothing, participants wore athletic shirts and shorts, 
as well as athletic footwear to prevent injuries during physical activities. Prior to sensor placement, 
anthropometric measurements—including age, sex, height, weight, handedness, and body segment 
lengths—were recorded from each participant.  

A total of 17 IMUs from the Perception Neuron Studio motion capture system (Noitom Technology 
Ltd., Beijing, China) were affixed to standardized anatomical landmarks, following the manufacturer’s 
guidelines. Sensor locations were as follows: (1) posterior head; (2&3) shoulders (upper scapula), (4) 
mid-upper back (medial scapular area), (5&6) dorsal upper arms (midpoint between shoulder and 
elbow), (7&8) dorsal forearms (2/3 distal from elbow to wrist), (9&10) center of dorsal wrists, (11) lower 
back (L5 vertebra), (12&13) lateral  

Table 1. Participant demographics 

Characteristics Mean±SD 

Participants (n) 30 

Sex (M/F) 20/10 

Age (years) 24.6±3.1 

Height (cm) 172.1±8.7 

Weight (kg) 63.9±10.2 

BMI (kg/m²) 21.5±2.4 
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Dominant hand 29 right / 1 left 

thighs (just below the hips), (14&15) anterior shanks (just below the knees), and (16&17) center of 
dorsal feet. Sensors were secured with manufacturer-provided straps to minimize interference from 
muscle stretching or vibration (Figure 1(a)). Temporal synchronization across the 17 IMU nodes is 
ensured natively by the hardware architecture. The system utilizes a centralized receiver that aggregates 
and synchronizes data packets from all nodes. 

Before recording, each participant performed two calibration poses, A-pose and T-pose (Figure 
1(a)), following the system’s user guide. In the A-pose, participants stood with palms resting against the 
thighs and feet parallel. In the T-pose, participants abducted their arms to 90˚ with palms facing 
downward. Data were transmitted wirelessly to a remote desktop at a sampling frequency of 60 Hz 
(Figure 1(b)). 

Participants then performed 12 daily activities: lying, sitting, standing, slow walking, moderate 
walking, brisk walking, ascending stairs, descending stairs, cycling, running, jumping, and rowing, as 
depicted in Figure 1(c). Details descriptions of each activity are provided in Table 2. To reduce fatigue 
and ensure consistent performance, activities were divided into shorter trials based on their metabolic 
equivalent of tasks (MET)22,23. Activities of varying intensity were interleaved to form seven protocols 
(Figure 1(d) and Table 3), thereby balancing workload across sessions and minimizing error due to 
fatigue. 

 
Figure 1 goes here 

 
Benchmarks. To demonstrate the usability of the dataset for HAR, we conducted benchmarking 
experiments using both traditional machine learning classifiers and modern deep learning models. 
Models were evaluated under varying temporal window sizes and sensor configurations, and 
performance was assessed on two tasks: activity classification and intensity classification. 

Tasks. The activity classification task required recognition of 12 activity categories, illustrated in 
Figure1(c). Transient or irrelevant movements were excluded from labeling. The intensity classification 
task aimed to distinguish activity intensity level, defined according to MET22,23. Activities were grouped 
into four categories: 
(i) Sedentary effort (< 1.5 METs): lying and sitting; 
(ii) Light effort (1.5-3.0 METs): standing and slow walking; 
(iii) Moderate effort (3.0-6.0 METs): moderate walking, brisk walking, descending stairs, cycling, and 

rowing; 
(iv) Vigorous effort (> 6.0 METs):  ascending stairs, running, and jumping. 

All benchmark experiments used only the raw inertial signals (accelerometer and gyroscope) as 
model inputs. Quaternion data, available from the motion capture system, was deliberately excluded to 
ensure comparability with typical wearable-sensor datasets. 

Models. We evaluated four representative models widely used in HAR research: 
(i) Random forest (RF): A balanced random forest classifier with 100 trees was implemented using the 

default hyperparameters provided by scikit-learn24, which have been shown to be robust for similar 
tasks.  

(ii) Support vector machine (SVM): A radial basis function (RBF) kernel was used, with default values 
for the regularization parameter, kernel coefficient, and other hyperparameters. 

(iii) Convolutional neural network (CNN): We adopted a 1D variant of ResNet-1825, in which 2D 
convolutional blocks were replaced with 1D convolutions to capture temporal dependencies. The 
architecture consists of four residual stages with {2,2,2,2} basic blocks, followed by global average 
pooling and a fully connected output layer. 
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(iv) Recurrent neural network (RNN): A bidirectional Long Short-Term Memory (LSTM) network with 
two layers and 128 hidden units per direction was implemented. The output from the final time 
step was passed through a dropout layer (p=0.5) and a fully connected classifier. 

Table 2. Detailed descriptions of 12 daily activities 

Activity Activity Description 

1 Lying 
Lying quietly and still, allowing only slight movement, such as changing 

the lying posture 

2 Sitting 
Sitting in a chair in any posture the participant finds comfortable, 

allowing adjustments to sitting postures  

3 Standing Standing still or talking while standing still, possibly gesticulating 

4 Slow walking Walking at a low speed of 0.9 m/s on an indoor treadmill 

5 
Moderate 

walking 
Walking at a moderate speed of 1.2 m/s on an indoor treadmill 

6 Brisk walking Walking at a fast speed of 1.5 m/s on an inside treadmill  

7 
Ascending 

stairs 

Performed at moderate intensity indoors, requiring crossing two floors 

when ascending 

8 
Descending 

stairs 

Performed at moderate intensity indoors, requiring crossing two floors 

when descending 

9 Cycling 

Performed indoors on a stationary bicycle at a slow to moderate pace, 

as if the participant were commuting to work or cycling for leisure 

(rather than as a sport activity) 

10 Running 
Jogging on an indoor treadmill, with speed adjusted according to the 

participant’s personal preference 

11 Jumping 
The basic jump action performed by jumping with both feet 

simultaneously, possibly gesticulating 

12 Rowing 

Performed indoor on a rowing machine at slow to moderate pace, as if 

the participant were engaged in leisurely rowing (rather than as a sport 

activity) 

0 Other Transient or irrelevant activities 

 
Table 3. Data collection protocols 

Protocol Action MET Iteration 

Protocol 1 

Standing for 1 minute 
Slow walking for 2 minutes 
Running for 2 minutes 
Resting for 2 minutes 

1.8 MET 
2.5 MET 
7.0-8.0 MET 
– 

5 times 

Protocol 2 

Standing for 1 minute 
Moderate walking for 2 minutes 
Brisk walking for 2 minutes 
Resting for 1 minute 

1.8 MET 
3.3 MET 
3.8 MET 
– 

5 times 

Protocol 3 
Sitting for 1 minute 
Jumping for 1 minute 
Resting for 1 minute 

1.8 MET 
8.0-10.0 MET 
– 

10 times 

Protocol 4 Lying for 10 minutes 1.0 MET 1 time 

Protocol 5 
Rowing for 1 minute 
Resting for 1 minute 

7.0 MET 
– 

10 times 

Protocol 6 
Cycling for 3 minutes 
Resting for 1 minute 

4.0 MET 
– 

4 times 
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Protocol 7 
Ascending stairs for 30 seconds 
Descending stairs for 30 seconds 
Resting for 1 minute 

8.0 MET 
3.0 MET 
– 

20 times 

 
Input representations. For RF and SVM classifiers, we extracted handcrafted features from the tri-

axial accelerometer and gyroscope signals of each IMU channel. A total of 18 features, commonly 
adopted in prior HAR literature16,17,26, were considered. These include 14 time-domain features—mean, 
variance, maximum, minimum, range, skewness, energy, entropy, interquartile range (IQR), median 
absolute deviation (MAD), root mean square (RMS), signal magnitude area (SMA), zero-crossing rate 
(ZCR), and mean-crossing rate (MCR)—and 4 frequency-domain features: spectral centroid, spectral 
variance, spectral entropy, and dominant frequency. 

To systematically examine the effects of feature engineering and dimensionality on classification 
performance, we designed four feature subsets with increasing complexity: 
(i) Set of 4 features: mean, variance, spectral centroid, spectral variance (24 features per IMU per 

window). 
(ii) Set of 7 features: Set of 4 features + maximum, minimum, dominant frequency (42 features per 

IMU per window). 
(iii) Set of 9 features: Set of 7 features + ZCR, MCR (54 features per IMU per window). 
(iv) Set of 18 features: Full set of 18 features (108 features per IMU per window). 

In addition, we benchmarked RF and SVM classifiers directly on raw inertial signals to evaluate the 
benefit of feature extraction. For the deep learning models (ResNet1D and bidirectional LSTM), raw 
accelerometer and gyroscope signals were used exclusively, without handcrafted features, in line with 
standard practice. 

Evaluation Protocol. To ensure robust and subject-independent evaluation, we adopted a subject-
wise 5-fold cross-validation. In each fold, data from five participants were held out for testing, while the 
remaining 20 are used for training. Sliding-window segmentation with 50% overlap was applied, 
ensuring that all data from a given participant were strictly assigned to either training or testing set, 
thereby eliminating the risk of data leakage27.  

To examine the effect of temporal granularity on classification performance, we evaluated model 
performance under eight window sizes: 0.5, 1, 1.5, 2, 2.5, 5, 7.5, and 10 seconds. These windows span 
short to long temporal contexts commonly employed in HAR tasks. Windows containing multiple 
activities were excluded. Each model was trained independently for each window size, and performance 
was reported as the average accuracy across the five folds. For RF and SVM trained on raw data, only 
the four longest windows (2.5s to 10s) were considered due to computational constraints. 

Sensor Configuration Analysis. To quantify the impact of sensor placement on classification 
accuracy, we evaluated six reduced configurations (Figure 1(f)): an upper-body setup (10 IMUs), a lower-
body setup (7 IMUs), an L5-thigh-shank setup (3 IMUs located at L5 vertebra, left thigh, and left shank), 
and three single-IMU setups located at the left thigh, left foot, and left wrist.  

These reduced configurations were designed to simulate practical scenarios with constrained 
sensor deployment. For each configuration, the best-performing model identified in the full-body 
experiments was retrained using only the corresponding subset of sensors. The resulting performance 
provides baseline references for sensor selection studies and offers insight into the sufficiency of partial-
body input for real-world HAR applications. 

Implementation Details. All experiments were conducted in Python (Python Software Foundation, 
https://www.python.org/). The RF and SVM classifiers were implemented using the scikit-learn library24, 
while the DL models (ResNet1D and LSTM) were implemented in PyTorch28 and trained on a single 
Nvidia GeForce RTX 2080 Ti GPU. For the DL models, optimization was performed using the Adam 
algorithm with a learning rate of 0.001 using cross-entropy loss. Training was subject to early stopping 
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with a patience of 10 epochs to prevent overfitting. All input signals were Z-score normalized using the 
mean and standard deviation of the training set, ensuring feature scaling within the range 0–1 prior to 
model training. 
 

Data Records 
Each IMU provides multi-channel signals, including tri-axial acceleration from an accelerometer (Acc) 
and tri-axial angular velocity from the gyroscope (Gyr). In addition, the motion capture system computes 
the sensor’s orientation in four quaternions (Quat). All signals are expressed relative to a world 
coordinate system established during calibration. In this system, the Z-axis points forward, aligned with 
the participant’s facing direction during calibration (from back to front), the Y-axis points vertically 
upward, and the X-axis completes the right-handed coordinate system, pointing laterally to the 
participant’s left. The origin is defined as the horizontal projection of the sensor positioned at the L5 
vertebra during calibration.  

The raw readings are stored as CSV files in the ‘data’ folder, available at Figshare29. Each 
participant’s trial data file is named as ‘P#.csv’, where ‘#’ denotes the participant identifier. The total 
size of the dataset is approximately 21.2 GB. Anthropometric information for all participants is provided 
in a separate CSV file ‘anthropometric information.csv’. The structure of the trial data files is 
summarized in Table 4, which lists the columns definitions for accelerometer, gyroscope, and 
quaternion channels.  
 
Table 4. Data columns description. ‘BodyPart*’ represents 17 body parts equipped with IMUs, including: 
LowerBack, RightThigh, RightShank, RightFoot, LeftThigh, LeftShank, LeftFoot, UpperBack, Head, RightShoulder, 
RightUpperArm, RightForeArm, RightWrist, LeftShoulder, LeftUpperArm, LeftForeArm, and LeftWrist 

Columns Format Units Descriptions 

Activity Int N/A Activity ID 

Acc_X_BodyPart* Float m/s2 Acceleration along the X-axis 

Acc_Y_BodyPart* Float m/s2 Acceleration along the Y-axis 

Acc_Z_BodyPart* Float m/s2 Acceleration along the Z-axis 

Gyr_X_BodyPart* Float rad/s Angular velocity about the X-axis 

Gyr_Y_BodyPart* Float rad/s Angular velocity about the Y-axis 

Gyr_Z_BodyPart* Float rad/s Angular velocity about the Z-axis 

Quat_X_BodyPart* Float N/A X-component of orientation quaternion 

Quat_Y_BodyPart* Float N/A Y-component of orientation quaternion 

Quat_Z_BodyPart* Float N/A Z-component of orientation quaternion 

Quat_W_BodyPart* Float N/A Scalar component of orientation quaternion 

 

Data Overview 
Figure 2 illustrates acceleration and angular velocity data from 6 sensors (head, upper back, left wrist, 
lower back, left thigh, and left foot) captured within a 3-second window from participant P01 during a 
moderate walking trial, serving as an example of raw data. Table 5 provides the average duration and 
standard deviation of each activity across participants. Table 6 lists the number of resulting samples for 
each activity when using the window sizes ranging from 0.5 to 10 seconds (with 50% overlap). 
 

Figure 2 goes here 
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Technical Validation 
Benchmark Results and Analysis. We validate the usability of the dataset for HAR through extensive 
benchmarking experiments spanning classification tasks, model families, temporal window sizes, and 
sensor configurations.  
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Table 5. Activity durations 

Activity_ID Activities Duration(s) Activity_ID  Activities Duration(s) 

1 Lying 564.3±285.5 7 Ascending stairs 473.4±157.6 

2 Sitting 719.0±416.6 8 Descending stairs 440.8±152.5 

3 Standing 652.9±210.6 9 Cycling 610.7±130.6 

4 Slow walking 612.1±153.0 10 Running 609.6±114.8 

5 Moderate walking 610.0±176.3 11 Jumping 571.2±160.2 

6 Brisk walking 633.1±95.2 12 Rowing 566.6±193.8 

   0 Others 332.7±194.3 

 

Table 6. Number of samples for each activity and window size 

Activity_ID Activities 0.5s 1s  1.5s 2s 2.5s 5s 7.5s 10s 

1 Lying 67647 33783 22501 16853 13475 6699 4441 3312 
2 Sitting 86011 42864 28482 21290 16975 8353 5484 4043 
3 Standing 77748 38560 25510 18983 15065 7273 4701 3409 
4 Slow walking 73362 36632 24393 18267 14594 7244 4798 3576 
5 Moderate walking 73101 36503 24297 18201 14535 7218 4774 3557 
6 Brisk walking 75872 37885 25225 18892 15098 7498 4967 3700 
7 Ascending stairs 54589 26154 16685 11961 9103 3418 1581 698 
8 Descending stairs 50541 24060 15229 10834 8164 2888 1241 521 
9 Cycling 73198 36554 24343 18234 14578 7248 4804 3579 
10 Running 72996 36410 24220 18121 14469 7153 4712 3498 
11 Jumping 68126 33853 22426 16710 13285 6443 4153 3024 
12 Rowing 67909 33913 22580 16919 13515 6717 4451 3323 

 
Activity Classification. Figure 3 illustrates the performance of RF, SVM, ResNet1D and LSTM on the 

12-class activity recognition task across window sizes ranging from 0.5 to 10 seconds. Among traditional 
machine learning classifiers, the SVM with 18 handcrafted features achieves the highest accuracy, 
exceeding 95.8% across all window sizes and peaking at 97.1% with a 7.5-second window. The RF 
classifier demonstrates competitive performance, reaching 95.8% with 18 features at 2 seconds, while 
also achieving 95.8% with only 9 features on longer windows (10 seconds).  

 
Figure 3 goes here 

 
Both models show sensitivity to feature richness: SVM benefits significantly from richer feature 

representations, with accuracy dropping by 2.8±0.5% when reduced to only 4 features. RF is less 
sensitive, showing a 0.9±0.2% reduction when features are reduced from 18 to 4. In contrast, when 
trained on raw signals without feature engineering, both SVM and RF models degrade significantly—
particularly SVM, which falls below 70% accuracy on longer windows—highlighting the necessity of 
handcrafted features for traditional classifiers. DL models, by contrast, are generally more robust to raw 
input. ResNet1D perform competitively, particularly on shorter windows, reaching 95.1% accuracy with 
raw data on a 2-second window. LSTM models trail slightly, plateauing around 94.5%. 

Figure 4 depicts normalized confusion matrices for the best-performing traditional classifier (SVM 
with 18 features) and DL model (ResNet1D, raw input), both evaluated at the 2-second window. A 
common source of confusion occurs between static postures, particularly the distinction between sitting 
and standing. This is expected because the static nature of the signals can be highly similar across these 
classes. Another notable confusion arises in fine-grained categories, such as walking activities at 
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different speeds—through varying in intensity, they exhibit similar patterns. Overall, SVM demonstrates 
stronger performance, as reflected by the higher diagonal values. However, SVM also shows a distinct 
misclassification pattern: running mislabeled as jumping. This confusion occurs due to the similar 
impulsive vertical acceleration peaks and lower-limb dynamics shared by these two high-intensity 
activities. It suggests that SVM with handcrafted features emphasizes localized signal characteristics and 
is less effective at capturing the global movement differences. In contrast, the ResNet1D captures global 
temporal patterns and is better able to separate such distinct activities, resulting in minimal confusion 
between jumping and running. In addition, note that both models encounter challenges with rowing-
sitting/lying confusion pair. Unlike the confusion between running and jumping that stems from 
dynamic properties, the confusion between rowing and sitting/lying arises from quasi-static phases. The 
catch and recovery phases of rowing involve a seated posture with a brief reduction in speed, potentially 
leading classifiers to misinterpret them as static sitting. Additionally, participants may exhibit brief 
pauses during the recovery phase of the stroke. In a 2s window, these phases are statistically difficult to 
distinguish from static postures. This limitation is effectively mitigated by increasing the window size. 
When the window is extended to 10s, the SVM results in only a single instance of rowing being 
misclassified as sitting. Under the same 10s window, ResNet1D misclassifies 28 rowing samples (0.8% of 
all rowing samples) as sitting and 6 samples (0.2% of all rowing samples) as lying. 

 
Figure 4 goes here 

 
Intensity Classification. Figure 5 summarizes model performance on the four-level intensity 

classification task across window sizes ranging from 0.5 to 10 seconds. Here, the SVM with 18 features 
again achieves the highest overall accuracy, reaching 97.9% with a 5-second window. RF models with 18 
features also performs competitively, achieving 97% at 1.5 seconds, with only marginal gains for longer 
windows. Deep learning models exhibit similar trends, with ResNet1D peaking at 96.2% and LSTM 
trailing slightly.  

 
Figure 5 goes here 

 
Across all models, intensity classification accuracy is consistently higher than activity recognition 

accuracy, except SVM using raw data at 2.5s. Moreover, the gap between handcrafted-feature models 
and raw-input DL models is narrower. This is likely because, for intensity classification task, grouping 
activities into broader intensity levels reduces inter-class confusion and lowers task difficulty.  

Effects of Window Sizes. We further investigated the effects of temporal granularity on 
classification performance. In both tasks, performance improves with increasing window size, but gains 
saturated beyond moderate durations across all tasks, models, and input types. For activity 
classification, accuracy rises noticeably between 0.5 s and 2 s, beyond which improvements became 
marginal. Intensity classification follows a similar trend, with modest gains between 0.5 s and 5 s, and 
negligible or even negative changes beyond 5 s. These findings suggest that longer windows capture 
richer temporal context, windows of 2~5 seconds provides an effective balance between recognition 
accuracy and latency. This balance is especially beneficial for real-time and wearable applications, where 
responsiveness is critical.  

Effects of Sensor Configuration. To evaluate the trade-off between recognition accuracy and 
sensor deployment, we evaluated six reduced sensor configurations: an upper-body setup (10 IMUs), a 
lower-body setup (7 IMUs), a L5-thigh-shank setup (3 IMUs: L5 vertebra, left thigh, left shank), and three 
single-IMU setups (left thigh, left foot, left wrist). Figure 6 and Figure 7 respectively show classification 
performance for activities and intensities across these configurations. 
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Figure 6 goes here 
 

Figure 7 goes here 
 

Overall, the lower-body configuration demonstrates exceptional performance, even surpassing the 
full-body setup in certain cases. Particularly in intensity classification, for both SVM and ResNet1D, 
accuracy achieved using only lower-body inputs outperforms the full-body configuration in nearly all 
cases (with only three cases in SVM showing slight decreases in accuracy ≤ 0.1%). The slight drop in 
accuracy of the full-body setup can be attributed to two factors: redundancy in certain activities and the 
curse of dimensionality. On one hand, the activity protocol is dominated by lower-body driven 
locomotion (e.g., running, cycling), in which upper-body movements are often rhythmically coupled with 
lower-body motion, providing limited additional discriminative information. On the other hand, 
expanding the sensor set from 7 to 17 significantly increases the feature space dimension, which may 
introduce noise or lead to overfitting, thereby degrading generalization performance compared to more 
compact, informative sensor subsets. The L5-thigh-shank configuration also achieves strong results, 
exceeding 90% accuracy on both tasks, indicating its potential as a lightweight yet effective sensor 
setup. By contrast, the upper-body configuration shows notable performance drops: 7.4±2.1% lower 
accuracy in activity recognition and 6.9±1.6% lower in intensity recognition compared to full-body 
configuration. The observed accuracy drop can be explained by the fact that upper-body motion 
contributes less to distinguishing the predominantly locomotor activities in this dataset. Single-IMU 
setups exhibit the steepest declines in performance, with the wrist-only condition performing worst. 
However, the thigh-only and the foot-only setups yield moderate accuracies, particularly when paired 
with deep learning models. Notably, ResNet1D mostly outperforms traditional classifiers in single-sensor 
conditions, highlighting the capability of deep architectures to extract richer temporal features from 
limited inputs.  

The above results demonstrate that full-body sensor coverage is not always necessary for robust 
HAR. Carefully selected subsets of sensors, can give rise to competitive performance while substantially 
reducing hardware requirements, setup complexity, and energy cost. This finding has practical 
implications for the design of lightweight, efficient HAR systems suitable for real-world deployment. 
 

Usage Notes 
Data Storage and Processing. All participant data are stored directly within the dataset directory. 
Anthropometric metadata is stored in a single file, anthropometric_information.csv. To support 
reproducible pre-processing, we provide scripts alongside the dataset. The script extract_features.py 
processes raw signals to compute all 18 handcrafted features across eight window sizes (0.5s~10s), 
generating participant-specific feature files (features_P#.csv) stored in a separate feature directory. For 
traditional machine learning, train_base_traditional_models.py trains SVM and RF classifiers across all 
feature subsets, window sizes, and sensor configurations. For deep learning experiments, 
train_base_nn.py first segments raw data into eight window sizes and stores training samples 
(P#_X.npy), activity labels (P#_Y_act.npy), and intensity labels (P#_Y_int.npy) in subdirectories organized 
by window sizes within the dataset directory. It then trains ResNet1D and LSTM models across all 
combinations of window sizes and sensor configurations. 
 
Limitations. While the dataset provides a rich set of full-body inertial measurements for a diverse set of 
daily activities, certain limitations should be noted. All recordings were recorded in a controlled indoor 
environment, and all participants were young healthy adults (age range: 18-32 years) without mobility 
impairments. As a result, generalizability to outdoor environments, older populations, children, or 
individuals with disabilities remains untested. These factors should be considered when applying the 
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dataset to real-world scenarios. Consequently, applying models trained on this data to populations with 
markedly different activity patterns (e.g., elderly or clinical groups) would require domain adaptation 
techniques like transfer learning. To address this limitation and enhance generalizability, future versions 
of this dataset plan to incorporate participants across a broader age range. Furthermore, this dataset 
focuses on exercises and locomotion. Fine-grained Activities of Daily Living (ADLs) involving complex 
hand-object interactions, such as cooking or typing, are not included. Consequently, this dataset is more 
suitable for research into gaits and whole-body exercises rather than fine-grained gesture analysis. 
 
Research directions. This dataset is intended as a flexible benchmark for a wide range of HAR research 
problems. It focuses on basic postures, locomotion, and exercise activities. Beyond standard activity 
recognition, the inclusion of structured intensity levels enables the study of effort-based classification 
tasks, which have been less commonly explored. The comprehensive full-body coverage further 
supports investigations into sensor subsets optimization, enabling researchers to evaluate the trade-off 
between recognition accuracy and deployment cost. Such studies could leverage advanced methods 
including reinforcement learning, attention-based feature selection, or multi-task learning. More 
broadly, the dataset may contribute to advancing research in transfer learning, personalized HAR 
models, and domain adaptation across sensor layouts and populations.  

Data Availability 

The dataset described in this study is available on Figshare29 (DOI: 10.6084/m9.figshare.30234940) 
under a non-commercial license. The repository contains CSV files for each participant’s trial and a CSV 
file providing anthropometric information.  

Code Availability 

All project code including data segmentation, feature extraction, and model training process is released 
under a non-commercial license on the project’s repository at 
https://github.com/FudanBSRL/Comprehensive-IMU-Dataset. 
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Figure legends 

Fig. 1 Overview of the dataset creation and benchmark: (a) Placement of 17 IMU sensors on the participant’s body, 
including the A-pose and T-pose used for calibration. (b) Data transmission setup, including wireless connection of 
sensors to the receiver and data streaming to a laptop. (c) The twelve activities included in the dataset. (d) 
Intensity levels of these activities are defined based on METs and grouped into four levels: sedentary, light, 
moderate, and vigorous. (e) Signal processing pipeline. Raw accelerometer and gyroscope signals are segmented 
into overlapping windows (50% overlap) of various lengths (0.5s to 10s). Handcrafted features are extracted from 
each window and combined into four feature sets of increasing dimensions. These feature vectors or raw signals 
are then fed into different models: random forest, support vector machine, ResNet1D, and LSTM. All models are 
evaluated using subject-wise 5-fold cross-validation. (f) Sensor configurations, including the full-body setup and six 
reduced configurations: upper-body, lower-body, L5-thigh-shank, left-thigh, left-foot, and left-wrist. 
Fig. 2 Tri-axial (a) acceleration and (b) angular velocity data from 6 sensors captured within a 3-second window 
from participant P01 during a moderate walking trial. 
Fig. 3 Accuracy across different window sizes for activity classification. (a) RF using handcrafted features (4, 7, 9, 
18) and raw data. (b) SVM using handcrafted features (4, 7, 9, 18) and raw data (note that SVM using raw input 
exhibits substantially lower accuracy and is therefore shown in an embedded inset for better visibility). (c) Deep 
learning models (LSTM and ResNet1D) trained on raw input. 
Fig. 4 Normalized confusion matrices (in %) for (a) SVM with 18 features and (b) ResNet1D with raw input, both 
using a 2-second window in the activity classification task. 
Fig. 5 Accuracy across different window sizes for intensity classification. (a) RF using handcrafted features (4, 7, 9, 
18) and raw data. (b) SVM using handcrafted features (4, 7, 9, 18) and raw data (note that SVM using raw input 
exhibits substantially lower accuracy and is therefore shown in an embedded inset for better visibility). (c) Deep 
learning models (LSTM and ResNet1D) trained on raw input. 
Fig. 6 Accuracy for activity classification under different sensor configurations. (a) SVM trained with 18 features 
using seven sensor configurations: full-body (17 IMUs), upper-body (10 IMUs), lower-body (7 IMUs), L5-thigh-shank 
(3 IMUs), left-thigh (one IMU), left-foot (one IMU) and left-wrist (one IMU). (b) ResNet1D trained on raw input 
using the same seven sensor configurations. 
Fig. 7 Accuracy for intensity classification under different sensor configurations. (a) SVM trained with 18 features 
using seven sensor configurations: full-body (17 IMUs), upper-body (10 IMUs), lower-body (7 IMUs), L5-thigh-shank 
(3 IMUs), left-thigh (one IMU), left-foot (one IMU) and left-wrist (one IMU). (b) ResNet1D trained on raw input 
using the same seven sensor configurations. 
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