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ABSTRACT

This study provides a comprehensive dataset (FAIRUrbTemp) that addresses the lack of high-resolution urban air temperature
data across Europe. It compiles sub-hourly street-level air temperature data from 811 low-cost to commercial sensors across
several European cities and offers data in a quality-controlled, standardized format in sub-hourly, hourly, and daily resolutions.
In addition, detailed metadata, as an important source of information in urban studies, is provided at network, station, and
measurement levels. This pan-European dataset is rigorously quality-controlled using a serially automatic method applicable to
diverse city-scale air temperature data, which identifies systematic and minor inconsistencies to enhance reliability. Expert-
based validation shows that the QC reliably identifies problematic measurements, while its performance varies across urban
and climatic settings due to local environmental and instrumental effects. To ensure transparency, the results of the quality
control are provided to the user together with the original value in the dataset. The validated FAIRUrbTemp is a valuable
resource for urban climate studies, with direct applications in validating microclimate models, assessing heat-health risks, and
informing climate-adaptive urban planning.

Background & Summary

Near-surface air temperature is a critical climatological variable with significant impacts in various domains, including human
health!>2, economy™* and society”. Changes in frequency, intensity, spatial extent, and duration of extreme events such as
recent severe European summer heatwaves and drought®” have significantly impacted human, flora and fauna life. Heatwaves
are exacerbated in cities due to impervious surfaces, buildings, and other factrors, leading to locally elevated temperatures



known as urban heat island effect®. Due to the high population density and thus high exposure, including vulnerable persons,
heatwaves pose a significant risk to many cities in Central Europe and elsewhere. To design effective mitigation and adaptation
strategies and reduce future risks, it is essential to gather information on micro-climate patterns in cities, reflecting urban-rural
differences but also intra-urban variability®.

Consequently, reliable and accurate near-surface air temperature measurements in cities are crucial. Due to their high
installation and maintenance costs, as well as required site setting'?, professional weather stations are often difficult to install in
urban areas!!. Fortunately, recent affordable, compact environmental sensors can now regularly achieve sub-hour sampling
intervals and temperature accuracy of £ 0.5°C (with precision down to 0.1°C). Such performance is adequate to resolve
intra-urban temperature gradients for heat island mapping and local trend analysis, while applications such as high-precision
model evaluation may require even smaller errors'>~16.

In Europe, significant efforts have led to the development of Climate Services, providing data from ground-based measure-
ments, satellite data, and weather and climate simulations, and ensuring these datasets are publicly accessible through initiatives
such as C3S (Copernicus Climate Change Service). These established data repositories are extensively utilized across research,
education, and economic sectors. However, a notable deficiency in these repositories is the absence of micrometeorological
data from cities, or in the case of the presence in the global products, the accuracy of the data is very low and is not a reliable
source for microclimate studies!’. Within urban areas, such data are essential for urban planners, environmental scientists, and
policymakers actively involved in crafting strategies for climate-resilient urban planning!®.

To address this gap and to provide this type of data, in the framework of the COST Action CA20108 FAIRNESS (FAIR
NEtwork of micrometeorological measurements) project the Fair Micromet Portal - FMP 2.0, (available at: https://www.fairness-
ca20108.eu/micromet_ksp/) was developed. The main goal of FMP 2.0 is to improve the Findability, Accessibility, Interoper-
ability and Reusability (FAIR)'® character of micrometeorological data and to publish: a) a compiled inventory of available and
quality proven micrometeorological in situ data sets on the European level and beyond, b) a structured guidance framework
for FAIRification of micrometeorological data, and c) examples of rural and urban FAIR data sets. The initiative focuses on
standardizing data quality, filling data gaps, offering detailed metadata descriptions, and making FAIR datasets accessible for
rural and urban areas'®.

Building on the Cost Action FAIRNESS project, this research systematically identified and compiled a temperature dataset
from 12 European urban networks. This data was subsequently processed into a common format before being quality controlled.
This process was designed to capture issues such as calibration errors, systematic biases, drifts, unsuitable station configurations
or locations, inadequate maintenance of the stations, communication, and software errors that produce erroneous or missing
data. For this purpose, a tailored quality control (QC) procedure was developed by adapting existing strategies (e.g., Hunziker
et al.”!) to the studied urban climate networks. As an additional application of quality assurance best practices, metadata is also
collected and provided within a single dataset. According to the Global Climate Observing System monitoring principles??,
metadata, which includes the specifics and history of local conditions, instruments, operational procedures, and data processing
algorithms, should be compiled and maintained with the same care as the measurements themselves. Metadata is crucial for
FAIR principles and also for facilitating precise interpretation and analysis of longer-term datasets, as it allows detecting,
explaining and correcting inconsistencies. Metadata is therefore essential for managing urban temperature networks>>~2>. In
addition, data-metadata inconsistencies will become increasingly challenging when studying more than one network, which is
why the main goal of this study is to organize and standardize all the network information into a homogeneous format.

This paper introduces the FAIRUrbTemp dataset, a high-resolution, open-access collection of near-surface air temperature
data from low-cost and commercial street-level sensors across 12 European cities. Designed to address the persistent lack
of spatially dense and harmonized temperature data in urban areas, the dataset captures conditions within the urban canopy
layer at sub-hourly, hourly, and daily resolutions. It is provided in a standardised format with detailed metadata. By leveraging
cost-effective measurement technologies, FAIRUrbTemp significantly expands the potential for fine-scale climate monitoring
and analysis across diverse urban environments. Its applications span a wide range of research areas, including the investigation
of intra-urban temperature variability, evaluation of urban heat island intensity, calibration and validation of weather and climate
models, assessment of heat-related health risks, and the development of evidence-based strategies for climate-resilient urban
planning.

Methods

Overview

The process of generating the dataset is illustrated in Figure 1. First, subhourly air temperature data were collated from existing
street-level weather station networks within the COST action FAIRNESS project. Second, we converted all data into the Station
Exchange Format (SEF)?°. SEF files contain both data and metadata. Third, the QC procedure was applied (see sect. “Quality
Control”). Finally, we aggregated the data into hourly mean, daily max, and daily min. The processed data were also stored in
SEF format after QC.



Data

Compilation of existing data

Data were compiled from 12 established European networks active within the broader COST action. The networks are
Bern (Gubler et al.'>, Dataset?’), Biel (Biel (T.M. Erismann et al.”®), Basel (Schlogl et al.>?), Amsterdam (Ronda et al.>?),
Birmingham (Muller et al.'!, Dataset®!), Freiburg (Plein et al.??, Feigel et al.>®, Dataset**), Ghent (Caluwaerts et al.>), Berlin
(Fenner et al.’®, Dataset?”), Novi Sad (Seéerov et al.’®, Dataset®”), Rennes (Dubreuil et al.*?, Dataset*!), Turku (TURCLIM,
Alvi et al.*?), and Zurich (Anet et al.*3). The location and an overview of the networks are described and illustrated in Table 1
and Figure 2. In addition to the spatial distribution of stations, we also display the monthly mean air temperature climatology
for each network to provide a first look at the general climate conditions and seasonal variability across cities (Figure 6).
Differences in deployment strategy in individual cities are clearly evident in Figure 3 to Figure 5. It is also important to
acknowledge the inherent differences between networks. No standard exists for urban meteorological networks and hence
different approaches are common. Each network uses different (one or several) types of sensors, different installations, and
configurations for collecting temperature data, leading to differences between networks. For instance, in Bern and Zurich,
a large proportion of stations rely on self-built, low-cost devices (Gubler et al.!>; Anet et al.*}), while Novi Sad and Ghent
utilize commercial sensors such as the ChipCap 2 and PT100 PRT probes, respectively (Secerov et al.’®; Caluwaerts et al.>%).
Ventilation strategies also vary: some sites use passively ventilated housings (e.g., Bern prior to 2023) while others employ
actively ventilated shields (e.g., Ghent, see Supplementary Table 1). Additionally, the temporal coverage of the datasets varies
substantially among networks (see Table 1). This variability reflects differences in project scope, duration, and instrumentation
logistics and in some cases, sensor relocations, such as those in Bern, where devices moved due to construction activities
or municipality requests. Shorter records (e.g., Bern, Biel) are associated with recent pilot or seasonal field campaigns. For
example, the Bern network initially only measured in summer to record the strongest urban heat island effects during the warm
season (Gubler et al.!). On the other hand, longer records (like Basel and Novi Sad) indicate permanent observation sites or
continuous, multi-year monitoring operations. In several cases, such as the Ghent and Rennes network, data collection continues
beyond the timeframe covered in the FAIRUrbTemp release. Users interested in more recent observations are encouraged to
contact the respective network operators for access to extended datasets. Data storage formats and time references differ as well,
some networks present their data in local time, others are in UTC. Concerning metadata, the location of the stations is reported
in either a local coordinate system, the World Geodetic System 1984 (WGS84), or Universal Transverse Mercator (UTM).
There are also inconsistencies in metadata IDs and station names across the networks. These data-metadata inconsistencies
will become increasingly challenging when studying more than one network. It is important to note that each contributing
network’s metadata practices directly influence the completeness and quality of the metadata in our repository. Because of this,
there are still knowledge gaps that need to be filled in order to fully describe and compare measurements, especially when
it comes to detailed instrument specifications and standardized best practices. The disparities in device type, cost, and setup
undoubtedly influence the accuracy and comparability of temperature measurements. While this dataset does not yet include
full instrumentation metadata for all 12 networks, it is clear that calibration protocols and sensor metadata play a critical role in
ensuring data quality and should be documented wherever possible. Table 1 summarizes key information about the networks.

Quality Control

Quality control is the process of detecting and labeling physically implausible or otherwise suspicious observations***>. We
devised a seven-step QC method to evaluate design flaws, communication failures, surrounding interruptions, or software
errors. This is necessary to avoid possible errors within the datasets that could compromise the results of subsequent analysis*®.
It is acknowledged that some of the collected data has already undergone a QC, whereas other data has not (e.g. Plein et
al.>?). However, the further application of this QC method will ensure a minimum consistent level of QC process across all
dataset. Our method combines two group of tests : (i) physical-plausibility tests, which apply on a single time series and reject
values that are physically impossible or climatologically extremely unlikely, and (ii) contextual tests, which flag observations
as suspicious when their spatial or temporal behavior significantly deviates from nearby values, but this is not necessarily
impossible. Table 2 provides an overview of the seven tests (in each step, observations are assigned a flag of 0 or 1, referring to
“non suspicious” or “ suspicious”, respectively); an observation that fails any of the tests receives a flag of 1 in the final file.

Physical plausibility tests

1. Gross errors: This step consists of the flagging of numerical values larger than 60 or lower than —40°C*. In this step, we
flagged values such as —999, 125, or 98, which certain networks and systems have used or arise from sensor malfunctions,
default device settings when no measurement is taken, or transmission failures.

2. Out of range: Observations were flagged when they exceeded physically plausible daily temperature extremes, defined by
an extended regional climatological safety margin. Specifically, we used the ERAS5-Land reanalysis dataset (1995-2023)
to extract empirical maximum and minimum values for each study area. Given the lack of nearby official meteorological



stations in some locations, ERAS5-Land offered a consistent and spatially comprehensive alternative. This version of
ERAS is designed for land surface applications*®. Its 9 km spatial resolution is finer than that of ERAS and ERA-Interim,
which are 31 km and 80 km, respectively. To address known cold biases in ERA5-Land temperature fields, especially
during heat extremes**>", We applied an additive correction of up to +6°C to the ERAS air temperature data with
the magnitude of the adjustment estimated from comparisons with reference station observations, and also partial
consideration of the Urban Heat Island effects. The defined threshold was not intended to represent climatological
normals (which are addressed in step 4), but rather to identify physically implausible outliers, such as unrealistically high
values (> 55°C in central Europe), and to ensure basic physical consistency across all networks. We emphasize that
in future research, site-specific characteristics, particularly height and local land-surface variability, may call for more
precise bias corrections (e.g., elevation-matched quantile mapping).

3. Time consistency: To ensure time series data stays consistent and reliable, we flagged values as potentially suspect
when unexpected temperature changes occurred. For this evaluation, we used a median-based filter that compares each
temperature observation with the median of its previous and subsequent values (within a +3 time step window). If a data
point deviated by more than a set threshold (£3 °C for 5-minute to 15-minute data, +4 °C for 30-minutes, +4.5/5°C for
hourly data and £20°C for daily data), it was flagged as a potential outlier. This approach, inspired by WMO guidance
(WMO, 1993°!, Beele et al.’?> and Espinoza et al.>>), ensures detection of abrupt and potentially erroneous changes while
accounting for genuine atmospheric variability.

4. Climatic outlier: flagging of daily extreme (low and high) air temperature values based on statistical values. The statistical
algorithm flags values that exceed the 1st or 3rd quartile by more than 4 times the interquartile range. This method was
applied independently for each calendar month to account for the seasonal variation in temperature distributions. The
threshold multiplier M = 4 was determined empirically in this study, after trying out different values on the datasets,
aiming to catch real anomalies with the goal of minimizing false positives (flagging meteorologically valid extremes)
while still identifying likely anomalies. There is no universal formula for picking M, but a value of 4 provides balance,
catching problems without being overly reactive. This aligns with other QC methods that lean toward stricter thresholds
when dealing with daily climate extremes.

Contextual tests (suspicious values)

1. Temporal persistence: The persistence test examines whether the same value has been recorded over an extended time
period, indicating a potential sensor malfunction. Nonetheless, variability also depends on prevailing weather patterns; for
example, winter low-stratus conditions might provide genuine sequences with minimal hourly temperature fluctuations.
The test flags cases where the standard deviation over a moving 6-hour window is near zero in sub-hourly data, which
is highly unlikely for a working sensor>*. The test is flexible enough to handle missing data (up to 50% in a window)
and only needs at least 5 valid readings to run. We acknowledge that this criterion may result in some false positives by
mistakenly classifying valid observations as errors, especially during prolonged low-variability winter episodes.

2. Spatial consistency: In this test, each measurement x} at station i and time 7 is compared against a local spatial consensus
formed from nearby stations within a 3 km radius, in a dynamic way which first selects the closest stations and then
expand the radious to 3 km (Table 2). If even within 3km there are too few stations, we allow the test to proceed when
the effective number of neighbors nlg . = (Z Wi j)z /¥; wizj within 3km is at least 1.5; otherwise the case is marked
“insufficient information”. Neighbors are down-weighted by distance and further adjusted by land-use similarity (e.g.,
urban vs. vegetated). A reading is flagged if its deviation from the local consensus exceeds both a local statistical
threshold and a minimum absolute difference & (default 6 = 3°C). This absolute floor é (and the sensitivity multiplier k)
is a variable in the shared code that users can change to fit their own needs; see github.com/StarAmini/QC_URBNET. This
follows the standard definition of spatial outliers as values that deviate from their local neighborhood rather than the global
distribution and uses well-established distance-based spatial weights. The weighted spatial mean £ of neighbouring
stations is computed as:
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where d;; is the great-circle (Haversine) distance between i and j; oy is a distance bandwidth (set once per network; we
use the network median pairwise distance); and A, j € [0,1] is a land-use similarity factor (e.g., 1.0 if identical land use;
0.4 if both vegetated/forested; O for highly dissimilar classes such as water vs. sealed/vegetated). The weighted local
spread (computed over neighbors with w;; > 0) is
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A value x/ is flagged when
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with k a sensitivity multiplier (default kK = 6) and & the minimum absolute difference (default § = 3°C, user-tunable). We
require at least two valid neighbors within the adaptive radius or, failing that, an effective support of neg > 1.5; at most
the K nearest neighbors (default K = 5) are retained for stability. In our analyses we use a single global rule per network:
the nearest valid neighbors within a hard cap of 3.0km; require > 2 neighbors or negr > 1.5; use 6 = 3°C (user-tunable),
k = 6, retain up to K = 5 neighbors, and set o, to the network median pairwise distance.

3. Spatiotemporal consistency: This test flags outliers that are simultaneously extreme in both space and time. A temperature
reading is flagged if it deviates significantly from the measurements of five nearby stations (located within 2.5 km)
and from its own preceding and following time steps, exceeding the 99.99" percentile of their respective distributions.
Nearby stations are selected dynamically based on the location, and a flag is raised only when the reading is extreme in
both spatial and temporal dimensions.

The sequence of QC checks is aligned with the steps outlined in the paper. Before each QC step is applied, the time series is
updated to exclude the flagged values in the previous step. This approach minimizes the risk of errors carrying forward into
later stages of analysis, ensuring robust and accurate results.

It is important to note that, initially, based on established references mentioned in Table 2, we modified the QC thresholds
as necessary by applying our knowledge of the local climate and sensor behavior. In fact, we came across situations where a
given threshold guidance was not sufficient or was not entirely relevant. We tested a range of parameter values across different
cities to identify those that consistently flagged clear anomalies while avoiding the misclassification of normal, but unusual,
weather patterns.

We note that there is room for improvement in the spatial consistency check. For example, the current method ignores
the elevation effect, which should be taken into consideration for future improvements, as it may have a substantial impact on
temperature variability.

Through a combination of literature and practical testing, we were able to develop a QC process that works reliably across
our European datasets. Although it offers a strong foundation for urban temperature networks, it might require adjustment for
environments outside of temperate our study areas.

The method only flags potentially suspicious values without touching the original data. It’s up to users to decide whether to
remove or correct those values, depending on their own scientific judgment, as Brunet et al.”® recommend.

Aggregating sub-hourly values to hourly and daily data
Given the different recording intervals used in the networks, the decision was taken to standardize recording intervals across the
broader dataset. Here, we provide hourly averages, which are relevant to capture diurnal temperature variations>>, urban heat
island effects®, and human thermal comfort®’. In addition, we provide daily maximum and minimum temperatures, which are
widely used diagnostics for understanding climate trends and extreme weather events. Therefore, we aggregated sub-hourly
into hourly means and extracted daily maxima and minima”’. The aggregated values are set to missing if: less than 80% of
sub-hourly data are available per hour (for hourly data) or per day (for daily max/min values)’®.

Data aggregation in the hourly step was applied to the raw data. Afterwards, our QC method was applied to both the raw
data and the hourly averages. However, to create daily data, we used quality-controlled data in their original time step, meaning
that flagged sub-hourly values were excluded from the calculation.

Data Records

The final FAIRUrbTemp dataset is provided in the Station Exchange Format (SEF), a standard format for the exchange of
meteorological data defined by the Copernicus Climate Change Service®®. It consists of one metadata file as a compressed



folder (.zip), a readme file as a text file (.tsv), and 12 compressed folders (.zip). Each of these folders relates to one of the 12
studied cities and includes 5 subfolders. To ensure consistency across the diverse contributing networks, all time information
has been converted to UTC, and all geographic coordinates have been harmonized to the WGS84 reference system. Data are
publicly accessible through the BORIS Portal of the University of Bern: https://doi.org/10.48620/932478.

L]

RAW: Text files (.tsv) for each station that include the near-surface temperature data shared by the project partner in a
raw format before applying any QC checks from our side. Each file begins with the station metadata and ends with the
temperature time series. The Metadata include: station code (ID), which follows the country_city_stationcode convention
(e.g., for station code 2195 in Amsterdam, Netherlands, the ID is “NLD_AMS_2195”); station name (Name) using the
same convention; latitude in decimal degrees (LAT); longitude in decimal degrees (LON); Altitude in meter (ALTs); the
center that shared the data (Source); a link to the network dataset, if available (Link); the measured variable (street-level
temperature) (Vbl); time statistics (point(state), average, min/max) (Stat); unit of the measured variable (Units); metadata
(Meta). The second section at the bottom of the text files contains the time series dates. The column (Period) indicates
the state of the time statistics; if it is 0, the record is point data. Temperature values (Value) and (Meta) include additional
metadata or descriptions.

QC: Text files (.tsv) for each station that include the near-surface temperature data checked with our QC method. The file
format is identical to the previous version; the only difference is that the column (Meta) indicates which QC test flagged
the data.

Hourly data: Text files (.tsv) for each station that include nearsurface temperature data aggregated to hourly timestamps.
Results of the QC check are also documented in the (Meta) column.

DailyMax: Text files (.tsv) for each station with the daily maximum temperature, computed from the QCchecked data.

DailyMin: Text files (.tsv) for each station with the daily minimum temperature, computed from the QCchecked data.

For clarity in the Meta column, suspicious values detected by the QC process are marked with the QC test that identified the

issue,

denoted by the prefix “gc =" in the “Meta” column. For example, “gc = temporal_coherence” indicates a failure in the

temporal coherence test, signalling that the associated value should be treated as unreliable for most analytical purposes.
The final metadata file (.zip) has 12 subfolders for each of the 12 cities. In each city’s folder, the Metadata is structured at
three levels:

Station-level metadata includes city name (city); station ID (station id); station number (station_number), latitude in
decimal degrees (LAT); longitude in decimal degrees (LON); and sensor height in meter (sensor_height_m). It is worth
mentioning that the header of the data files for a station contains even more detailed metadata, such as data source and
links to the original network’s webpage.

Measurement-level metadata consists of city name (city); station ID (station id); measurement interval (measure-
ment_interval); sensor type (sensor_type); measured variable (measured_variable); units (units); and the type of QC tests
which flag the data in the station (gc_flag).

Network-level metadata provides information about each contributing urban network, including network name (nez-
work_name); geographic coverage (geographic_coverage); operator or owner (operator or owner); funding source
(funding_source); number of stations (number_of _stations); measurement parameters (measurement_parameters); mea-
surement interval (measurement_intervals); statistical methods (e.g., point or average measurements) (time_statstics);
data format (data_format); accessibility (accessibility); and contact details (contact_details).

While the standardized metadata provide a consistent and comparable overview of the dataset, they are not a substitute
for more detailed site-specific documentation (e.g., maps, photographs, and skyview factor estimate), as recommended by
Oke (2004, 2017). For selected station networks, some additional documentation is available in Table 1 in the supplementary
material.

Technical Validation

In this section, we have evaluated the QC approach applied to the FAIRUrbTemp dataset. We begin by presenting the results of
the QC procedures, followed by statistical evaluations of the effect of the sensors and land cover on the quality of the measured

data.



Quality control

After applying the QC procedure described in the Method section, we finally obtained a total of 809 quality-controlled station
series. The QC analysis, summarized in Table 3, highlights the proportion of flagged data across various cities, providing a
benchmark for overall data integrity. Note that not all networks use the same sensor types, and some have already undergone
initial checks.

Across the full multi-city dataset (about 1.36 x 10% individual records), less than 0.5 % of all measurements were flagged by
any single test, indicating overall good data quality before QC. The majority of QC flags were triggered by inconsistencies
in the gross error check. This test flags about 0.31 % of all measurements, effectively removing obviously invalid codes and
corrupted readings. The remaining physical checks (out of range, temporal consistency and climatic outlier tests) each affect
significantly less than 0.01 % of all observations, confirming that values which are physically or climatologically implausible
are relatively rare in the raw dataset. The second and third largest shares of flagged observations were associated with the
spatial consistency test ( 0.08 %), and the temporal persistence test (0.06 %). The spatiotemporal consistency test has only a
very minor impact at the network scale (well below 0.01 %). Put together, these contextual checks add a conservative layer
to the physical plausibility assessment by highlighting observations whose behavior deviates from their temporal or spatial
neighborhood.

For the majority of networks, the overall fraction of flagged measurements remains below 0.3 %. For instance, rejection rates in
Ghent and Birmingham are less than 0.03 % in all tests, indicating very stable sensor behavior or serious prior screening. In
several networks (Bern and Zurich), the spatial consistency test is the dominant source of contextual flags, but even there it
typically affects less than 0.1-0.2 % of the local measurements.

On the other side, two networks stand out with somewhat higher fractions of flagged data and illustrate different QC behaviours.
In Amsterdam, about 0.75 % of all values are flagged, mainly due to a combination of physical gross errors (0.36 %) and
contextual temporal-persistence (0.30 %) and spatial-consistency (0.09 %) flags. The Novi Sad network exhibits the largest
fraction of flagged data, with approximately 5.3 % of all measurements marked as problematic; this is almost entirely driven by
the gross—error test (5.19 %), pointing to a large number of clearly invalid readings that are effectively removed by the physical
plausibility screening.

Expert-based confusion matrix evaluation

To validate how well our automated QC distinguishes between problematic and acceptable data, we complemented the flag
statistics with an expert-based confusion-matrix evaluation. Since no independent “ground truth” reference exists for sub-hourly,
street-level air temperature, we used local expert judgment as the best available proxy. For four networks,140 measurments
were randomly selected, including 70 that had been flagged at least once by the QC, and 70 that had never been flagged.

For each network, a local expert manually examined the full temperature time series and classified each data point as either
“problematic” (containing clearly erroneous or systematically biased records) or “acceptable” (measurements judged physically
plausible). These expert labels were then compared to the binary QC outcome (flagged vs. not flagged) to construct confusion
matrices at the station level (Table 4). In the confusion matrix analysis, we defined the positive class as data points containing
problematic or erroneous records, and the negative class as points with acceptable records. Accordingly, a QC flag corresponds
to a predicted measurement (problem detected), whereas an unflagged measurement corresponds to a predicted negative (no
problem detected).

The results show that the QC system consistently minimizes missed errors across networks. In Novi Sad, the QC achieved high
accuracy (95.7 %), precision (91.4 %), and specificity (92.1 %), with no problematic stations left undetected. In Zurich, the QC
achieved high overall performance, with a recall of 93.2 % and a precision of 97.1 %. Only 7 % of problematic stations were
missed by the QC, and less than 3 % of acceptable stations were incorrectly flagged. The few missed problematic cases show
that, in rare cases, small sensor flaws might not appear as strong spatial or temporal differences.

Amsterdam represents a third case, where the QC achieved moderate precision (61.7 %) and high recall (100 %). The temporal-
persistence test in Amsterdam produced the majority of false positives during long periods of weak winds, heavy cloud cover,
and little daily temperature variation, especially in winter or during warm-front passages. Under such conditions, long intervals
of nearly constant temperature are meteorologically plausible but can resemble sensor stagnation, suggesting that persistence
thresholds may benefit from seasonal or diurnal adaptation.

Overall, the expert evaluation shows that while variations in false-positive rates reflect different urban and climatic settings, the
QC system reliably minimizes missed errors across networks. These findings demonstrate the efficacy of the physical-plausibility
checks and identify contextual assessments as a crucial area for additional improvement.

Impact of Sensors

As mentioned in Table 1, networks may use a mix of different temperature sensors, and this does have potential impacts on
the overall quality of the measurement. In order to investigate this further, we have piloted the Zurich network to determine
the effects of this potential challenge. During the operational period of the network (2019-2021), two types of sensors (Pessl



LoRAIN and Sensirion SUHIRS) were used. Thus, we ran QC checks in two ways: first, considering all sensors as one unified
network and second, dividing the sensors into two groups based on their sensor type and checking each group separately (Table
5). Because the number of SUHIRS stations was nearly twice that of LoORAIN, the comparison of flagged data must be based
on relative proportions rather than absolute counts. Once normalized to the total number of measurements, the results reveal
clear differences between the two sensor types. Whereas, SUHIRS benefited from better radiation shielding and generally
provided more trustworthy measurements under both day- and nighttime conditions. SUHIRS showed more out-of-range values
and it is consistent with calibration artefacts during deployment, as SUHIRS underwent a 40°C-0°C calibration, which may
explain anomalous values at the beginning of their records. For most other tests, the flagged fractions were smaller compared to
the LORAIN sensors. LORAIN sensors showed a slightly higher percentage of gross errors overall and are prone to significant
radiation biases of up to 6 K, as previously reported*3.

In the case of the spatial consistency check, Sensirion SUHIRS stations showed a significantly higher proportion of flagged
observations compared to LORAIN. Even though the total number of flags in this test appears lower in Table 5, the per-station
statistical comparison shows the opposite pattern; SUHIRS stations have a significantly higher flag rate (Mann—Whitney
p=19x 1078; Cliff’s & = 0.39, 95% CT: 0.26-0.51)(Figure 7). This indicates that inconsistencies in SUHIRS are widespread
among the stations, whereas LoORAIN issues are more concentrated in a limited number of sensors.

On the other side, when both sensor types were treated as one network (Figure 8a), clusters of high flag counts appeared in
areas dominated by SUHIRS, which also had an impact on the QC of nearby LoRAIN stations. After separating the sensor types
(Figure 8b), it became clear that the two sensor types interfered with each other, and that a large proportion of the problematic
data originated from SUHIRS sensors, particularly during the pre-deployment calibration period. These results (Table 5) clearly
indicate that differences between sensor types significantly affect the data quality and the reliability of spatial consistency
checks. While separating sensors resolves cross-interference, the analysis also showed that the large radiation errors affecting
LoRAIN stations** were not fully detected by the current algorithm. To address this limitation, integrating cross-validation
with nearby reference stations from the local weather service would be beneficial in future work.

Overall, these results demonstrate that sensor type has a measurable impact on near-surface air temperature data quality.
Differences in radiation shielding, calibration procedures, and sensor response characteristics influence the frequency and type
of QC flags and should be explicitly considered when interpreting dense urban temperature observations.

Impact of Land Cover

To evaluate the effect of different land covers on the performance of temperature measurements, we classified land cover into
four classes (sealed, vegetated, forest, and water) and calculated the proportion of QC flags within each land cover type across
the studied networks. The results show that there is a marked difference between each land cover class (Figure 9). The number
of relative flag rates exhibited a high value for sealed areas compared to vegetated, forest, and water bodies (Kruskal-Wallis,
p < 0.001; Cliff’s & = 0.37). While this partly reflects increased sensor exposure to anthropogenic influences, it is also linked
to enhanced microclimatic variability in urban environments. In particular, local effects such as reflected shortwave radiation
from parked vehicles, building facades, or paved surfaces can transiently heat sensors and produce sharp local temperature
contrasts. This pattern continued after normalization by the number of stations and total observations, which showed that
it was not caused and biased by uneven sampling density. The findings show a significant dependency of the spatial and
temporal consistency checks on land cover, which is a sign of more microclimatic variability in built-up areas. Overall, the
result demonstrates that local land cover can considerably affect the street-level temperature data quality, especially in dense
urban networks.

To examine the impact of land cover on one of the most extensively flagged tests in depth, we incorporate the classical
spatial-consistency check by integrating land cover similarity into the neighbor weighting scheme. Instead of relying solely on
geographic proximity, we upweight comparisons between sensors in similar land covers. This means that nearby stations on the
same land cover are comparable with each other, while those on very different classes (such as water versus urban pavement) are
not comparable. Otherwise, each neighbor contributes equally when land cover is ignored, and actual temperature differences
driven by physiography often appear as false positive outlier flags. To show this effect, we applied both approaches to the
studied networks. The results show that considering the land cover classes in this QC check decreases the number of flagged
values in all networks. This reduction in Amsterdam, Bern, Basel, Biel, Freiburg, Novi Sad, Rennes, Turku, Zurich is 2.9, 63,
94,74, 60, 12, 99, 98 and 54 percent respectively. However, in Birmingham and Berlin, both cases stayed zero, and the check
has not been applied to the Ghent dataset because of the existence of just 6 stations.

We chose two representative case studies to clearly demonstrate these disparate effects: Amsterdam, which had one of the
smallest reductions (2.9%), and Turku, which had one of the largest reductions (98%)(Figure 10). In Turku, a city characterized
by pronounced coastal-inland gradients and heterogeneous land cover, many sensors placed near water bodies were initially
flagged as inconsistent due to their temperature differences from inland urban stations. Incorporating land-use weighting
reduced these false positives substantially, as genuine environmental contrasts were recognized rather than flagged as errors.



Adding land-use weighting reduced these false positives a lot because genuine differences in the environment were found
instead of being marked as mistakes. Conversely, Amsterdam exhibits a more uniform urban environment with mostly sealed
surfaces and fewer sharp environmental gradients. So, the unweighted spatial-consistency test already flagged a small number
of stations, and adding land cover data offered minimal additional benefit, reflecting the city’s homogenous urban landscape.

In conclusion, integrating land-use weighting into the spatial consistency QC check effectively reduces false positives,
resulting in a cleaner and more reliable dataset. However, local environmental factors have a significant impact on QC outcomes;
as aresult, to validate the dataset and make sure that data interpretations accurately reflect local environmental conditions, we
advise involving local expert insights prior to practical use.

Overall, the results demonstrate that the applied QC framework effectively identifies erroneous and suspicious measurements
while preserving the majority of physically plausible observations. Differences in flag rates between networks are largely
explained by variations in sensor characteristics, topography, land cover, and prevailing meteorological conditions, rather than
systematic deficiencies in the QC procedure. While contextual tests may be conservative in highly heterogeneous or weakly
forced urban environments, they provide an important safeguard against undetected errors. Taken together, the FAIRUrbTemp
dataset offers a quality-controlled, multi-city collection of street-level air temperature observations, providing an important
source for studying urban climate variability and thermal processes across European cities.

Usage Notes

The UrbFairTemp dataset is a highly valuable resource in Europe, with broad applications in fields like climate science,
health, and urban planning. For the first time, it brings together the near-surface air temperature time series from urban
meteorological networks in a consistent format, making the analysis process significantly more efficient. Additionally, it
provides comprehensive access to raw sub-hourly data, as well as quality- controlled, hourly, and daily data.

The quality control method is derived from best practices used in existing studies and allows an evaluation of the data
from various perspectives. It is also adaptable to different datasets, even those with their own inherent errors. However, it is
important to note that the applied quality control approach is automated and robust, focusing on the detection of outliers and
suspicious measurements rather than on physical error correction. Hence, further developments are still needed in consistent
quality control strategies, particularly regarding the integration of physically based corrections, such as radiation effects. This is
particularly crucial for low-cost measurement devices. These devices are prone to errors, especially in daytime data, due to
radiative influences*’.

In order to define empirical maximum and minimum temperature values, we used ERAS Land data, which are freely
available and easy to obtain. However, other datasets could be used, and in future studies, this could be investigated.

It is essential to acknowledge that FAIRUrbTemp compiles harmonized data from selected research-oriented networks that
are members of the consortium rather than attempting to provide a comprehensive inventory of every urban weather station in
every city. In some cities, additional urban meteorological stations are operated by other institutions; for instance, in Berlin,
networks run by the German Weather Service (DWD), the Freie Universitéit Berlin, and the city administration are available
via the external platform uco.berlin, but are not included in FAIRUrbTemp. These initiatives highlight the importance of
coordinated data sharing for improving spatial coverage, and long-term usability of urban climate observations.

Lastly, we should emphasize that there are currently no plans to update FAIRUrbTemp. However, since this dataset is
developed under the COST Action project FAIRNESS (CA20108), several related initiatives are underway. In line with its
objectives, COST Action FAIRNESS, for example, seeks to offer high-quality data in every European country. It also outlines
policies and strategies for data collection and the establishment of observational networks. The quality control schema and
principles outlined in this paper are also considered to be broadly applicable. For people who just read the abstract and usage
notes, we would mention at least here, if not in both places, that the quality control never excludes/deletes any data but just
adds flags. And that the user needs to filter the data to their needs.

Code Availability

The data processing and QC routines are written in R (v.4.3.1) programming language. The entire code used is freely available
at GitHub (https://github.com/StarAmini/QC_URBNET) under the GNU General Public License v3.0.

Data Availability
All data used in this study is publicly accessible online under the CC-BY licence via the following links: https://doi.org/10.48620/93247.
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Figure 2. Geographical distribution of the studied cities in Europe. With the main topography of Europe. The DEM is an
SRTM 30 m. The dots indicate the locations of the European networks evaluated in this research. Each network has a specific
number of stations.
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Network Country Lat/Lon Sensor Numper of Sensor Period Interval  References
Type Stations Height (m)
Amsterdam Netherlands  52.36, 4.90 VP-3; Decagon 23 4m 2014-2023 5 min Ronda et
devices covered al.30
by a cylindrical
shield from Davis
Instruments
Basel Switzerland  47.55, 7.60 Pessl LoRain 217 3m 2020-2022 15 min Schlogl et
al.29
Bern Switzerland  46.95, 7.42 Hobo Pendant 8k 50-85 3m Summer 10 min Gubler et
2019-2022 al.l®
Berlin Germany 52.52,13.40 Campbell Scientific 11 2-3m 2020-2023 5 min Fenner et
CS215; Vaisala al. 3¢
HMP155A; Pessl
nMetos, ...
Biel Switzerland  47.14,7.25 Hobo Pendant 8k 40 3m Summer 10 min  Erismann et
2023 al.?8
Aginova Sentinel
Birmingham England 52.59,-1.78  Micro (ASM) and 23 2-3m 2019-2022 5 min Chapman
Vaisala WXT et al. >,
Miiller et
al. 11
Freiburg Germany 47.99, 7.84 Campbell Scientific 44 3m 2022-2023 1 min Plein et
ClimaVue50 and al.32, Feigel
PESSL LoRAIN etal ¥
Ghent Belgium 51.05,3.73  PT100 PRT probe 6 2m 20162023 1h Calu;)vaerts
etal.®
Novi Sad Serbia 45.26,19.83  ChipCap 2 devel- 26 2-4 m 2014-2017 10min  Seéerov et
oped by GE Mea- al.38
surement & Control
Co.
Rennes France 48.11,-1.68 AWS Davis-VP2 23 2-3m 2018 1h Dubreuil et
al.40
. HOBO U23-001 . . 0
Turku Finland 60.45, 22.26 HOBO MX2301A 67 3m 2019-2021 30 min  Alvietal.
Zurich Switzerland  47.39, 8.53 Sensirion SHT 31 276 3m 2019-2021 15 min Anet et
Smart Gadget & al 3

Pessl LoORAIN v1

Table 1. Overview of the geographic and structural characteristics of the temperature-monitoring networks.



QC Test Description Parameter Value of parameter Reference
L1. Gross errors Report  impossible T, Ty min = —40°C Dandrifosse et al.%”
values in the time Ty,max = 60°C
series.
L2. Out of range Find values that Ty, min For each city and Hubbard et al.?”
exceed user-selected T, max season, the extreme
climatological thresh- values are defined.
olds. e.g. Freiburg (summer):
Ty min = 1.72°C
Tymax = 41.90°C
L3. Time consistency Identifies data points Tfmin 5-15 min: £3°C WMO?!, Vergauwen
whose change ex- TaCmaX 30 min: +4°C etal®

L4. Temporal persistence

L5. Climatic outliers

L6. Spatial consistency

L7. Spatiotemporal consistency

ceeds a defined limit.

Report equal or near-

equal values over
three  consecutive
hours.

Flag values outside
interquartile-range
bounds.

Compare each record
to a weighted mean
of neighboring sta-
tions.

Check for values im-
plausible in space
and time.

Ty ?é Tyt 7é Ty 7é Ty—3

Fly-a #Ty5#Tas

ext_lim_factor

sensitivity_scaling (k)
min_abs_diff ()

Radius
Minimum neighbours

Hourly: +£4.5°C
Daily: £20°C

T,—T, 1 =0 Cerlini et al.®?
10 min: 36

4 Brunet et al.2®

k = 6 (general) Shekhar et al.o3

k =7 (dense urban cores)

6=3

1.66

Imtyy, = 2500m Hamada et a

Imt, =5

Table 2. Summary of the seven quality control (QC) tests applied to the temperature time series.
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Figure 3. Locations of weather stations (a) Amsterdam, (b) Basel, (c) Bern and (d) Berlin, in relation to land cover and
topography (Urban Atlas; EEA, 2018)(part 1 of 3).



Figure 4. Locations of weather stations (a) Biel, (b) Birmingham, (c) Freiburg and (d) Ghent, in relation to land cover and
topography(Urban Atlas; EEA, 2018) (part 2 of 3).
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Total Number of Flagged Data
Network F - ] 7 - al < I
Measured data gross_errors out_o tl.me tem.pora c lm.atlc sp.atla spatlot.empora
range consistency | persistence | outliers | consistency consistency
83 138 200 23 34 627 71 23192 1
Amsterdam 23 196 696
[0.36%] [0.001%] [~0%] [0.15%] [~0%] [0.1%] [~0%]
6 4570 139
Bern 3920 400 0 0 0 0
[~0%] [0.12%] [0.003%]
54 52 827 1268 1530 4
Basel 22 832 740 0 0
[~0%] [0.23%] [0.006%] | [~0.007%] [~0%]
. 16 1512 1174
Biel 714 000 0 0 0 0
[0.002%] [0.21%] [0.16%]
L. 607 481 30 90 1421
Birmingham 6 845 881 0 0
[0.009%] [0.007%] [~0%] [0.001%] [0.021%]
. 41761 2 142 322
Freiburg 40 302 328 0 0 0
[0.104%] [~0%] [~0%] [0.001%]
9
Ghent 382 950 0 0 0 0 0 0
[0.002%]
. 86
Berlin 4 631 561 0 0 0 0 0 0
[0.002%]
. 291 554 2 186 2 106 23 84 5766 99
Novi Sad 5 614 466
[5.19%] [0.039%] [0.038%] [~0%] [0.001%] [0.103%] [0.002%]
11 1 17
Rennes 202 078 0 0 0 0
[0.005%] [0.002%] [0.008%]
1 54 276
Turku 3524 870 0 0 0 0
[~0%] [0.001%] [0.008%]
. 9956 1033 474 30 718 45 689 2
Zurich 24 188916
[0.041%] [0.004%] [0.002%] [~0%] [0.003%] [0.07%] [~0%]

Table 3. Counts and percentages of measurements flagged by each QC test, for each network.

Table 4. Expert-based evaluation of the automated QC decision for three networks. TP = true positives; FP = false positives;
TN = true negatives; FN = false negatives. Metrics are calculated relative to the 140 evaluated stations per network.

Network TP FP TN FN Accuracy (§%) Precision (%) Specificity (%)
Novi Sad 64 6 70 0 95.7 91.4 92.1
Zurich 68 2 65 5 95.0 97.1 97.0
Amsterdam 37 23 70 0 76.4 61.7 75.3




Number of

Network " Number of Flagged Data
Stations / out_of time temporal | climatic spatial spatiotemporal
points gross_errors . . . . .
range consistency | persistence | outliers consistency consistency
276
Zurich_combined 9956 1033 747 30 718 45 689 2
(24 188 916)
182 9263 943 306 401 29490 1
Only SUHIRS sensors 0
(15 950 662) [0.058%] [0.006%] [0.002%] [0.002%] [0.185%] [~0%]
94 693 90 168 30 317 16 199 1
Only LoRAIN sensors
(8238254) [0.084%] [0.001%] [0.002%] [~0%] [0.004%] [0.197%] [~0%]

Table 5. Number and percentage of flagged data at each QC step for two different sensor types of the Zurich Network.

Share of flagged data within city (%)
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Figure 9. Fractional impact of Land cover types on QC flagged across the studied weather networks. Each bar shows the
normalized share (100%) of flagged temperature observations within a city.
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