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ABSTRACT28

This study provides a comprehensive dataset (FAIRUrbTemp) that addresses the lack of high-resolution urban air temperature
data across Europe. It compiles sub-hourly street-level air temperature data from 811 low-cost to commercial sensors across
several European cities and offers data in a quality-controlled, standardized format in sub-hourly, hourly, and daily resolutions.
In addition, detailed metadata, as an important source of information in urban studies, is provided at network, station, and
measurement levels. This pan-European dataset is rigorously quality-controlled using a serially automatic method applicable to
diverse city-scale air temperature data, which identifies systematic and minor inconsistencies to enhance reliability. Expert-
based validation shows that the QC reliably identifies problematic measurements, while its performance varies across urban
and climatic settings due to local environmental and instrumental effects. To ensure transparency, the results of the quality
control are provided to the user together with the original value in the dataset. The validated FAIRUrbTemp is a valuable
resource for urban climate studies, with direct applications in validating microclimate models, assessing heat-health risks, and
informing climate-adaptive urban planning.

29

Background & Summary30

Near-surface air temperature is a critical climatological variable with significant impacts in various domains, including human31

health1, 2, economy3, 4 and society5. Changes in frequency, intensity, spatial extent, and duration of extreme events such as32

recent severe European summer heatwaves and drought6, 7 have significantly impacted human, flora and fauna life. Heatwaves33

are exacerbated in cities due to impervious surfaces, buildings, and other factrors, leading to locally elevated temperatures34
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known as urban heat island effect8. Due to the high population density and thus high exposure, including vulnerable persons,35

heatwaves pose a significant risk to many cities in Central Europe and elsewhere. To design effective mitigation and adaptation36

strategies and reduce future risks, it is essential to gather information on micro-climate patterns in cities, reflecting urban-rural37

differences but also intra-urban variability9.38

Consequently, reliable and accurate near-surface air temperature measurements in cities are crucial. Due to their high39

installation and maintenance costs, as well as required site setting10, professional weather stations are often difficult to install in40

urban areas11. Fortunately, recent affordable, compact environmental sensors can now regularly achieve sub-hour sampling41

intervals and temperature accuracy of ± 0.5°C (with precision down to 0.1°C). Such performance is adequate to resolve42

intra-urban temperature gradients for heat island mapping and local trend analysis, while applications such as high-precision43

model evaluation may require even smaller errors12–16.44

In Europe, significant efforts have led to the development of Climate Services, providing data from ground-based measure-45

ments, satellite data, and weather and climate simulations, and ensuring these datasets are publicly accessible through initiatives46

such as C3S (Copernicus Climate Change Service). These established data repositories are extensively utilized across research,47

education, and economic sectors. However, a notable deficiency in these repositories is the absence of micrometeorological48

data from cities, or in the case of the presence in the global products, the accuracy of the data is very low and is not a reliable49

source for microclimate studies17. Within urban areas, such data are essential for urban planners, environmental scientists, and50

policymakers actively involved in crafting strategies for climate-resilient urban planning18.51

To address this gap and to provide this type of data, in the framework of the COST Action CA20108 FAIRNESS (FAIR52

NEtwork of micrometeorological measurements) project the Fair Micromet Portal – FMP 2.0, (available at: https://www.fairness-53

ca20108.eu/micromet_ksp/) was developed. The main goal of FMP 2.0 is to improve the Findability, Accessibility, Interoper-54

ability and Reusability (FAIR)19 character of micrometeorological data and to publish: a) a compiled inventory of available and55

quality proven micrometeorological in situ data sets on the European level and beyond, b) a structured guidance framework56

for FAIRification of micrometeorological data, and c) examples of rural and urban FAIR data sets. The initiative focuses on57

standardizing data quality, filling data gaps, offering detailed metadata descriptions, and making FAIR datasets accessible for58

rural and urban areas18.59

Building on the Cost Action FAIRNESS project, this research systematically identified and compiled a temperature dataset60

from 12 European urban networks. This data was subsequently processed into a common format before being quality controlled.61

This process was designed to capture issues such as calibration errors, systematic biases, drifts, unsuitable station configurations62

or locations, inadequate maintenance of the stations, communication, and software errors that produce erroneous or missing63

data20. For this purpose, a tailored quality control (QC) procedure was developed by adapting existing strategies (e.g., Hunziker64

et al.21) to the studied urban climate networks. As an additional application of quality assurance best practices, metadata is also65

collected and provided within a single dataset. According to the Global Climate Observing System monitoring principles22,66

metadata, which includes the specifics and history of local conditions, instruments, operational procedures, and data processing67

algorithms, should be compiled and maintained with the same care as the measurements themselves. Metadata is crucial for68

FAIR principles and also for facilitating precise interpretation and analysis of longer-term datasets, as it allows detecting,69

explaining and correcting inconsistencies. Metadata is therefore essential for managing urban temperature networks23–25. In70

addition, data-metadata inconsistencies will become increasingly challenging when studying more than one network, which is71

why the main goal of this study is to organize and standardize all the network information into a homogeneous format.72

This paper introduces the FAIRUrbTemp dataset, a high-resolution, open-access collection of near-surface air temperature73

data from low-cost and commercial street-level sensors across 12 European cities. Designed to address the persistent lack74

of spatially dense and harmonized temperature data in urban areas, the dataset captures conditions within the urban canopy75

layer at sub-hourly, hourly, and daily resolutions. It is provided in a standardised format with detailed metadata. By leveraging76

cost-effective measurement technologies, FAIRUrbTemp significantly expands the potential for fine-scale climate monitoring77

and analysis across diverse urban environments. Its applications span a wide range of research areas, including the investigation78

of intra-urban temperature variability, evaluation of urban heat island intensity, calibration and validation of weather and climate79

models, assessment of heat-related health risks, and the development of evidence-based strategies for climate-resilient urban80

planning.81

Methods82

Overview83

The process of generating the dataset is illustrated in Figure 1. First, subhourly air temperature data were collated from existing84

street-level weather station networks within the COST action FAIRNESS project. Second, we converted all data into the Station85

Exchange Format (SEF)26. SEF files contain both data and metadata. Third, the QC procedure was applied (see sect. “Quality86

Control”). Finally, we aggregated the data into hourly mean, daily max, and daily min. The processed data were also stored in87

SEF format after QC.88
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Data89

Compilation of existing data90

Data were compiled from 12 established European networks active within the broader COST action. The networks are91

Bern (Gubler et al.15, Dataset27), Biel (Biel (T.M. Erismann et al.28), Basel (Schlögl et al.29), Amsterdam (Ronda et al.30),92

Birmingham (Muller et al.11, Dataset31), Freiburg (Plein et al.32, Feigel et al.33, Dataset34), Ghent (Caluwaerts et al.35), Berlin93

(Fenner et al.36, Dataset37), Novi Sad (Šećerov et al.38, Dataset39), Rennes (Dubreuil et al.40, Dataset41), Turku (TURCLIM,94

Alvi et al.42), and Zurich (Anet et al.43). The location and an overview of the networks are described and illustrated in Table 195

and Figure 2. In addition to the spatial distribution of stations, we also display the monthly mean air temperature climatology96

for each network to provide a first look at the general climate conditions and seasonal variability across cities (Figure 6).97

Differences in deployment strategy in individual cities are clearly evident in Figure 3 to Figure 5. It is also important to98

acknowledge the inherent differences between networks. No standard exists for urban meteorological networks and hence99

different approaches are common. Each network uses different (one or several) types of sensors, different installations, and100

configurations for collecting temperature data, leading to differences between networks. For instance, in Bern and Zurich,101

a large proportion of stations rely on self-built, low-cost devices (Gubler et al.15; Anet et al.43), while Novi Sad and Ghent102

utilize commercial sensors such as the ChipCap 2 and PT100 PRT probes, respectively (Šećerov et al.38; Caluwaerts et al.35).103

Ventilation strategies also vary: some sites use passively ventilated housings (e.g., Bern prior to 2023) while others employ104

actively ventilated shields (e.g., Ghent, see Supplementary Table 1). Additionally, the temporal coverage of the datasets varies105

substantially among networks (see Table 1). This variability reflects differences in project scope, duration, and instrumentation106

logistics and in some cases, sensor relocations, such as those in Bern, where devices moved due to construction activities107

or municipality requests. Shorter records (e.g., Bern, Biel) are associated with recent pilot or seasonal field campaigns. For108

example, the Bern network initially only measured in summer to record the strongest urban heat island effects during the warm109

season (Gubler et al.15). On the other hand, longer records (like Basel and Novi Sad) indicate permanent observation sites or110

continuous, multi-year monitoring operations. In several cases, such as the Ghent and Rennes network, data collection continues111

beyond the timeframe covered in the FAIRUrbTemp release. Users interested in more recent observations are encouraged to112

contact the respective network operators for access to extended datasets. Data storage formats and time references differ as well,113

some networks present their data in local time, others are in UTC. Concerning metadata, the location of the stations is reported114

in either a local coordinate system, the World Geodetic System 1984 (WGS84), or Universal Transverse Mercator (UTM).115

There are also inconsistencies in metadata IDs and station names across the networks. These data-metadata inconsistencies116

will become increasingly challenging when studying more than one network. It is important to note that each contributing117

network’s metadata practices directly influence the completeness and quality of the metadata in our repository. Because of this,118

there are still knowledge gaps that need to be filled in order to fully describe and compare measurements, especially when119

it comes to detailed instrument specifications and standardized best practices. The disparities in device type, cost, and setup120

undoubtedly influence the accuracy and comparability of temperature measurements. While this dataset does not yet include121

full instrumentation metadata for all 12 networks, it is clear that calibration protocols and sensor metadata play a critical role in122

ensuring data quality and should be documented wherever possible. Table 1 summarizes key information about the networks.123

Quality Control124

Quality control is the process of detecting and labeling physically implausible or otherwise suspicious observations44, 45. We125

devised a seven-step QC method to evaluate design flaws, communication failures, surrounding interruptions, or software126

errors. This is necessary to avoid possible errors within the datasets that could compromise the results of subsequent analysis46.127

It is acknowledged that some of the collected data has already undergone a QC, whereas other data has not (e.g. Plein et128

al.32). However, the further application of this QC method will ensure a minimum consistent level of QC process across all129

dataset. Our method combines two group of tests : (i) physical–plausibility tests, which apply on a single time series and reject130

values that are physically impossible or climatologically extremely unlikely, and (ii) contextual tests, which flag observations131

as suspicious when their spatial or temporal behavior significantly deviates from nearby values, but this is not necessarily132

impossible. Table 2 provides an overview of the seven tests (in each step, observations are assigned a flag of 0 or 1, referring to133

“non suspicious” or “ suspicious”, respectively); an observation that fails any of the tests receives a flag of 1 in the final file.134

Physical plausibility tests135

1. Gross errors: This step consists of the flagging of numerical values larger than 60 or lower than −40 ◦C47. In this step, we136

flagged values such as –999, 125, or 98, which certain networks and systems have used or arise from sensor malfunctions,137

default device settings when no measurement is taken, or transmission failures.138

2. Out of range: Observations were flagged when they exceeded physically plausible daily temperature extremes, defined by139

an extended regional climatological safety margin. Specifically, we used the ERA5-Land reanalysis dataset (1995–2023)140

to extract empirical maximum and minimum values for each study area. Given the lack of nearby official meteorological141
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stations in some locations, ERA5-Land offered a consistent and spatially comprehensive alternative. This version of142

ERA5 is designed for land surface applications48. Its 9 km spatial resolution is finer than that of ERA5 and ERA-Interim,143

which are 31 km and 80 km, respectively. To address known cold biases in ERA5-Land temperature fields, especially144

during heat extremes49, 50, We applied an additive correction of up to +6 ◦C to the ERA5 air temperature data with145

the magnitude of the adjustment estimated from comparisons with reference station observations, and also partial146

consideration of the Urban Heat Island effects. The defined threshold was not intended to represent climatological147

normals (which are addressed in step 4), but rather to identify physically implausible outliers, such as unrealistically high148

values (> 55 ◦C in central Europe), and to ensure basic physical consistency across all networks. We emphasize that149

in future research, site-specific characteristics, particularly height and local land-surface variability, may call for more150

precise bias corrections (e.g., elevation-matched quantile mapping).151

3. Time consistency: To ensure time series data stays consistent and reliable, we flagged values as potentially suspect152

when unexpected temperature changes occurred. For this evaluation, we used a median-based filter that compares each153

temperature observation with the median of its previous and subsequent values (within a ±3 time step window). If a data154

point deviated by more than a set threshold (±3 ◦C for 5-minute to 15-minute data, ±4 ◦C for 30-minutes, ±4.5/5 ◦C for155

hourly data and ±20°C for daily data), it was flagged as a potential outlier. This approach, inspired by WMO guidance156

(WMO, 199351, Beele et al.52 and Espinoza et al.53), ensures detection of abrupt and potentially erroneous changes while157

accounting for genuine atmospheric variability.158

4. Climatic outlier: flagging of daily extreme (low and high) air temperature values based on statistical values. The statistical159

algorithm flags values that exceed the 1st or 3rd quartile by more than 4 times the interquartile range. This method was160

applied independently for each calendar month to account for the seasonal variation in temperature distributions. The161

threshold multiplier M = 4 was determined empirically in this study, after trying out different values on the datasets,162

aiming to catch real anomalies with the goal of minimizing false positives (flagging meteorologically valid extremes)163

while still identifying likely anomalies. There is no universal formula for picking M, but a value of 4 provides balance,164

catching problems without being overly reactive. This aligns with other QC methods that lean toward stricter thresholds165

when dealing with daily climate extremes.166

Contextual tests (suspicious values)167

1. Temporal persistence: The persistence test examines whether the same value has been recorded over an extended time168

period, indicating a potential sensor malfunction. Nonetheless, variability also depends on prevailing weather patterns; for169

example, winter low-stratus conditions might provide genuine sequences with minimal hourly temperature fluctuations.170

The test flags cases where the standard deviation over a moving 6-hour window is near zero in sub-hourly data, which171

is highly unlikely for a working sensor54. The test is flexible enough to handle missing data (up to 50% in a window)172

and only needs at least 5 valid readings to run. We acknowledge that this criterion may result in some false positives by173

mistakenly classifying valid observations as errors, especially during prolonged low-variability winter episodes.174

2. Spatial consistency: In this test, each measurement xt
i at station i and time t is compared against a local spatial consensus175

formed from nearby stations within a 3 km radius, in a dynamic way which first selects the closest stations and then176

expand the radious to 3 km (Table 2). If even within 3km there are too few stations, we allow the test to proceed when177

the effective number of neighbors nt
eff,i =

(
∑ j wi j

)2
/∑ j w2

i j within 3km is at least 1.5; otherwise the case is marked178

“insufficient information”. Neighbors are down-weighted by distance and further adjusted by land-use similarity (e.g.,179

urban vs. vegetated). A reading is flagged if its deviation from the local consensus exceeds both a local statistical180

threshold and a minimum absolute difference δ (default δ = 3◦C). This absolute floor δ (and the sensitivity multiplier k)181

is a variable in the shared code that users can change to fit their own needs; see github.com/StarAmini/QC_URBNET. This182

follows the standard definition of spatial outliers as values that deviate from their local neighborhood rather than the global183

distribution and uses well-established distance-based spatial weights. The weighted spatial mean x̂t
i of neighbouring184

stations is computed as:185

x′ ti =
∑ j ̸=i wi j xt

j

∑ j ̸=i wi j
. (1)

Weights wi j combine a Gaussian distance-decay kernel and land-use similarity and are capped at 3km:

wi j = exp

(
−

d2
i j

2σ2
d

)
λi j 1{di j ≤ 3000 m}, (2)
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where di j is the great-circle (Haversine) distance between i and j; σd is a distance bandwidth (set once per network; we
use the network median pairwise distance); and λi j ∈ [0,1] is a land-use similarity factor (e.g., 1.0 if identical land use;
0.4 if both vegetated/forested; 0 for highly dissimilar classes such as water vs. sealed/vegetated). The weighted local
spread (computed over neighbors with wi j > 0) is

σ ′ t
i =

√√√√∑ j ̸=i wi j
(
xt

j − x′ ti
)2

∑ j ̸=i wi j
. (3)

A value xt
i is flagged when

∣∣xt
i − x′ ti

∣∣ > max
(
k σ ′ t

i , δ
)
, (4)

with k a sensitivity multiplier (default k = 6) and δ the minimum absolute difference (default δ = 3◦C, user-tunable). We186

require at least two valid neighbors within the adaptive radius or, failing that, an effective support of neff ≥ 1.5; at most187

the K nearest neighbors (default K = 5) are retained for stability. In our analyses we use a single global rule per network:188

the nearest valid neighbors within a hard cap of 3.0km; require ≥ 2 neighbors or neff ≥ 1.5; use δ = 3◦C (user-tunable),189

k = 6, retain up to K = 5 neighbors, and set σd to the network median pairwise distance.190

3. Spatiotemporal consistency: This test flags outliers that are simultaneously extreme in both space and time. A temperature191

reading is flagged if it deviates significantly from the measurements of five nearby stations (located within 2.5 km)192

and from its own preceding and following time steps, exceeding the 99.99th percentile of their respective distributions.193

Nearby stations are selected dynamically based on the location, and a flag is raised only when the reading is extreme in194

both spatial and temporal dimensions.195

The sequence of QC checks is aligned with the steps outlined in the paper. Before each QC step is applied, the time series is196

updated to exclude the flagged values in the previous step. This approach minimizes the risk of errors carrying forward into197

later stages of analysis, ensuring robust and accurate results.198

It is important to note that, initially, based on established references mentioned in Table 2, we modified the QC thresholds199

as necessary by applying our knowledge of the local climate and sensor behavior. In fact, we came across situations where a200

given threshold guidance was not sufficient or was not entirely relevant. We tested a range of parameter values across different201

cities to identify those that consistently flagged clear anomalies while avoiding the misclassification of normal, but unusual,202

weather patterns.203

We note that there is room for improvement in the spatial consistency check. For example, the current method ignores204

the elevation effect, which should be taken into consideration for future improvements, as it may have a substantial impact on205

temperature variability.206

Through a combination of literature and practical testing, we were able to develop a QC process that works reliably across207

our European datasets. Although it offers a strong foundation for urban temperature networks, it might require adjustment for208

environments outside of temperate our study areas.209

The method only flags potentially suspicious values without touching the original data. It’s up to users to decide whether to210

remove or correct those values, depending on their own scientific judgment, as Brunet et al.26 recommend.211

Aggregating sub-hourly values to hourly and daily data212

Given the different recording intervals used in the networks, the decision was taken to standardize recording intervals across the213

broader dataset. Here, we provide hourly averages, which are relevant to capture diurnal temperature variations55, urban heat214

island effects56, and human thermal comfort57. In addition, we provide daily maximum and minimum temperatures, which are215

widely used diagnostics for understanding climate trends and extreme weather events. Therefore, we aggregated sub-hourly216

into hourly means and extracted daily maxima and minima20. The aggregated values are set to missing if: less than 80% of217

sub-hourly data are available per hour (for hourly data) or per day (for daily max/min values)58.218

Data aggregation in the hourly step was applied to the raw data. Afterwards, our QC method was applied to both the raw219

data and the hourly averages. However, to create daily data, we used quality-controlled data in their original time step, meaning220

that flagged sub-hourly values were excluded from the calculation.221

Data Records222

The final FAIRUrbTemp dataset is provided in the Station Exchange Format (SEF), a standard format for the exchange of223

meteorological data defined by the Copernicus Climate Change Service26. It consists of one metadata file as a compressed224
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folder (.zip), a readme file as a text file (.tsv), and 12 compressed folders (.zip). Each of these folders relates to one of the 12225

studied cities and includes 5 subfolders. To ensure consistency across the diverse contributing networks, all time information226

has been converted to UTC, and all geographic coordinates have been harmonized to the WGS84 reference system. Data are227

publicly accessible through the BORIS Portal of the University of Bern: https://doi.org/10.48620/9324768.228

• RAW: Text files (.tsv) for each station that include the near-surface temperature data shared by the project partner in a229

raw format before applying any QC checks from our side. Each file begins with the station metadata and ends with the230

temperature time series. The Metadata include: station code (ID), which follows the country_city_stationcode convention231

(e.g., for station code 2195 in Amsterdam, Netherlands, the ID is “NLD_AMS_2195”); station name (Name) using the232

same convention; latitude in decimal degrees (LAT); longitude in decimal degrees (LON); Altitude in meter (ALTs); the233

center that shared the data (Source); a link to the network dataset, if available (Link); the measured variable (street-level234

temperature) (Vbl); time statistics (point(state), average, min/max) (Stat); unit of the measured variable (Units); metadata235

(Meta). The second section at the bottom of the text files contains the time series dates. The column (Period) indicates236

the state of the time statistics; if it is 0, the record is point data. Temperature values (Value) and (Meta) include additional237

metadata or descriptions.238

• QC: Text files (.tsv) for each station that include the near-surface temperature data checked with our QC method. The file239

format is identical to the previous version; the only difference is that the column (Meta) indicates which QC test flagged240

the data.241

• Hourly data: Text files (.tsv) for each station that include nearsurface temperature data aggregated to hourly timestamps.242

Results of the QC check are also documented in the (Meta) column.243

• DailyMax: Text files (.tsv) for each station with the daily maximum temperature, computed from the QCchecked data.244

• DailyMin: Text files (.tsv) for each station with the daily minimum temperature, computed from the QCchecked data.245

For clarity in the Meta column, suspicious values detected by the QC process are marked with the QC test that identified the246

issue, denoted by the prefix “qc =” in the “Meta” column. For example, “qc = temporal_coherence” indicates a failure in the247

temporal coherence test, signalling that the associated value should be treated as unreliable for most analytical purposes.248

The final metadata file (.zip) has 12 subfolders for each of the 12 cities. In each city’s folder, the Metadata is structured at249

three levels:250

• Station-level metadata includes city name (city); station ID (station id); station number (station_number), latitude in251

decimal degrees (LAT); longitude in decimal degrees (LON); and sensor height in meter (sensor_height_m). It is worth252

mentioning that the header of the data files for a station contains even more detailed metadata, such as data source and253

links to the original network’s webpage.254

• Measurement-level metadata consists of city name (city); station ID (station id); measurement interval (measure-255

ment_interval); sensor type (sensor_type); measured variable (measured_variable); units (units); and the type of QC tests256

which flag the data in the station (qc_flag).257

• Network-level metadata provides information about each contributing urban network, including network name (net-258

work_name); geographic coverage (geographic_coverage); operator or owner (operator or owner); funding source259

(funding_source); number of stations (number_of_stations); measurement parameters (measurement_parameters); mea-260

surement interval (measurement_intervals); statistical methods (e.g., point or average measurements) (time_statstics);261

data format (data_format); accessibility (accessibility); and contact details (contact_details).262

While the standardized metadata provide a consistent and comparable overview of the dataset, they are not a substitute263

for more detailed site-specific documentation (e.g., maps, photographs, and skyview factor estimate), as recommended by264

Oke (2004, 2017). For selected station networks, some additional documentation is available in Table 1 in the supplementary265

material.266

Technical Validation267

In this section, we have evaluated the QC approach applied to the FAIRUrbTemp dataset. We begin by presenting the results of268

the QC procedures, followed by statistical evaluations of the effect of the sensors and land cover on the quality of the measured269

data.270
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Quality control271

After applying the QC procedure described in the Method section, we finally obtained a total of 809 quality-controlled station272

series. The QC analysis, summarized in Table 3, highlights the proportion of flagged data across various cities, providing a273

benchmark for overall data integrity. Note that not all networks use the same sensor types, and some have already undergone274

initial checks.275

Across the full multi-city dataset (about 1.36×108 individual records), less than 0.5 % of all measurements were flagged by276

any single test, indicating overall good data quality before QC. The majority of QC flags were triggered by inconsistencies277

in the gross error check. This test flags about 0.31 % of all measurements, effectively removing obviously invalid codes and278

corrupted readings. The remaining physical checks (out of range, temporal consistency and climatic outlier tests) each affect279

significantly less than 0.01 % of all observations, confirming that values which are physically or climatologically implausible280

are relatively rare in the raw dataset. The second and third largest shares of flagged observations were associated with the281

spatial consistency test ( 0.08 %), and the temporal persistence test (0.06 %). The spatiotemporal consistency test has only a282

very minor impact at the network scale (well below 0.01 %). Put together, these contextual checks add a conservative layer283

to the physical plausibility assessment by highlighting observations whose behavior deviates from their temporal or spatial284

neighborhood.285

For the majority of networks, the overall fraction of flagged measurements remains below 0.3 %. For instance, rejection rates in286

Ghent and Birmingham are less than 0.03 % in all tests, indicating very stable sensor behavior or serious prior screening. In287

several networks (Bern and Zurich), the spatial consistency test is the dominant source of contextual flags, but even there it288

typically affects less than 0.1–0.2% of the local measurements.289

On the other side, two networks stand out with somewhat higher fractions of flagged data and illustrate different QC behaviours.290

In Amsterdam, about 0.75 % of all values are flagged, mainly due to a combination of physical gross errors (0.36 %) and291

contextual temporal-persistence (0.30 %) and spatial-consistency (0.09 %) flags. The Novi Sad network exhibits the largest292

fraction of flagged data, with approximately 5.3 % of all measurements marked as problematic; this is almost entirely driven by293

the gross–error test (5.19 %), pointing to a large number of clearly invalid readings that are effectively removed by the physical294

plausibility screening.295

Expert-based confusion matrix evaluation296

To validate how well our automated QC distinguishes between problematic and acceptable data, we complemented the flag297

statistics with an expert-based confusion-matrix evaluation. Since no independent “ground truth” reference exists for sub-hourly,298

street-level air temperature, we used local expert judgment as the best available proxy. For four networks,140 measurments299

were randomly selected, including 70 that had been flagged at least once by the QC, and 70 that had never been flagged.300

For each network, a local expert manually examined the full temperature time series and classified each data point as either301

“problematic” (containing clearly erroneous or systematically biased records) or “acceptable” (measurements judged physically302

plausible). These expert labels were then compared to the binary QC outcome (flagged vs. not flagged) to construct confusion303

matrices at the station level (Table 4). In the confusion matrix analysis, we defined the positive class as data points containing304

problematic or erroneous records, and the negative class as points with acceptable records. Accordingly, a QC flag corresponds305

to a predicted measurement (problem detected), whereas an unflagged measurement corresponds to a predicted negative (no306

problem detected).307

The results show that the QC system consistently minimizes missed errors across networks. In Novi Sad, the QC achieved high308

accuracy (95.7 %), precision (91.4 %), and specificity (92.1 %), with no problematic stations left undetected. In Zurich, the QC309

achieved high overall performance, with a recall of 93.2 % and a precision of 97.1 %. Only 7 % of problematic stations were310

missed by the QC, and less than 3 % of acceptable stations were incorrectly flagged. The few missed problematic cases show311

that, in rare cases, small sensor flaws might not appear as strong spatial or temporal differences.312

Amsterdam represents a third case, where the QC achieved moderate precision (61.7 %) and high recall (100 %). The temporal-313

persistence test in Amsterdam produced the majority of false positives during long periods of weak winds, heavy cloud cover,314

and little daily temperature variation, especially in winter or during warm-front passages. Under such conditions, long intervals315

of nearly constant temperature are meteorologically plausible but can resemble sensor stagnation, suggesting that persistence316

thresholds may benefit from seasonal or diurnal adaptation.317

Overall, the expert evaluation shows that while variations in false-positive rates reflect different urban and climatic settings, the318

QC system reliably minimizes missed errors across networks. These findings demonstrate the efficacy of the physical-plausibility319

checks and identify contextual assessments as a crucial area for additional improvement.320

Impact of Sensors321

As mentioned in Table 1, networks may use a mix of different temperature sensors, and this does have potential impacts on322

the overall quality of the measurement. In order to investigate this further, we have piloted the Zurich network to determine323

the effects of this potential challenge. During the operational period of the network (2019-2021), two types of sensors (Pessl324
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LoRAIN and Sensirion SUHIRS) were used. Thus, we ran QC checks in two ways: first, considering all sensors as one unified325

network and second, dividing the sensors into two groups based on their sensor type and checking each group separately (Table326

5). Because the number of SUHIRS stations was nearly twice that of LoRAIN, the comparison of flagged data must be based327

on relative proportions rather than absolute counts. Once normalized to the total number of measurements, the results reveal328

clear differences between the two sensor types. Whereas, SUHIRS benefited from better radiation shielding and generally329

provided more trustworthy measurements under both day- and nighttime conditions. SUHIRS showed more out-of-range values330

and it is consistent with calibration artefacts during deployment, as SUHIRS underwent a 40 ◦C–0 ◦C calibration, which may331

explain anomalous values at the beginning of their records. For most other tests, the flagged fractions were smaller compared to332

the LoRAIN sensors. LoRAIN sensors showed a slightly higher percentage of gross errors overall and are prone to significant333

radiation biases of up to 6 K, as previously reported43.334

In the case of the spatial consistency check, Sensirion SUHIRS stations showed a significantly higher proportion of flagged335

observations compared to LoRAIN. Even though the total number of flags in this test appears lower in Table 5, the per-station336

statistical comparison shows the opposite pattern; SUHIRS stations have a significantly higher flag rate (Mann–Whitney337

p = 1.9×10−8; Cliff’s δ = 0.39, 95% CI: 0.26–0.51)(Figure 7). This indicates that inconsistencies in SUHIRS are widespread338

among the stations, whereas LoRAIN issues are more concentrated in a limited number of sensors.339

On the other side, when both sensor types were treated as one network (Figure 8a), clusters of high flag counts appeared in340

areas dominated by SUHIRS, which also had an impact on the QC of nearby LoRAIN stations. After separating the sensor types341

(Figure 8b), it became clear that the two sensor types interfered with each other, and that a large proportion of the problematic342

data originated from SUHIRS sensors, particularly during the pre-deployment calibration period. These results (Table 5) clearly343

indicate that differences between sensor types significantly affect the data quality and the reliability of spatial consistency344

checks. While separating sensors resolves cross-interference, the analysis also showed that the large radiation errors affecting345

LoRAIN stations43 were not fully detected by the current algorithm. To address this limitation, integrating cross-validation346

with nearby reference stations from the local weather service would be beneficial in future work.347

Overall, these results demonstrate that sensor type has a measurable impact on near-surface air temperature data quality.348

Differences in radiation shielding, calibration procedures, and sensor response characteristics influence the frequency and type349

of QC flags and should be explicitly considered when interpreting dense urban temperature observations.350

Impact of Land Cover351

To evaluate the effect of different land covers on the performance of temperature measurements, we classified land cover into352

four classes (sealed, vegetated, forest, and water) and calculated the proportion of QC flags within each land cover type across353

the studied networks. The results show that there is a marked difference between each land cover class (Figure 9). The number354

of relative flag rates exhibited a high value for sealed areas compared to vegetated, forest, and water bodies (Kruskal–Wallis,355

p < 0.001; Cliff’s δ = 0.37). While this partly reflects increased sensor exposure to anthropogenic influences, it is also linked356

to enhanced microclimatic variability in urban environments. In particular, local effects such as reflected shortwave radiation357

from parked vehicles, building facades, or paved surfaces can transiently heat sensors and produce sharp local temperature358

contrasts. This pattern continued after normalization by the number of stations and total observations, which showed that359

it was not caused and biased by uneven sampling density. The findings show a significant dependency of the spatial and360

temporal consistency checks on land cover, which is a sign of more microclimatic variability in built-up areas. Overall, the361

result demonstrates that local land cover can considerably affect the street-level temperature data quality, especially in dense362

urban networks.363

To examine the impact of land cover on one of the most extensively flagged tests in depth, we incorporate the classical364

spatial-consistency check by integrating land cover similarity into the neighbor weighting scheme. Instead of relying solely on365

geographic proximity, we upweight comparisons between sensors in similar land covers. This means that nearby stations on the366

same land cover are comparable with each other, while those on very different classes (such as water versus urban pavement) are367

not comparable. Otherwise, each neighbor contributes equally when land cover is ignored, and actual temperature differences368

driven by physiography often appear as false positive outlier flags. To show this effect, we applied both approaches to the369

studied networks. The results show that considering the land cover classes in this QC check decreases the number of flagged370

values in all networks. This reduction in Amsterdam, Bern, Basel, Biel, Freiburg, Novi Sad, Rennes, Turku, Zurich is 2.9, 63,371

94, 74, 60, 12, 99, 98 and 54 percent respectively. However, in Birmingham and Berlin, both cases stayed zero, and the check372

has not been applied to the Ghent dataset because of the existence of just 6 stations.373

We chose two representative case studies to clearly demonstrate these disparate effects: Amsterdam, which had one of the374

smallest reductions (2.9%), and Turku, which had one of the largest reductions (98%)(Figure 10). In Turku, a city characterized375

by pronounced coastal-inland gradients and heterogeneous land cover, many sensors placed near water bodies were initially376

flagged as inconsistent due to their temperature differences from inland urban stations. Incorporating land-use weighting377

reduced these false positives substantially, as genuine environmental contrasts were recognized rather than flagged as errors.378
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Adding land-use weighting reduced these false positives a lot because genuine differences in the environment were found379

instead of being marked as mistakes. Conversely, Amsterdam exhibits a more uniform urban environment with mostly sealed380

surfaces and fewer sharp environmental gradients. So, the unweighted spatial-consistency test already flagged a small number381

of stations, and adding land cover data offered minimal additional benefit, reflecting the city’s homogenous urban landscape.382

In conclusion, integrating land-use weighting into the spatial consistency QC check effectively reduces false positives,383

resulting in a cleaner and more reliable dataset. However, local environmental factors have a significant impact on QC outcomes;384

as a result, to validate the dataset and make sure that data interpretations accurately reflect local environmental conditions, we385

advise involving local expert insights prior to practical use.386

Overall, the results demonstrate that the applied QC framework effectively identifies erroneous and suspicious measurements387

while preserving the majority of physically plausible observations. Differences in flag rates between networks are largely388

explained by variations in sensor characteristics, topography, land cover, and prevailing meteorological conditions, rather than389

systematic deficiencies in the QC procedure. While contextual tests may be conservative in highly heterogeneous or weakly390

forced urban environments, they provide an important safeguard against undetected errors. Taken together, the FAIRUrbTemp391

dataset offers a quality-controlled, multi-city collection of street-level air temperature observations, providing an important392

source for studying urban climate variability and thermal processes across European cities.393

Usage Notes394

The UrbFairTemp dataset is a highly valuable resource in Europe, with broad applications in fields like climate science,395

health, and urban planning. For the first time, it brings together the near-surface air temperature time series from urban396

meteorological networks in a consistent format, making the analysis process significantly more efficient. Additionally, it397

provides comprehensive access to raw sub-hourly data, as well as quality- controlled, hourly, and daily data.398

The quality control method is derived from best practices used in existing studies and allows an evaluation of the data399

from various perspectives. It is also adaptable to different datasets, even those with their own inherent errors. However, it is400

important to note that the applied quality control approach is automated and robust, focusing on the detection of outliers and401

suspicious measurements rather than on physical error correction. Hence, further developments are still needed in consistent402

quality control strategies, particularly regarding the integration of physically based corrections, such as radiation effects. This is403

particularly crucial for low-cost measurement devices. These devices are prone to errors, especially in daytime data, due to404

radiative influences43.405

In order to define empirical maximum and minimum temperature values, we used ERA5 Land data, which are freely406

available and easy to obtain. However, other datasets could be used, and in future studies, this could be investigated.407

It is essential to acknowledge that FAIRUrbTemp compiles harmonized data from selected research-oriented networks that408

are members of the consortium rather than attempting to provide a comprehensive inventory of every urban weather station in409

every city. In some cities, additional urban meteorological stations are operated by other institutions; for instance, in Berlin,410

networks run by the German Weather Service (DWD), the Freie Universität Berlin, and the city administration are available411

via the external platform uco.berlin, but are not included in FAIRUrbTemp. These initiatives highlight the importance of412

coordinated data sharing for improving spatial coverage, and long-term usability of urban climate observations.413

Lastly, we should emphasize that there are currently no plans to update FAIRUrbTemp. However, since this dataset is414

developed under the COST Action project FAIRNESS (CA20108), several related initiatives are underway. In line with its415

objectives, COST Action FAIRNESS, for example, seeks to offer high-quality data in every European country. It also outlines416

policies and strategies for data collection and the establishment of observational networks. The quality control schema and417

principles outlined in this paper are also considered to be broadly applicable. For people who just read the abstract and usage418

notes, we would mention at least here, if not in both places, that the quality control never excludes/deletes any data but just419

adds flags. And that the user needs to filter the data to their needs.420

Code Availability421

The data processing and QC routines are written in R (v.4.3.1) programming language. The entire code used is freely available422

at GitHub (https://github.com/StarAmini/QC_URBNET) under the GNU General Public License v3.0.423

Data Availability424

All data used in this study is publicly accessible online under the CC-BY licence via the following links: https://doi.org/10.48620/93247.425
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Figures & Tables602

Figure 1. Schematic overview of the near-surface air temperature data collection and generation of the open access dataset.
Raw data, related processes, and main output files are specified.
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Figure 2. Geographical distribution of the studied cities in Europe. With the main topography of Europe. The DEM is an
SRTM 30 m. The dots indicate the locations of the European networks evaluated in this research. Each network has a specific
number of stations.
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Network Country Lat/Lon
Sensor
Type

Number of
Stations

Sensor
Height (m)

Period Interval References

Amsterdam Netherlands 52.36, 4.90 VP-3; Decagon
devices covered
by a cylindrical
shield from Davis
Instruments

23 4 m 2014–2023 5 min Ronda et
al.30

Basel Switzerland 47.55, 7.60 Pessl LoRain 217 3 m 2020–2022 15 min Schlögl et
al.29

Bern Switzerland 46.95, 7.42 Hobo Pendant 8k 50-85 3 m Summer
2019–2022

10 min Gubler et
al.15

Berlin Germany 52.52, 13.40 Campbell Scientific
CS215; Vaisala
HMP155A; Pessl
nMetos, . . .

11 2–3 m 2020–2023 5 min Fenner et
al.36

Biel Switzerland 47.14, 7.25 Hobo Pendant 8k 40 3 m Summer
2023

10 min Erismann et
al.28

Birmingham England 52.59, –1.78
Aginova Sentinel
Micro (ASM) and
Vaisala WXT

23 2–3 m 2019–2022 5 min Chapman
et al. 59,
Müller et
al.11

Freiburg Germany 47.99, 7.84 Campbell Scientific
ClimaVue50 and
PESSL LoRAIN

44 3 m 2022–2023 1 min Plein et
al.32, Feigel
et al.33

Ghent Belgium 51.05, 3.73 PT100 PRT probe 6 2 m 2016–2023 1 h Caluwaerts
et al.35

Novi Sad Serbia 45.26, 19.83 ChipCap 2 devel-
oped by GE Mea-
surement & Control
Co.

26 2–4 m 2014–2017 10 min Šećerov et
al.38

Rennes France 48.11, –1.68 AWS Davis-VP2 23 2–3 m 2018 1 h Dubreuil et
al.40

Turku Finland 60.45, 22.26
HOBO U23-001
HOBO MX2301A

67 3 m 2019–2021 30 min Alvi et al.42

Zurich Switzerland 47.39, 8.53 Sensirion SHT 31
Smart Gadget &
Pessl LoRAIN v1

276 3 m 2019–2021 15 min Anet et
al.43

Table 1. Overview of the geographic and structural characteristics of the temperature-monitoring networks.
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QC Test Description Parameter Value of parameter Reference

L1. Gross errors Report impossible
values in the time
series.

Ta Ta,min =−40◦C
Ta,max = 60◦C

Dandrifosse et al.47

L2. Out of range Find values that
exceed user-selected
climatological thresh-
olds.

Ta,min
Ta,max

For each city and
season, the extreme
values are defined.
e.g. Freiburg (summer):

Ta,min = 1.72◦C
Ta,max = 41.90◦C

Hubbard et al.60

L3. Time consistency Identifies data points
whose change ex-
ceeds a defined limit.

TC
a,min

TC
a,max

5–15 min: ±3◦C
30 min: ±4◦C

Hourly: ±4.5◦C
Daily: ±20◦C

WMO51, Vergauwen
et al.45

L4. Temporal persistence Report equal or near-
equal values over
three consecutive
hours.

Ta ̸= Ta−1 ̸= Ta−2 ̸= Ta−3
̸= Ta−4 ̸= Ta−5 ̸= Ta−6

Ta −Ta−1 = 0
10 min: 36

Cerlini et al.62

L5. Climatic outliers Flag values outside
interquartile-range
bounds.

ext_lim_factor 4 Brunet et al.26

L6. Spatial consistency Compare each record
to a weighted mean
of neighboring sta-
tions.

sensitivity_scaling (k)
min_abs_diff (δ )

k = 6 (general)
k = 7 (dense urban cores)
δ = 3

Shekhar et al.63

L7. Spatiotemporal consistency Check for values im-
plausible in space
and time.

Radius
Minimum neighbours

lmtxy = 2500m
lmtn = 5

Hamada et al.66

Table 2. Summary of the seven quality control (QC) tests applied to the temperature time series.
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a) b)

c) d)

Figure 3. Locations of weather stations (a) Amsterdam, (b) Basel, (c) Bern and (d) Berlin, in relation to land cover and
topography (Urban Atlas; EEA, 2018)(part 1 of 3).
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a) b)

c) d)

Figure 4. Locations of weather stations (a) Biel, (b) Birmingham, (c) Freiburg and (d) Ghent, in relation to land cover and
topography(Urban Atlas; EEA, 2018) (part 2 of 3).
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a) b)

c) d)

Figure 5. Locations of weather stations (a) Novi Sad, (b) Rennes, (c) Turku and (d) Zurich, in relation to land cover and
topography(Urban Atlas; EEA, 2018) (part 3 of 3).
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Figure 6. Monthly mean air temperature climatology for each studied network, calculated as the mean across all available
stations within a network and averaged over the respective study period of each network. Because the observation periods differ
between networks, the climatologies shown represent network-specific time averages rather than a common reference period.
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Figure 7. Impact of sensor type on data flagging in the spatial-consistency assessment across the Zurich network. Box plots
show the per-station fraction of flagged temperature observations for Sensirion SUIHRS and LoRAIN sensors. Individual
points represent stations. The lower panel highlights the main range of flagged fractions (0–0.5%), while the upper panel shows
stations exceeding 0.5%.
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Figure 8. Spatial distribution of flagged data after applying spatial consistency check on the near-surface air temperature
network of Zurich. (a) shows results when all sensors are checked together as one combined network, while (b) presents results
after dividing sensors into two types: LoRAIN sensors (circles) and Sensirion SUHIRS sensors (triangles).
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Network Total
Measured data

Number of Flagged Data

gross_errors out_of
range

time
consistency

temporal
persistence

climatic
outliers

spatial
consistency

spatiotemporal
consistency

Amsterdam 23 196 696
83 138

[0.36%]

200

[0.001%]

23

[∼0%]

34 627

[0.15%]

71

[∼0%]

23192

[0.1%]

1

[∼0%]

Bern 3 920 400 0 0
6

[∼0%]
0 0

4 570

[0.12%]

139

[0.003%]

Basel 22 832 740 0 0
54

[∼0%]

52 827

[0.23%]

1 268

[0.006%]

1 530

[∼0.007%]

4

[∼0%]

Biel 714 000 0 0
16

[0.002%]

1 512

[0.21%]
0

1 174

[0.16%]
0

Birmingham 6 845 881
607

[0.009%]

481

[0.007%]

30

[∼0%]
0

90

[0.001%]

1 421

[0.021%]
0

Freiburg 40 302 328
41 761

[0.104%]

2

[∼0%]

142

[∼0%]
0 0

322

[0.001%]
0

Ghent 382 950 0 0
9

[0.002%]
0 0 0 0

Berlin 4 631 561 0 0 0
86

[0.002%]
0 0 0

Novi Sad 5 614 466
291 554

[5.19%]

2 186

[0.039%]

2 106

[0.038%]

23

[∼0%]

84

[0.001%]

5 766

[0.103%]

99

[0.002%]

Rennes 202 078 0
11

[0.005%]
0 0

1

[0.002%]

17

[0.008%]
0

Turku 3 524 870 0 0
1

[∼0%]

54

[0.001%]
0

276

[0.008%]
0

Zurich 24 188 916
9 956

[0.041%]

1 033

[0.004%]

474

[0.002%]

30

[∼0%]

718

[0.003%]

45 689

[0.07%]

2

[∼0%]

Table 3. Counts and percentages of measurements flagged by each QC test, for each network.

Table 4. Expert-based evaluation of the automated QC decision for three networks. TP = true positives; FP = false positives;
TN = true negatives; FN = false negatives. Metrics are calculated relative to the 140 evaluated stations per network.

Network TP FP TN FN Accuracy (§%) Precision (%) Specificity (%)
Novi Sad 64 6 70 0 95.7 91.4 92.1
Zurich 68 2 65 5 95.0 97.1 97.0
Amsterdam 37 23 70 0 76.4 61.7 75.3
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Network
Number of
Stations /

points

Number of Flagged Data

gross_errors out_of
range

time
consistency

temporal
persistence

climatic
outliers

spatial
consistency

spatiotemporal
consistency

Zurich_combined
276

(24 188 916)
9 956 1033 747 30 718 45 689 2

Only SUHIRS sensors
182

(15 950 662)

9 263

[0.058%]

943

[0.006%]

306

[0.002%]
0

401

[0.002%]

29490

[0.185%]

1

[∼0%]

Only LoRAIN sensors
94

(8238254)

693

[0.084%]

90

[0.001%]

168

[0.002%]

30

[∼0%]

317

[0.004%]

16 199

[0.197%]

1

[∼0%]

Table 5. Number and percentage of flagged data at each QC step for two different sensor types of the Zurich Network.
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Figure 9. Fractional impact of Land cover types on QC flagged across the studied weather networks. Each bar shows the
normalized share (100%) of flagged temperature observations within a city.
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Figure 10. Comparison of the spatial-consistency check results in the network of Turku, (a) excluding the land cover effect
from the check) and (b) including the effect of land cover in the check. The second row shows the network of Amsterdam, (c)
excluding the land cover from the check, and (d) considering the land cover in the check.
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