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Detection of the spatial patterns of 
water storage variation over China 
in recent 70 years
Zheng Chen1,2, Weiguo Jiang1,2, Jianjun Wu1,2, Kun Chen3, Yue Deng1,2, Kai Jia1,2 & Xinyu Mo4

Terrestrial water storage (TWS) variation is crucial for global hydrological cycles and water resources 
management under climatic changes. In the previous studies, changes in water storage of some part of 
China have been studied with GRACE data in recent ten years. However, the spatial pattern of changes 
in water storage over China may be different in a long period. Here, we aimed to present long-term 
spatial patterns of TWS over China between 1948 to 2015 by unique Global Land Data Assimilation 
System Version 2 data and identify possible factors to water storage changes. The results revealed that 
the inner-annual variations in TWS of China exhibited remarkable downward trends with decreased 
rate of 0.1 cm/yr. Meanwhile, we found that spatial patterns of TWS in China can be divided into three 
distinct sub-regions of TWS region with increased, TWS region with decreased, TWS region with 
insignificant variation. The Northeast had decreased trends (−0.05 cm/yr) due to climate change and 
anthropogenic activities. Urban expansion is a non-ignorable factor to TWS reduction in Jing-Jin-Ji 
region (r = 0.61); the west had increased from 1948 to 2015 (0.03 cm/yr) due to precipitation increased 
and recharge by glacier melt; the south had insignificant trends and TWS varied with precipitation 
(r = 0.78).

Terrestrial water storage (TWS) variation is crucial for global hydrological cycles and water resources manage-
ment under climatic changes. However, TWS distributed unevenly in different regions and there would be serious 
losses as extreme droughts occurred. Therefore, it is necessary to detect spatial patterns of TWS, especially for 
China. Although there are several large rivers and vast amounts of wetlands in China, water shortage is persistent 
problem in some areas (e.g. Gansu, located in western China), because of certain climatic condition and the une-
ven distribution of water resources. In recent decades, several extreme droughts affected most parts of China1, 2, 
affecting many people and resulting in serious losses. The hydrological process and water resource management 
have been important topics of concern.

Ground measurement datasets derived from hydrologic stations could be used to estimate terrestrial water 
storage (TWS) variation with hydrological models. However, the datasets cannot meet the requirement of water 
storage change research at a large scale3. The Gravity Recovery and Climate Experiment (GRACE) satellite 
launched in 2002 has provided a new and effective method for water resource research4. It provides monthly 
change information about the mass distribution on the Earth’s surface5. Numerous researchers have acquired 
terrestrial water storage change information from GRACE measurements. Ndehendehe et al. (2016) successfully 
estimated TWS variations based on GRACE data in West Africa from 2002 to 20146. Frappart et al. (2013) sug-
gested that TWS variations estimated based on GRACE data could clearly exhibit the droughts and floods affected 
South America from 2003 to 20107. However, the GRACE data spans only thirteen years and are not sufficient 
to investigate the temporal characteristics of water storage variation over a long period. Comparatively, the data 
derived from the Global Land Data Assimilation System version 2 (GLDAS-2) provide observations since 1948, a 
period of nearly 70 years. Meanwhile, GLDAS-2 at a resolution of 0.25° × 0.25° (Noah), is more spatially detailed 
than GRACE at a spatial resolution of 1° × 1° and WaterGAP WGHM2.2 at a spatial resolution of 0.5° × 0.5°8. 
Additionally, GLDAS is often used in the validation of GRACE measurements, and water storage changes derived 
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from GLDAS are consistent with those estimated from GRACE in previous studies9–11. Nevertheless, Yang & 
Chen (2015) suggested that GLDAS is more sensitive to climate change than GRACE5.

In China, the terrestrial water storage varies regionally. Song et al. (2013) suggested that the total lake 
water storage of the Tibetan Plateau increased, whereas mass in southeastern Tibet and along the Himalayas 
decreased12. In the Badain Jaran Desert (western Inner Mongolia, China), both lake level and groundwater stor-
age decreased from 2003 to 200913. Huang et al. (2013) suggested that a significant decrease in TWS has occurred 
in the Yangtze River basin since 199814. In the Tarim River basin (northwest China), TWS increased from 2003 
to 2011 because of the recharge of snow melt15. TWS also corresponds to flooding and drought conditions16, 17. 
Long et al. (2014) estimated the TWS of the Yun-Gui Plateau from the 1980s to 2012, and the results showed that 
TWS anomalies correspond well to flood and drought events18. Although variations in TWS of different regions 
in China had been researched, little studies are related to TWS variation spatial pattern over China in a long term 
period. Thereafter, it is necessary to detect spatial patterns of water storage variation over China.

In this paper, we detected the spatial variation patterns of water storage over China for the period 1948–2015 
at national and regional scales. We selected eight basins (Yangtze River Basin, Yellow River Basin, Heilongjiang 
River Basin, Liaohe River Basin, Haihe River Basin, Huaihe River Basin, Southeastern Rivers Basin and Pearl 
River Basin) and four regions (Gansu-Inner Mongolia, Xinjiang Province, Tibet-Qinghai Province and Yunnan 
Province) as the key regions to analyse the variation patterns at regional scales. This study aims to (1) detect the 
spatial pattern of TWS over China, (2) detect the regions with significant increases and decreases in TWS, and (3) 
identify the main factors influencing TWS variations in different regions.

Results
Water storage trend over China.  The inner-annual variation in TWS is significant, approximately 3 cm 
(Fig. 1a). TWS increases from January to August and decreases from August to December. It reaches a maximum 
of approximately 47.76 cm in August. TWS increases most rapidly from June to July, decreases most rapidly from 
September to October, and it has no obvious change from February to April.

Overall, the terrestrial water storage anomaly (TWSA) has decreased from 1948 to 2015 by approximately 
0.1 cm/yr, especially in April to June and October to December (slope < −0.01), whereas water storage decreased 
insignificantly (slope > −0.01) in spring (from January to March) and summer (from July to September) (Fig. 1b 
and Fig. S2). From 1950s to 1965, TWSA increased in each month while TWSA decreased from 1960s to 1980. 
TWSA decreased slightly in Spring, Summer and Winter from 1990 to 2010. From 1980 to 2000, water storage 
increased significantly in August and September, about 4 cm. From 2010 to 2015, water storage increased in each 
month.

There are three increasing periods: 1948 to 1964, 1979 to 1994 and 2009 to 2015 (Table 1). From 1965 to 1978 
and from 1995 to 2009, TWS tends to decrease (Table 1). In 1963 and1998, two extremely serious flood disasters 
occurred in Hebei province, Beijing, Tianjin, the Yangtze River basin and northern China due to heavy rainfall, 
thereby causing the maximum annual TWSA to reach peak values for the period of 1948 to 2015 (approximately 
4 cm). A serious drought occurred in the southwestern region of China (Neimenggu province, northern, north-
eastern and southwestern China) in 2009, resulting in the minimum annual TWSA (approximately −3 cm).

Spatially, water storage decreased by 59.5% of China, and 55.4% of regions showed significant decreases 
(p < 0.05, including Ningxia, Gansu, Shaanxi, Shanxi, Henan, Beijing, Tianjin, Heibei, Liaoning, Jilin, 
Heilongjiang and the north of Neimenggu Province; Fig. 2). The depletion rate of water storage peaked in 

Figure 1.  Inner-annual (a) and intra-annual (b) change trends of TWS from January 1948 to December 2015 
(the grey symbol is the annual maximum value; the blue symbol is the annual median value; the orange symbol 
is the annual minimum value).

Increasing periods Decreasing periods

1948–1964 1965–1978

1979–1994 1995–2009

2009–2015

Table 1.  The increasing and decreasing periods of annual average TWSA between 1948 to 2015.
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the north of Neimenggu, i.e., > 0.2 cm/yr. The water storage increased obviously in Xinjiang province and the 
Qinghai-Tibet plateau. The total increase area accounts for 40.5% of China, and 50.8% regions exhibited signifi-
cant increases (Fig. 2), with a peak increase rate value of approximately 0.49 cm/yr.

Spatial and temporal trend analysis of TWS in key zones.  We selected eight basins (Yangtze River, 
Yellow River, Heilongjiang River, Liaohe River, Haihe River, Huaihe River, Southeastern Rivers and Zhujiang 
River) and four regions (Gansu-Inner Mongolia, Xinjiang Province, Tibet-Qinghai Province and Yunnan 
Province) as the key zones to study the spatial and temporal variation of TWS in different parts of China (Fig. S3). 
Generally, the TWS of southern China is more than that of northern China, similar to the spatial distribution 
of precipitation. The TWS of southeastern China is the highest (approximately 66.61 cm), and that of Xinjiang 
Province is the lowest (approximately 32.95 cm) (Table S1 and Fig. S4).

From 1948 to 2015, water storage tended to decrease in YL, HLJ, LH, HH, HuH and GN (−0.026~−0.106 cm/
yr), whereas the variations of water storage showed increases in XJ and TQ, 0.023~0.046 cm/yr) (Fig. 3 and 
Table S2). In four other southern regions, no obvious changes are observed (0.002~0.005 cm/yr) (Fig. 3 and 
Table S2). The rate of water storage variation in XJ (approximately 0.046 cm/yr) is higher than that in TQ (approx-
imately 0.023 cm/yr). In TQ, TWS rose from 1961 to 2010 by approximately 3.48 cm, decreased from 1948 to 1960 
by approximately 1.58 cm, increased obviously over the period from 1948 to 2006 by approximately 3.17 cm/yr 
and decreased since 2007 by approximately 1.40 cm/yr in XJ. The rate of TWSA decrease in HH (approximately 
−0.106 cm/yr) was the highest among key zones with a decreasing tendency, and changes in TWSA showed 
obvious decreases in all decreasing regions from the 1960s to 1970s. In HLJ, the decreasing rate of TWSA was 
approximately −0.092 cm/yr from 1948 to 2015 and from 1960 to 1979, TWSA decreased by 15.51 cm. In addi-
tion, TWSA decreased by 10.73 cm and 6.26 cm in LH and HH from 1960 to 1979, respectively. Although there 
were no obvious changes, TWSA fluctuated frequently in the south of YZ and HuH. There are four obvious valley 
values in YZ around 1966, 1978, 1986 and 2011, and in HuH, values of TWS are frequently less than the annual 
average value, and there are three significant valley values around 1966, 1978 and 1992. In Yunnan province, TWS 
reached minimum values around 1969, 1979 and 2010. The low values may have been caused by serious drought 
events (Fig. S5).

We spatially calculated the TWS change trends in each key zone from 1948 to 2010 using the Theil-Sen median 
analysis method (Fig. 4). The variation ranges of SER, Yunnan and PL are the lowest, whereas those of GN, XJ and 
TQ are the largest. In the source region of YZ and YL (part of TQ), TWS shows an increasing tendency, whereas 
in northern YZ and the middle and lower reaches of YL, TWS tends to decrease in the period. In addition, TWS 
decreases in almost in the whole region of HLJ, LH, HH and HuH, especially in northern HLJ (the same region of 
northern GN) and the middle of LH and HH. In Hoh Xil (the junction of XJ and TQ), TWS increases obviously, 
whereas in the Tianshan mountains, TWS decreases in the study period. In YN, TWS tends to decrease only in 
the most eastern region.

According to the spatial temporal variable characteristics shown in Figs 3 and 4, TWSA tends to increase in 
western China and decrease in northeastern China, whereas in southern China TWSA shows an insignificant 
tendency. Thus, we divided China into three sub-regions (Fig. 5): (1) the increasing TWS region (XJ and TQ); (2) 

Figure 2.  The spatial distribution of TWSA variation trends (p < 0.05). This map was created using ArcGIS 10.1 
software, visit http://desktop.arcgis.com/en/ for more details.
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the decreasing TWS region (YL, HLJ, LH, HH, HuH and GN); (3) the insignificant change region (YZ, SER, ZJ 
and YN).

Discussion
In this paper, TWS is the sum of soil moisture, canopy water storage and snow water equivalent19. It is influ-
enced by precipitation and anthropogenic activities20. Precipitation is one of the major recharge sources to water 
storage. The results suggested that TWS variations in each sub-region were significantly influenced by precipi-
tation (Fig. 6). In the insignificant change region (sub-region C), the TWSA change was highly positively corre-
lated to precipitation (r = 0.78), and the variation patterns were consistent, whereas the TWSA changes showed 
lower positive correlations with precipitation in the other two regions (r = 0.58 in sub-region A and r = 0.48 
in sub-region B). This suggested that water storage variability was mainly affected by precipitation in southern 
China, whereas multiple factors, including precipitation, jointly influenced water storage variations in other parts 
of China from 1948 to 2015.

Factors impacting TWSA variability in sub-region A.  In sub-region A, snow water equivalent is 
an important component to TWS. Precipitation and glacier melting are the major recharge sources for water 
resources in sub-region A21. This region has a temperate continental climate and plateau-climate with little 
precipitation. Glacier melting is extremely important to the hydrologic cycle5, 22. In the Tibetan Plateau, global 
climate change has affected the cryosphere23. Over the past decades, temperature and precipitation have both 
increased24, 25, leading to higher rates of glacier melting under this climate condition, which resulted an increase 
in the number of glacial lakes26, 27. Lei et al. (2013) suggested that climate change and glacier mass loss are the 
main factors impacting TWS variation28. In this paper, TWS increased significantly from the 1960s to 2015 in 
TQ and exhibited a significantly positive correlation to precipitation (Fig. S6). In addition, glacier melting and 

Figure 3.  Long term changes of TWSA in key zones (YZ, YL, HLJ, LH, HH, HuH, SER, ZJ, GN, XJ, TQ and 
YN) from 1948 to 2015. This result was performed using Origin 9.0 software.
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precipitation are also the main sources of recharge in Xinjiang province29, 30. TWS rose from 1960 to 2015 and the 
water storage change was significantly positively correlated to precipitation (Fig. S6). In the last fifteen years, TWS 
declined obviously, which may be caused by the slight decrease in precipitation and increased in temperature5, 15, 
resulting in more evaporation. Therefore, we suggest that climate change is the main factor influencing the water 
storage change in sub-region A.

Figure 4.  Spatial distribution of the annual average TWS change trend in each key zone. These results were 
performed by MATLAB 2013b and this map was created using ArcGIS 10.1 software, visit http://desktop.arcgis.
com/en/ for more details.

Figure 5.  Spatial distributions of the TWS variation sub-regions: (A) increasing TWS region, (B) decreasing 
TWS region, and (C) the insignificant change region. This map was created using ArcGIS 10.1 software, visit 
http://desktop.arcgis.com/en/ for more details.
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Factors impacting TWSA variability in sub-region B.  The water storage anomaly declined from 1948 
to 2015 in sub-region B (Fig. 3) and had a significant, but lower, positive correlation to precipitation (r = 0.48, 
Fig. 6). Therefore, anthropogenic activities and land cover change may be additional factors influencing the water 
storage change. Since the land surface propertied were changed in the process of anthropogenic activities, soil 
moisture varied with the land surface change. Due to population growth and rapid urbanization, wetlands have 
become severely degraded in China over the past decades, especially in Heilongjian Province31, 32. From 1955 to 
1980, the amount of marshland covering the Sanjiang Plain decreased significantly as it was converted to farm-
land32. In this process, water in marshes was drained and the warming and drying trend of climate exacerbated 
the water storage reduction33, 34. Thus, climate change and marsh degradation were the main factors in the water 
storage decline in HLJ.

Urban expansion leads to less water vapour and more mixing of water vapour in the boundary layer, resulting 
in the reduction of precipitation35. In addition, infiltration decreased because of the low permeability of imper-
vious surfaces. In the last 30 years, urban areas have expanded rapidly in the Beijing-Tianjin-Heibei (Jing-Jin-Ji) 
region and the area of impervious surface increased substantially36, 37, resulting in the decrease of soil moisture. 
Moreover, rapid population growth also leads to more water consumption during this period. We employed 
nighttime light data collected by DMSP/OLS to study the correlation between urbanization and TWSA variations. 
The water storage reduction due to factors other than evaporation was calculated by Eq. 3. The result showed that 
the TWSA change had a significant correlation to urbanization (r = 0.61, p < 0.01, Fig. S7), following a logarith-
mic relationship (R2 = 0.50). Therefore, we suggest that urbanization and population growth are two significant 
factors for the TWS decrease in HH.

Factors impacting TWSA variability in sub-region C.  Sub-region C contains almost all parts of south 
China, where rainfall is abundant. Unlike the sub-region A, snow water equivalent variability is not important to 
water storage change in sub-region C. Precipitation is the main recharge source of water storage. The high corre-
lation between TWSA and precipitation suggests that precipitation is a relatively important control of TWSA var-
iability. Although the water storage anomaly varied with precipitation, anthropogenic activities are not negligible. 
Sub-region C is one of the most densely populated parts of China and the depletion of water storage should not 
be ignored. In addition, the high number of dams influences the hydrological regime38. However, anthropogenic 
activities have lower influence to water storage changes in the sub-region C.

Overall, TWS variation exhibits a high correlation to climate change and land cover and land use changes. 
TWSA variations in different regions of China depend on the certain climate condition and geographical charac-
teristics (land cover change and regional development plan).

Conclusions
Water storage distributed unevenly over China and it is important to detect variation characteristics of differ-
ent regions. Spatial and temporal patterns of Variations in TWS over China had been studied with GLDAS-2 
Noah outputs in a long time series and divided spatial patterns of TWSA in China into three sub-regions with 

Figure 6.  The correlation between the annual precipitation anomaly and TWSA of each sub-region (A,B and 
C). The red line is the simple linear regression fitting line (p < 0.01). This result was performed using Origin 9.0 
software.
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different variation characteristics firstly. The results revealed that water storage fluctuated significantly in a year 
and reached to the maximum in August. TWS tended to decrease in a long term period with the rate of 0.1 cm/
yr and 59.5% area of China had decreased and 40.5% area of China tended to increase. At regional scale, changes 
in TWS of eight basins and four key zones had investigated. TWS of Xinjiang province and Tibet-Qinghai zones 
showed increased trend and TWS changes with decreased in HLJ, LH, HH, HuH and GN. We found that spatial 
patterns of TWSA in China can be divided into three distinct sub-regions of TWS variations with increased, 
TWS variations with decreased and TWS variations with insignificant tendency. The northeast had decreased 
remarkably with rate of −0.05 cm/yr due to climate change and anthropogenic activities. Urban expansion is a 
non-ignorable factor to TWS reduction in Jing-Jin-Ji region (r = 0.61, p < 0.01). The west had increased signif-
icantly with the rate of 0.03 cm/yr as precipitation increased and recharged by glacier melting. The south China 
had insignificant trends and TWS changed with precipitation (r = 0.78, p < 0.01).

Methods
Data sources.  The Global Land Data Assimilation System (GLDAS) was jointly developed by scientists at 
NASA, GSFC, NOAA and NCEP to provide terrestrial water and energy storages data. It drives four land surface 
models: Noah, CLM (Community Land Model), VIC (Variable Infiltration Capacity) and Mosaic, incorporating 
both ground and satellite based data (e.g., the global land cover and soil type dataset)39. The model output pro-
duced by the Noah land surface model includes soil moisture data (10, 30, 60 and 100 cm, from the soil surface 
down), snow water equivalent and canopy water storage. In this paper, we collected the monthly data simulated 
by Noah from NASA (http://ldas.gsfc.nasa.gov/index.php) at spatial resolutions of 0.25° × 0.25° and 1° × 1°, from 
1948 to 2010 and from 2011 to 2015, respectively. The GLDAS dataset was employed to present the trend of 
terrestrial water storage anomaly (TWSA) variations over China. As described in the Readme document, we 
simulated TWS by summing up the total soil moisture, accumulated snow and plant canopy surface water and 
calculated the terrestrial water storage anomaly (TWSA) by subtracting the average TWS from 1948 to 2010 (the 
dataset with a spatial resolution of 0.25° × 0.25°) and the average TWS from 2011 to 2015(the dataset with a spa-
tial resolution of 1° × 1°), respectively.

The Gravity Recovery and Climate Experiment (GRACE) mission was launched by NASA and the Germany 
Aerospace Centre in 2002, to provide global mass change information by detecting gravity field changes6. The 
TWS anomaly data are provided by CSR, GFZ and JPL. We collected the monthly GRACE data from the CSR 
(Center for Space Research), GFZ (GeoForschungsZentrum) and JPL (Jet Propulsion Laboratory) and processed 
the data with a Gaussian filter. The GRACE TWSA dataset expresses TWSAs with equivalent water column height 
at a spatial resolution of 1° × 1°, covering the period of 2003 to 2013. We calculated the average of the TWSAs 
derived from different institutions to validate the TWSA derived from GLDAS.

The daily precipitation data set was collected from the National Climate Center (NCC) of the China 
Meteorological Administration (CMA) to explore the relationship between TWS variation and climate change. 
The daily precipitation data set covering the years from 1960 to 2015 was provided from 824 national meteoro-
logical stations in China. We summed up the valid precipitation data of each month as the monthly precipitation 
value and spatially interpolated the data to 0.25° × 0.25° using the Kriging interpolation method.

Theil-Sen median trend analysis.  The Theil-Sen median trend analysis method is a robust trend statistical 
method used to calculate the median slopes between all n(n-1)/2 pair-wise combinations of time series data40. It 
was used to detect the trend of TWSA variations of China and key zones from 1948 to 2010. It is calculated by:
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where STWS refers to the T-S median, and TWSi and TWSj represent the TWS values of years i and j. If STWS > 0, 
TWS presents an increasing trend; otherwise, there is a decreasing trend. The Mann-Kendall test method was 
used to measure the significance of the trend. Results with p < 0.05 were considered significant. The trend analysis 
was calculated with Matlab R2013b.

The Pearson correlation coefficient.  The Pearson correlation coefficient was widely used to measure the 
linear correlation between two variables, giving a value between 1 and −1. If the value is less than 0, this implies 
a negative correlation between the two variables; otherwise, a positive correlation exists. This study used the 
Pearson correlation coefficient to measure the linear correlation between the TWSA variation and driving factors. 
The Pearson correlation coefficient is calculated by the following formula:
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where rxy is the simple linear correlation coefficient between the TWSA variation and driving factors; xi is the 
TWSA or ΔW of the ith year; yi is the precipitation anomaly or night time light index (NLI) of the ith year. x  is 
the average TWSA or ΔW for all years; y  is the average precipitation anomaly or NLI. Results with p < 0.05 were 
considered significant.

The uncertain reduced water storage.  Generally, TWSA can be inferred by the water balance with pre-
cipitation, evapotranspiration and runoff. In this study, we insist that the influence of anthropogenic activities 
(urbanization) to water storage change should be measured. Thus, we considered that the difference between 
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precipitation, evapotranspiration, and TWSA (Eq. 3) may be influenced by anthropogenic activities. The uncer-
tain reduced water storage is calculated by the following formula:

∆ = − −W P E TWSA (3)

where ΔW is the uncertain reduced water storage (cm); P is the precipitation (cm); E is the evapotranspiration 
(cm).
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