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Scaling conditions to achieve self-similar solutions of 3-Dimensional (3D) Reynolds-Averaged Navier-
Stokes Equations, as an initial and boundary value problem, are obtained by utilizing Lie Group of
Point Scaling Transformations. By means of an open-source Navier-Stokes solver and the derived

. self-similarity conditions, we demonstrated self-similarity within the time variation of flow dynamics

. forarigid-lid cavity problem under both up-scaled and down-scaled domains. The strength of the

. proposed approach lies in its ability to consider the underlying flow dynamics through not only from

. the governing equations under consideration but also from the initial and boundary conditions, hence
allowing to obtain perfect self-similarity in different time and space scales. The proposed methodology
can be a valuable tool in obtaining self-similar flow dynamics under preferred level of detail, which can
be represented by initial and boundary value problems under specific assumptions.

Dimensional analysis', power law behavior" >, fractals® ', and multi-fractals'!-**

: are related notions that have
. been applied in various fields of science in general and fluid flow processes'*>~'” in particular to model the evolu-
- tion of complex but self-similar dynamics under different spatial and temporal scales.
: By means of dimensional analysis'~® dimensionless products can be formed to reduce the number of variables
© to be considered. Various applications of dimensional analysis in engineering and physics can be found in Sedov?
and Barenblatt®. Originally intended to explain the power-law behavior of the low-frequency power spectra over
a wide range of time scales'® and their connection with self-similar spatial structures (i.e. fractals®), self-organized
criticality was introduced by Bak et al.’> !¢ to explain the spatiotemporal scaling phenomena in nonequilibrium
systems that display long-range correlations. The term fractal, the degree of irregularity or fragmentation which
is identical at all geometric scales, was introduced by Mandelbrot” !°. Long before the introduction of the fractals,
mathematicians have known of scale invariant objects, such as Hilbert curve, or Koch curve, mainly due to their
non-differentiability property!”. Self-similarity property of such mathematical objects become popular especially
after the pioneering works of Mandelbrot® ' on fractals.
An interesting feature of the fully developed turbulence is the possible existence of universal scaling behavior
. of small scale fluctuations (She and Leveque'’; Benzi et al.”’; and the references therein). Richardson?! explained
. the energy transfer from large to small scale eddies by the concept of self-similar cascades. Kolmogorov’ investi-
. gated energy distribution among eddies of the inertial range of isotropic flows and showed that the energy spec-
* trum follows a power law scaling of order —5/3. Kolmogorov’s theory” also predicts that the scaling between the
. velocity increments AU(r) = U(x+r) — U(x) at two points separated by a distance r (n<r<<L) as (AU(r)") ~ <™
: with ¢(n) = n/3 in the fully developed regime. Here, 7 is the dissipation scale and L is the integral scale, and () is
© the average over the probability density of AU(r). Experimental and numerical studies?>** demonstrated that the
§(n) deviates from n/3 for n > 3 due to strong intermittent character of the energy dissipation. With the concept of
extended self-similarity, Benzi et al.*® made noteworthy progress in accurately estimating the scaling exponents.
Furthermore, they showed that the statistical properties of turbulence could be self-similar at also low Reynolds
numbers by the same set of scaling exponents of the fully developed regime.
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Here, self-similarity conditions of 3D Reynolds-Averaged Navier-Stokes Equations, as an initial and boundary
value problem, are obtained based on the relations between scaling exponents of the flow variables by utilizing Lie
Group of Point Scaling Transformations. In the nineteenth century, Sophus Lie developed the theory of continu-
ous groups (or Lie groups) of transformations, which can be characterized by infinitesimal generators admitted
by a given differential equation. Invariant or similarity solutions can be found if a partial differential equation is
invariant under a Lie group. Among others, Bluman and Cole**, Schwarz?, Ibragimov?* %, Bluman and Anco®,
and Polyanin and Manzhirov® provided algorithms to find infinitesimal generators for various applications of
Lie groups.

In recent years, one-parameter Lie group of point scaling transformations were applied to investigate scale
invariance and self-similarity conditions of various hydrologic and hydraulic problems. Haltas and Kavvas®
investigated the scale invariance conditions of a variety of one dimensional hydrologic problems including con-
fined and unconfined aquifer groundwater flows. The self-similarity conditions of one-dimensional unsteady
open channel flow®!, one dimensional suspended sediment transport®, and two-dimensional depth averaged
flow* processes were investigated with numerical examples. More recently, Ercan and Kavvas®* derived the
self-similarity conditions of 3-dimensional incompressible Navier-Stokes equations for Newtonian fluids but
without numerical or experimental demonstration.

Within the above framework, the objectives of this article are (1) to derive the self-similarity conditions of
3-dimensional Reynolds Averaged Navier-Stokes equations closed by the standard k-¢ turbulence model by
applying one-parameter Lie group of point scaling transformations, and (2) to perform state of the art computa-
tional fluids dynamics simulations to demonstrate similitude or self-similarity of 3-dimensional flow dynamics
under various spatial and temporal scales.

Theory and Methods

The one-parameter Lie group of point scaling transformations can be defined by
o= %z (1)

which maps the variable o in the original space to the variable 7 in the scaled space. Here, (3 is the scaling param-

eter and o is the scaling exponent of the variable o. Scaling ratio of the parameter o can be defined as
0. = Z = (3“=. Reynolds Averaged Navier-Stokes equations® for incompressible Newtonian flows can be written

. ag . .
in Cartesian coordinate system as

%W _y

Ox; (2)
oy, oy, oy,
—‘+(]j—‘=g.—la—P+iU—l—<uiuj>
ot Ox; "opOx;  Ox;| Ox 3)

where t is time, x; is the i-coordinate in Cartesian coordinate system where i=1, 2, 3, U is the averaged flow
velocity in i-coordinate, u; is the fluctuating velocity in i-coordinate, p is the averaged pressure, v is the kinematic
viscosity, p is the density of the fluid, g; is the gravitational acceleration in i-coordinate. Different turbulence clo-
sures can be used to estimate Reynolds stresses (u;u;). Based on the Boussinesq’s assumption of linear stress-strain
relation, Reynolds stresses can be calculated as

() = v, .

For the case of standard k-¢ turbulence closure, the eddy viscosity v, can be estimated as v,= C,k*/c where
turbulent kinetic energy k and its rate of dissipation € can be calculated from

o, Y

— — 2/3ko;;
Ox;  Ox g

a_k+ le%:Pk_E‘Fi('U‘FUt/Uk)a—k
ot x; x; Ox; (5)
2
ﬁ + U]ﬁ = Celipk — CsZE_ + i(’u + Ut/oé)ﬁ
ot 8xj k k 8xj 0xj (6)
where p = ”t% 9 99| and the model coefficients® are C,=0.09,C.,=144,C,=192,0,=1.0,0.=13.

ox; | Ox; 0x;
] ] I
Here, we selected standard k-¢ turbulence closure since it is the most widely used turbulence model*’.
Applying the one-parameter Lie scaling transformations, the Reynolds- Averaged Navier-Stokes equations for
incompressible Newtonian flows (Equations 2 and 3) yield the below equations in the scaled domain

9 _y...
0x; (7)

/B(XUI_—Oéxl,

SCIENTIFICREPORTS |7:6416| DOI:10.1038/s41598-017-06669-z 2



www.nature.com/scientificreports/

ap—a aU aytag—o 8U Qo= Q,—a,— 1 8}_7
UL + U U~ xU_ e &g — P 4 X £
pr T “ox, Fhg =0 7 0%,
+ﬁau,~—2axj+%6i_ U%] - ﬁa(“i“fa*fai_(uiu»
xj xj xj (8)

Similarly, Reynolds stresses, turbulent kinetic energy, and its rate of dissipation in the transformed domain
can be calculated from
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where 3“0, = C 3%~ oKz,

The self-51m11ar1ty conditions for the Reynolds Averaged Navier-Stokes equations for incompressible flows
can be found when the IBVP of the flow process in the prototype domain, subjected to the Lie group of point
scaling transformations, remains invariant in the transformed variables, as listed below:

aUl - axl = aUz - axz = aUs B a"s (12)
Qy — 0 = + Q= Oy = Oy, + S
= Qy, + Q= Ay,
= Ofp — Ofp — (lxl
= ag =ay — 2o, + o, =ay — 20, + o, =ay - 20, +a,
= a(”l“l) - axl = a<“1“2> - axz = a(“l“s) - axs (13)
Qy, — ap = Q + Qy, — Oy = Q) + Ay, — Oy
=y, + Q, = Qy,
= OZP — ap — O{xz
= ag =ay, — 20, + o, = ay, — 20, + o, = ay, — 20, +
= a(“z“l) - a"l = a(“z“z> - axz = a<”2“3> - axs (14)
au3 - = aul + au3 - axl = au2 + au3 - Csz
= au3+au3—ax3:ap—ap—ax3
= ag =ay — 20, +
= ay, — 2ax2 + a, = ay, — 20zx3 + a,
= a(u3u1) - axl = a(u3u2) - axz = a(u3u3> - O[x3 (15)

From the equalities in Equations 13-15, the scaling exponents of the length dimensions in i=1,2,3 coordi-
nates can be deduced as
_oyta
Xy Xy X3 x T (16)
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Length x; (ini=1, 2, 3 coordinates) a,=a, a,

Time, t , a=a,/2
Density of fluid, p a, a,

Average Flow velocity U; ay=ay= o, - o ap=aq,/2
Pressure, p o=, + 20, — 20 a,=a,+a,
Kinematic viscosity, v o, =20, —q, a,=3a,/2
Gravitational acceleration, g; ag=a,— 20, a,=0
Reynolds stresses, {u;u;) X {uguj) = 20, — 20 () = Vx

Table 1. The scaling exponents obtained by the one-parameter Lie group of point scaling transformations for
the variables of the 3D Reynolds Averaged Navier-Stokes equations.
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Figure 1. Schematic descriptions of the simulated self-similar cubic cavity flows (not to scale): original
domain (D1) and its self-similar domains (D2, D3, and D4). Flow variables at specified time and space can be
mapped to those at the corresponding time and space in the self-similar domains by means of Lie Group of
scaling transformations. It is possible to obtain both larger and smaller domains by the selection of the scaling
parameter 3 and the scaling exponent of length a,.

In other words, the scaling exponents of length dimensions in i=1,2,3 coordinates must be equal
(@, = a, = a, = a,)since the viscosity is constant in i=1,2,3 coordinates. Similarly, the scaling exponents
of velocity in i =1,2,3 coordinates can be obtained as

Q, —

2 (17)

Furthermore, the scaling exponents of gravity in i=1,2,3 coordinates and pressure can be written in terms of
the scaling exponents of length, time, and density as

=0, =0, =,

agl:agzza&:ag:ax—zat... (18)

a, =20, — 20, + @, ... (19)
For Equations (10-11) to be invariant, below equalities must hold

- =ay o -y =ay, o, =ay T Q= ap =

=, + o — Zozxl =a,+ o — Zaxz =, + q — Zozx3 (20)

a —a=ay o —-a, =ag ta - o, =ay + o -, =a - qt ap

=20, — g =, + o - 20, = a, + o - 20, = o, +a, - 2o, (21)
avt = Qg — O = Q.. (22)
For Equation (9) to be invariant, scaling exponents of Reynolds stresses can be obtained as

) = 2a, — 20 = qy ... (23)

L)
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Eddy viscosity, v, QL = 20, — oy Q= 30,/2
Turbulent kinetic energy, k =20y — 20y =0y
Dissipation, € Q=20 — 30y o =0y/2

Production of turbulence due to

horizontal velocity gradients, P, | “Px = 2o = 30y p =02

Table 2. The scaling conditions obtained by the one-parameter Lie group of point scaling transformations for
the variables of the three-dimensional k - € turbulence model.

Scaling parameter, 3 4 0.25 10

scaling exponents
Length, o, 1 1 0.5
Time, v, 0.5 0.5 0.25
Velocity, oy 0.5 0.5 0.25
Viscosity, a, 1.5 L5 0.75
Turbulent kinetic energy, oy 1 1 0.5
Dissipation, o 0.5 0.5 0.25

scaling ratios
Length, 3% 4 0.25 3.162
Time, 3 2 0.5 1.778
Velocity, 3V 2 0.5 1.778
Viscosity, 3" 8 0.125 5.623
Turbulent kinetic energy, 5% 4 0.25 3.162
Dissipation, 8¢ 2 0.5 1.778

Table 3. Scaling exponents and ratios to obtain Domains 2, 3, and 4 from Domain 1.

Edge length of the cube (m) | 0.1 0.025 0.4 0.0316
Simulation time (s) 20 10 40 11.2468
Lid velocity (m/s) 1 0.5 2 0.5623
Fluid viscosity (m?/s) 0.00001 0.00000125 0.00008 1.7783E-06

Table 4. Summary of the simulation characteristics for the original domain (Domain 1) and its self-similar
domains (Domains 2, 3, and 4).

As a result, the scaling exponents that are obtained by the one-parameter Lie group of point scaling trans-
formations for the variables of the 3D Reynolds Averaged Navier-Stokes equations and the variables of its k - €
turbulence closure are tabulated in Tables 1 and 2, respectively. The initial and boundary conditions of the 3D
Reynolds Averaged Navier-Stokes equations can be transformed with respect to Lie group of point scaling similar
to Chapter IV in Ercan and Kavvas®*.

Results

Now, let us explore the obtained self-similarity conditions numerically for the 3D lid-driven cavity flow, which
is a typical benchmark problem for solvers of the Navier-Stokes equations®*-*". Numerical simulations here are
performed by OpenFoam Version 2.4.0 by solving Reynolds Averaged Navier Stokes equations closed by the
k-epsilon turbulence model. First, the lid-driven cavity flow is simulated over a cubic domain with 0.1 m edge
length, for a duration of 20 seconds, when the lid velocity is 1 m/s, and fluid viscosity is 0.00001 m?/s for the orig-
inal domain (i.e. Domain 1, or D1). Stagnant initial velocities are assumed and the velocities close to solid walls
are estimated by wall functions®” assuming smooth conditions.

Utilizing the scaling exponents and ratios given in Table 3, which follow the scaling conditions provided in
Tables 1 and 2, flow characteristics (cube edge lengths, simulation times, fluid viscosities, and lid velocities) of
three self-similar domains (D2, D3, and D4) are obtained as presented in Table 4. Schematic descriptions of
the original domain (D1) and the three self-similar domains (D2, D3, and D3) to simulate cubic cavity flow are
demonstrated in Fig. 1. It is possible to obtain both larger (e.g. D3) and smaller (e.g. D2, and D4) self-similar
domains by selecting the scaling parameter 3 and scaling exponent of length o, which result in shorter (e.g. D3)
and longer (e.g. D2, and D4) simulation times. A self-similar domain which is larger than the original domain

SCIENTIFICREPORTS |7:6416| DOI:10.1038/s41598-017-06669-z 5



www.nature.com/scientificreports/

a)t=1sinD1

X3 r

008 008 0.0

Xz

000 0602 004

b)t=5sin D1

L

004

%

% gt

e
=

0.08

X2

000 002 004 008

c)t=20sin D1

X3 -

e
=

008

008

X

000 002 004

d)t=0.5sinD2 g)t=2sinD3

X3

& 0.5 3 2-

. EOA . !m

. 03 ° £1.2
) ; -01 ) 2 o4

o ok, ol

o
0 o

L]

7 .

oag\,

h)t=10sin D3

X3

{
ftge 2

t=2.5sin D2

X3 _r

25

e)

25
40

0

20

06 . 0.3 : 12
04 % _ 0.2 g 0.8
iﬁo.z ) éo,] Ts éo.a
0 . 0 5 0
‘:\5\ eoﬂc \\

©
15
% tayg. 2;\‘
3 Py

f)t=10sin D2

X3

X3

020 030 040

X2

(2

Figure 2. Contours of velocity magnitudes: at x=0.05m and z=0.05m in Domain 1 at simulation times of (a)
1s,(b)5s,(c) 20s;at x=0.0125m and z=0.0125m in Domain 2 at simulation times of (d) 0.5s, (e) 2.5s, (f)
10s; at x=0.2m and z=0.2m in Domain 3 at simulation times of (g) 2s, (h) 10s, (i) 40s. Velocity magnitudes
within each row are self-similar to each other (Although the figures in each row look exactly similar, the edge
lengths of the cubes and the velocity scales of the color bars are different for each domain, or column).

(e.g. D3) can be obtained by selecting the scaling parameter (3 to be less than 1 and scaling exponent of length to
be positive (which is equivalent to the case when the scaling parameter (3 is greater than 1 but scaling exponent

of length o, to be negative. For example, 3 =0.25 and o, =1 is equivalent to 3 =4 and o, = —1 since both cases
result in the same scaling ratio of 0.25).

Contours of velocity magnitudes, ,[ U12 + U22 + U32, at cross-sections x=0.05m and z=0.05m in Domain 1
at simulation times of 1, 5, and 20 seconds are presented in the first column of Fig. 2. Similarly, velocity magni-
tudes at the corresponding two cross-sections in Domain 2 (at simulation times of 0.5s, 2.55, 105s), and those of
Domain 3 (at simulation times of 25, 10, 40s) are presented in the second and third columns of Fig. 2, respec-
tively. Then, the velocity contours within each row of Fig. 2 are self-similar to each other for the corresponding
simulation times in D1, D2, and D3. For example, as demonstrated in the first row of Fig. 2, the velocity contours
of D1 at simulation time of 1 second are self-similar to those of D2 at simulation time of 0.5 second, and those of
D3 at simulation time of 2 second.

Secondary velocities (velocities in i =2, 3 directions, U, and Us) at simulation times 1, 5 and 20 seconds along
the intersection line of planes x =0.05m and z=0.05m (i.e., the centerline of the cube in x, direction) in domain
1 (D1) versus the corresponding velocities in Domains 2-4 (D2, D3, and D4) are depicted in Figs 3 and 4 for
different simulation times. Simulation time of 1s in D1 corresponds to 0.5s in D2, 2s in D3, and 0.56 s in D4 (see
Fig. 3a for U,, and Fig. 4a for U,). 5s in D1 corresponds to 2.5s in D2, 10s in D3, and 2.81 s in D4 (see Fig. 3b for

U,, and Fig. 4b for U;); and 20s in D1 corresponds to 10s in D2, 40s in D3, and 11.25s in D4 (see Fig. 3¢ for U,,
and Fig. 4c for U;). In the case of perfect self-similarity, the plotted velocities in Figs 3 and 4 should follow perfect
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Figure 3. U, at simulation times (a) 1, (b) 5 and (c) 20 seconds along the intersection line of planes x=0.05m
and z=0.05m planes (i.e., the centerline of the cube in x, direction) in domain 1 (D1) versus the corresponding
velocities in domains 2, 3, and 4 (D2, D3, and D4). Simulation time of 1 s in D1 corresponds to 0.5s in D2, 2s

in D3, and 0.56 s in D4. Simulation time of 5s in D1 corresponds to 2.5s in D2, 10s in D3, and 2.81 s in D4.
Simulation time of 20s in D1 corresponds to 10s in D2, 40s in D3, and 11.25s in D4.

lines with slopes being the velocity scaling ratios 3V(2 for D1/D2, 0.5 for D1/D3, and 1.778279 for D1/D4), and
with intercept being 0. In order to check if the perfect self-similarity is reached or not, the slopes and the inter-
cepts of the linear fits are estimated and percent deviations between simulated slopes and the ideal slopes
(|ideal-simulated|/ideal x 100) and between ideal and simulated intercepts are tabulated next to each figure. As
presented in Figs 3 and 4, percent deviations between simulated slopes and the ideal slopes vary between 1.51E-04
and 2.60E-06 for U, and between 1.17E-02 and 8.01E-06 for Uj. Simulated intercepts vary between —3.89E-09
and 2.95E-08 for U, and between —1.29E-09 and 3.43E-10 for U;. These error estimates confirm near-perfect
self-similarity between the secondary velocities of D1, D2, D3, and D4, through time.

Furthermore, Nash-Sutcliffe efficiency values are also estimated with respect to five flow variables at the end
of the simulation: turbulent kinetic energy k, dissipation €, and velocity components in 1, 2, 3 directions (U}, U,,
and U;). Nash-Sutcliffe efficiency values are calculated between the variables of the original domain (k, €, U}, U,,
and U;), and their corresponding transformed variables (3“¢k, 3, 3*vT,,3*vU,, 3*vT,) for Domains 2-4 at the
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Figure 4. U, at simulation times (a) 1, (b) 5 and (c) 20 seconds along the intersection line of planes x=0.05m
and z=0.05m (i.e., the centerline of the cube in x, direction) in domain 1 (D1) versus the corresponding
velocities in domains 2, 3, and 4 (D2, D3, and D4). Simulation time of 1 s in D1 corresponds to 0.5s in D2, 2s
in D3, and 0.56 s in D4. Simulation time of 55 in D1 corresponds to 2.5s in D2, 10s in D3, and 2.81 s in D4.
Simulation time of 20s in D1 corresponds to 10s in D2, 40s in D3, and 11.25s in D4.

64000 (40 X 40 x 40) computational nodes. As tabulated in Table 5, the Nash-Sutcliffe efficiency values are
between 0.999999999906 and 1 (the ideal value is 1), which confirm near perfect self-similarity between the flows
of D1, D2, D3, and D4.

The Reynolds (Re) number is 10,000 (based on the lid velocity and the edge length of the cube) for the numer-
ical simulations of D1, D2, D3, and D4. Four additional simulations, for Re = 20,000, are also performed when
the lid velocities are twice of those in D1, D2, D3, and D4 (the other flow characteristics in Table 4 are kept the
same). Near-perfect self-similarity for Re =20,000 are again obtained. Nash-Sutcliffe efficiency values for turbu-
lent kinetic energy k, dissipation €, and velocity components in 1,2,3 directions at the end of the simulations are
greater than 0.999999999894, showing near-perfect self-similarity. This finding was expected because the scaling
conditions provided in Tables 1 and 2 do not depend on the Reynolds number of the flow.
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Turbulent kinetic
Domain Dissipation, € energy, k U, U, U,
D2 0.999999999998 0.999999999995 0.999999999996 0.999999999995 0.999999999996
D3 0.999999999999 1.000000000000 0.999999999999 0.999999999999 0.999999999999
D4 0.999999999995 0.999999999950 0.999999999984 0.999999999981 0.999999999906

Table 5. Nash-Sutcliffe efficiency values between the flow variables of the original domain (D1) at t=20s and
those of Domain 2 (D2) at t=10s, Domain 3 (D3) at t=40s, and Domain 4 (D4) at 11.25s. Nash-Sutcliffe
efficiency values are calculated between the variables of the original domain (k, €, U}, U,, and Us), and their
corresponding transformed variables (3°<k, 3z, 3*vU,,3*vU, ,3*VT;,) for Domains 2-4 at the 64000

(40 x 40 x 40) computational nodes.

Discussion and Concluding Remarks

The sources of limitations in the numerical results include but are not limited to the Reynolds averaging process
of the Navier Stokes equations, assumptions in the usage of the k-epsilon turbulence closure, the treatment of
the near wall velocities by the wall functions under the assumption of smooth surfaces, the discretization of the
numerical domain by uniform 40 x 40 x 40 cells, etc. Although the k-epsilon turbulence closure considered in
this study is the most widely used model and showed its success especially in industrial engineering applications,
it does not perform quite well in some unconfined flows, flows with large extra strains (e.g. curved boundary
layers, swirling flows), rotating flows, and flows driven by anisotropy of normal Reynolds stresses*’. Although
the numerical simulations here inherit the limitations of the considered 3D Reynolds averaged Navier Stokes
equations closed by k-epsilon turbulence model, we demonstrated that near-perfect self-similar solutions are
achievable if the scaling conditions based on the Lie group similarity transformations are followed for specified
governing equations and initial and boundary conditions.

As 3D Reynolds Averaged Navier-Stokes equations are time averaged forms of general Navier-Stokes equa-
tions (self-similarity of which were investigated in Ercan and Kavvas™), it is not surprising that the self-similarity
conditions for both equation systems are consistent with respect to the main flow variables (x;, t, p, U,p, v, and
g,). Due to the introduced k-epsilon turbulent closure, additional scaling conditions are required to be satisfied,
as tabulated in Table 2. Depending on the underlying governing equations with specified initial and boundary
conditions to hold in a scaled model, different self-similarity conditions could be achieved. For example, the con-
ditions under which the Saint Venant equations system for unsteady open channel flow?!, the conditions for the
depth-averaged 2D hydrodynamic equations system*, and the conditions for the 3-dimensional incompressible
Navier-Stokes equations for Newtonian fluids® were reported recently.

Physical modeling is widely used in investigating fluid flows around hydraulic structures, airplanes, vehicles,
machines, etc. The proposed Lie group scaling approach may improve the state of the art in physical modeling by
providing a formal procedure for obtaining self-similarity in very complicated flow dynamics in time and space
when the governing process, in terms of governing equations and initial and boundary conditions, is known.
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