SCIENTIFIC REPLIRTS

Integrin 33/Akt signaling
contributes to platelet-induced
hemangioendothelioma growth
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Hemangioendothelioma (HE) is a type of angiomatous lesions that features endothelial cell
proliferation. Understanding the mechanisms orchestrating HE angiogenesis can provide therapeutic
insights. It has been shown that platelets can support normal and malignant endothelial cells during
. angiogenesis. Using the mouse endothelial-derived EOMA cell line as a model of HE, we explored
. the regulatory effect of platelets. We found that platelets stimulated EOMA proliferation but did not
. mitigate apoptosis. Furthermore, direct platelet-EOMA cell contact was required and the proliferation
. was mediated via integrin 33/Akt signaling in EOMA cells. SiRNA knockdown of integrin 33 and
. inhibition of Akt activity significantly abolished platelet-induced EOMA cell proliferation in vitro and
. tumor development in vivo. These results provide a new mechanism by which platelets support HE
. progression and suggest integrin 33 as a potential target to treat HE.

. Vascular neoplasms are tumors arising from blood vessel endothelial cells. Hemangioendothelioma (HE) defines
© vascular neoplasms that are characteristically between benign hemangiomas and malignant angiosarcomas'. HE
comprises several clinical manifestations and histological hallmarks including papillary intralymphatic angioen-
dothelioma, retiform HE, kaposiform HE, epithelioid HE, pseudomyogenic HE, and composite HE% One specific
. form, Kaposiform HE, is frequently associated with Kasabach-Merritt syndrome (KMS), which features coagu-
* lopathy due to thrombocytopenia in infants®. To investigate the therapeutic targets of HE, the EOMA endothelial
- cellline, derived from a mixed HE arising in an adult mouse, was developed as a model of HE*. The EOMA cell
. line closely mimics the HE condition, responding to angiogenic regulators>S, inducing vessel formation, and pro-
moting development of KMS in mice’. Therefore, a number of studies have utilized this cell line in order to exam-
- ine the therapeutic potential of a variety of factors®-!'. Moreover, examination of endogenous factors expressed
. by EOMA cells that increase angiogenesis such as insulin-like growth factor 2, 3-phosphoinositide-dependent
© kinase 1, transcription factor Prox1, and monocyte chemoattractant protein-1, has also provided important clues
* to HE progression'>-1%. However, to date, there is limited information on the in vivo microenvironment of HE and
. how it can modulate HE progression. Consequently, we sought to determine how microenvironmental factors
. influence HE development.
: Platelets are one of the principal blood-borne contributors of angiogenesis. They are anucleate fragments of
. megakaryocyte cytoplasm which play essential roles in homeostasis and thrombosis under physiological and
. pathophysiological conditions'” 8. Recently, a great deal of information has been determined regarding the
: mechanisms underlying platelet-induced angiogenesis. Activated platelets released several trophic factors from
specialized intracellular granules, such as vascular endothelial growth factor (VEGF), basic fibroblast growth
factor (bFGF) and platelet-derived endothelial cell growth factor (PDGF), to support the survival and growth
of endothelial cells'-?'. Tumor cells can induce the activation of platelets, resulting in the promotion of tumor
angiogenesis and the facilitation of cancer progression*>?*. Additionally, integrin 33, an abundant glycoprotein
on the platelet plasma membrane, plays an important role in hypoxia-induced retinal angiogenesis and fetal
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angiogenesis, suggesting direct platelet-endothelium contact can mediate endothelial cell proliferation®* 2°. Of
note, integrin 33 is also highly expressed on endothelial cells and tumor cells contributing to several impor-
tant cellular functions, for instance, migration, adhesion, angiogenesis and tumor growth“’ 7. Alternatively, the
internalization of platelets by endothelial cells may serve as another source of pro-angiogenic and anti-apoptotic
effects?.

In the present study we utilized the EOMA cell line, a well-recognized cell model of HE, to investigate the
influence of platelets on HE development. The proliferation and apoptosis of EOMA cells upon platelet treatment
were examined. Furthermore, several of the aforementioned mechanisms driving platelet-induced angiogenesis
were explored. This study illustrates the importance of platelets upon HE progression and suggests potential ave-
nues for the therapeutic treatment of HE development.

Results

Platelets enhanced EOMA cell survival. To investigate their effect on HE, platelets were isolated
from mouse blood and incubated with EOMA cells, a well-established cellular model of murine HE. We also
employed mouse brain microvascular endothelial cells (MBMECs) from C57BL/6] mice as a control to reveal
tumor cell-specific activity in response to platelets. To exclude the influence of serum-derived factors, the viabil-
ity of EOMA cells and MBMECs was examined using the Cell Counting Kit-8 (CCK8) assay with different FBS
concentrations. We determined that 0.5% FBS supported modest and comparable growth in both EOMA cells
and MBMEC:s (Fig. 1a). We therefore used this culture condition in subsequent studies. As shown in Fig. 1b,
co-culture of EOMA cells with platelets for 72 hours significantly enhanced EOMA cell number approximately
125% of control, whereas MBMEC survival was not affected. This suggests that platelets affected EOMA cells
specifically.

Platelets did not affect EOMA cell apoptosis. We next wanted to determine if platelets increased cell
number by inhibiting apoptosis. Using the well-established Annexin V/PI assay, we evaluated the apoptosis of
EOMA cells and MBMEC:s co-cultured with platelets. After treatment with platelets for 24 or 48 hours, apoptosis
was examined using flow cytometry (Fig. 1¢,d). We determined that there was no significant change in either cell
type of living, early apoptotic, and late apoptotic cell populations in response to platelets (Fig. 1e), suggesting that
platelets do not increase EOMA cell resistance to apoptosis.

Platelets stimulated EOMA cell proliferation. Since apoptosis did not seem to be affected by platelet
treatment, we asked if the apparent increase in cell survival reflects the up-regulation of proliferation. Thus, we
performed 5-ethynyl-20-deoxyuridine (EdU) assays to quantify DNA synthesis, a hallmark of cell proliferation, in
platelet treated EOMA cells. Treatment of platelets for both 24 and 48 hours significantly increased EAU incorpo-
ration into EOMA cell nuclei by approximately 150% and 200% of control, respectively (Fig. 2a). However, plate-
lets did not induce significant EAU incorporation in MBMECs (Fig. 2b), which is in accordance with MBMEC
survival results. We also examined if platelets could affect EOMA cells using non-contact co-culture. We found
that platelets failed to increase EOMA cell viability in this situation (Fig. 2c). This result indicates that platelets
may induce EOMAa cell proliferation in a cell contact-dependent manner. Consequently, our data demonstrates
that platelets promote the proliferation of EOMA cells.

EOMA cells did not induce pro-angiogenic activation of platelets. There is accumulating evidence
indicating that platelets are activated to release pro-angiogenic factors in response to neighbor cells, including
tumor cells** 273!, This may account for the observed platelet-induced increases in EOMA cell proliferation. To
investigate this possibility, we analyzed the surface expression of CD62P (P-selectin), a marker of platelet activa-
tion, on platelets co-cultured with EOMA cells or incubated in EOMA conditioned medium (CM). As depicted
in Fig. 3a, the surface level of CD62P, which was negligible on untreated platelets, was readily increased by throm-
bin, a commonly used platelet activator. However, no significant elevation of surface CD62P level was found on
platelets in response to 24-hour platelet-EOMA co-culture or EOMA CM treatment (Fig. 3a). This suggests that
EOMA cells may not be able to activate platelets. Next we investigated the release of angiogenic factors from
platelets in response to EOMA cells. Except for pro-angiogenic factor angiopoietin-1 (Ang-1) and anti-angiogenic
factor platelet factor 4 (PF4), we observed no obvious increase in angiogenic factor release (Fig. 3b). Of the
two identified factors, Ang-1, and its receptor Tie-2, have been strongly linked to the process of angiogenesis®.
Consequently, we further examined if Ang-1 had a role in EOMA cell promotion. We blocked the Tie-2 receptor
activity on EOMA cells via neutralizing antibodies, and then treated these cells with platelets. However, blockage
of the Tie-2 receptor failed to prevent platelet-induced EOMA cell survival (Fig. 3c). This suggests that EOMA
cells do not stimulate pro-angiogenic activation of platelets and that Ang-1/Tie-2 signaling is not involved in
platelet-induced EOMA growth.

EOMA cells only had a limited capacity for platelet uptake. It has been shown that endothelial
cells are semi-professional phagocytes and possess the capacity to internalize platelets, stimulating angiogen-
esis?®. However, the extent to which EOMA cells can internalize platelets and the subsequent effect on tumor
angiogenesis are unclear. As such, we treated EOMA cells and MBMECs with carboxyfluorescein diacetate
succinimidyl ester (CFSE)-labeled platelets (Fig. 4a) and evaluated the quantity of engulfed platelets. We found
that EOMA cells, as well as normal MBMECs, were able to phagocytose platelets in a limited fashion (Fig. 4b).
Nevertheless, flow cytometry analysis revealed that the increase of CFSE fluorescence in EOMA cells was
undetectable after 20-hour platelet treatment (Fig. 4c), suggesting that EOMA cells do not robustly uptake
platelets. Therefore, we speculate that the internalization of platelets is also not a driving force of EOMA cell
proliferation.
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Figure 1. Platelet treatment increased the survival of EOMA cells without affecting cell apoptosis. (a) Effect of
serum concentrations on the survival of EOMA cells and MBMECs. EOMA cells and MBMECs were cultured
in medium with indicated concentrations of FBS for 72 hours. The cell viability was then assessed using the
CCK8 assay. Representative images show the morphology of EOMA cells and MBMECs cultured with 0 and
0.5% serum for 72 hours. Scale bar, 50 pm. n =5, one-way ANOVA. (b) Representative images and the cell
viability of EOMA cell and MBMEC:s after platelet treatment for 72 hours. Scale bar, 75 pm. (¢,d) Both EOMA
cells and MBMECs were treated with platelets for (c) 24 hours and (d) 48 hours, stained with Annexin V/PI, and
then evaluated via flow cytometry. (e) The 48-hour treatment of platelets did not affect apoptotic proportions of
EOMA cells. n=3, t-test. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not significant.
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Figure 2. Platelet treatment induced EOMA cell proliferation. (a) EOMA cells and (b) MBMECs were
incubated with platelets for either 24 or 48 hours. EAU (yellow) and DAPI (blue) staining was used to examine
the cell proliferation. Scale bar, 60 pm. n =5, t-test. (c) EOMA cells were incubated with platelets in a non-
contact co-culture for 72 hours. The cell viability was examined by CCK8 assay. n =4, one-way ANOVA.

*P <0.05; ¥*P < 0.01; ***P < 0.001; ns, not significant.

Integrin 33/Akt signaling was involved in platelet-induced EOMA cell proliferation. Next,
we tested whether platelets can influence HE progression via activation of surface receptors on EOMA cells.
It has been reported that integrins, abundantly expressed on the surface of endothelial cells, could contribute
to contact-associated cell growth®. Following platelet treatment, the total protein levels of integrin 33, but not
integrin 34, were significantly increased in a time-dependent manner (Fig. 5a). Interestingly, the up-regulation
of total integrin 33 protein was not associated with increased integrin 33 mRNA expression (Fig. 5b), nor was it
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Figure 3. EOMA-platelet co-culture did not stimulate pro-angiogenic activation of platelets. (a) Platelets were
co-cultured with either EOMA cells or MBMEC:s, or incubated in conditioned medium (CM) from either
EOMA cells or MBMECs for 24 hours. Activation of platelets was then assessed by measuring the surface

level of CD62P via flow cytometry. Thrombin was used as a positive control. (b) EOMA cells and MBMECs
were cultured alone or with platelets for 24 hours. The levels of angiogenic factors in the culture medium were
examined using the mouse angiogenesis antibody array. (c) EOMA cells were pre-treated with anti-Tie-2
antibody for 30 minutes and then incubated with platelets for another 72 hours. The cell viability was examined
by CCK8 assay. n =4, two-way ANOVA. ***P < 0.001; ns, not significant.
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Figure 4. EOMA cells had a limited ability to internalize platelets. (a) Flow cytometric data showing the
efficient CFSE labeling in platelets. (b) EOMA cells and MBMECs were incubated with CFSE™ platelets (green)
for 5, 20, or 48 hours, and the engulfment of platelets by cells was detected by the localization of CFSE™ platelets
within CD317 cells (red). Scale bar, 10 pm. (c) EOMA cells and MBMECs were incubated with CFSE™ platelets
for 20 hours and the amounts of internalized platelets were measured by flow cytometry. n= 3, t-test. *P < 0.05;
ns, not significant.

related to changes in surface expression of integrin 33 (Fig. 5¢). Further analysis revealed that integrin 33 levels
were only increased in the cytoplasmic fraction of EOMA cells (Fig. 5¢), indicating that platelet treatment affects
post-transcriptional regulation of integrin 33,

We also observed significant phosphorylation of Akt in EOMA cells following short-term treatment of plate-
lets (Fig. 5d), supporting the idea of contact-mediated EOMA proliferation. The PI3K/Akt/NF-xB pathway is a
well-defined avenue through which the proliferation of endothelial cells is regulated®>->’. However, the ratio of
phosphorylated PI3K and NF-kB, was not significantly altered after platelet treatment (Fig. 5d), indicating that
other unknown factors are participating in platelet-elicited Akt activation. To explore any possible association
between integrin 33 and observed Akt phosphorylation, we performed siRNA-mediated knockdown of integrin
B3 in EOMA cells, which effectively inhibited integrin 33 expression for up to 7 days (Fig. 5¢). We observed that
integrin 33 knockdown abolished Akt phosphorylation after platelet treatment (Fig. 5f). Immunoprecipitation
assays also demonstrated that direct interaction between integrin 33 and Akt in platelet treated and untreated
EOMA cells (Fig. 5g). To further investigate this connection we examined integrin-linked kinase (ILK), an
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Figure 5. Integrin 33 was associated to platelet-induced Akt phosphorylation in EOMA cells. EOMA cells
were treated with platelets for indicated times and (a) the total protein levels of integrin 33 and integrin 34,
(b) RNA level of integrin 33, and (c) protein levels of integrin 33 in membrane and cytoplasmic fractions were
examined by either Western blot or real-time PCR. Na/K ATPase and (3-actin were used as loading controls.
(d) EOMA cells were treated with platelets for specified times and the levels of ILK, phospho-PI3K, PI3K,
phospho-Akt, Akt, phospho-p65, p65, and IkBa were assessed by Western blot. (e) EOMA cells were subject
to siRNA transfections for 4 days and the level of integrin 33 at indicated times was examined by Western blot.
(f) EOMA cells were transfected with control or integrin 33 siRNA for 4 days, and then treated with platelets
for 30 minutes. The phosphorylation of Akt was assessed by Western blot. (g) EOMA cells were treated with
or without platelets for 30 minutes then subject to immunoprecipitation using an Akt specific antibody. The
interaction of integrin 33 with Akt was then assessed via Western blot. (h) EOMA cells were pre-treated with
10uM QLT0267, and then incubated with platelets for 30 minutes. The phosphorylation of Akt was assessed
by Western blot. n = 3-6, t-test, one-way or two-way ANOVA. *P < 0.05; **P < 0.01; ***P < 0.001; ns, not
significant.
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Figure 6. The integrin 33/Akt signaling contributed to platelet-induced EOMA cell proliferation. (a) EOMA
cells were transfected with control or integrin 33 siRNA for 4 days, and then treated with platelets for another
72hours. The cell viability was examined using the CCK8 assay. (b) The EOMA cells were incubated with
indicated concentrations of Akt inhibitor GSK690693 for 72 hours. GSK690693 treatments with 1 and 2pM did
not significantly affect EOMA cell survival. (c) EOMA cells were pre-treated with Akt inhibitor GSK690693

for 3hours, and then incubated with platelets for another 72 hours. The cell viability was examined using the
CCKS8 assay. (d) EOMA cells were either transfected with control or integrin 33 siRNA for 4 days, or pre-treated
with GSK690693 for 3 hours, and then incubated with platelets for another 48 hours. The cell proliferation was
assessed via the EdU assay. Scale bar, 60 pm. n=3-5, one-way or two-way ANOVA. *P < 0.05; **P < 0.01;
*#*P < 0.001; ns, not significant.

important effector downstream of integrins. This kinase plays indispensable roles in multiple cellular functions
including cell proliferation, migration, adhesions and signal transduction. Pre-treatment with the ILK-specific
inhibitor, QLT0267, also prevented platelet-induced Akt phosphorylation (Fig. 5h). These results indicate the
involvement of integrin 33/ILK signaling in platelet-associated Akt activation in EOMA cells.

Subsequently, we found that knockdown of integrin 33 inhibited platelet-induced EOMA cell proliferation
(Fig. 6a). Using GSK690693, a potent Akt inhibitor which did not affect EOMA cell viability (Fig. 6b), we were
able to suppress platelet-induced increases in EOMA cell proliferation (Fig. 6¢). EAU assays confirmed that both
the knockdown of integrin 33 and pharmaceutical inhibition of Akt activity abolished platelet-elicited EOMA cell
proliferation (Fig. 6d). Taken together our results strongly suggest that direct platelet-EOMA cell contact and the
activation of integrin 33/ Akt signaling mediates platelet-associated proliferation of EOMA cells.

Inhibition of integrin 33 expression and Akt activation attenuated HE growth in vivo. Finally
we determined if our in vitro results could be replicated in vivo. EOMA cells pre-treated with integrin 33 siRNA
were administered to C57BL/6] mice via subcutaneous injection and evaluated for HE development 7 days
post-injection (Fig. 7a). Compared to the control, EOMA cells whose integrin 33 expression was inhibited devel-
oped smaller tumor masses, identified by reduced tumor volumes and tumor weights (Fig. 7b,c). Furthermore,
subcutaneous injection of EOMA cells with GSK690693 (Fig. 7d) also resulted in smaller HE masses compared to
the vehicle control (Fig. 7e,f). This suggests that both integrin 33 expression and Akt activity are critical determi-
nants in platelet-regulated HE progression and are potential therapeutic targets.

Discussion

While some investigations have shown that platelets elicited pro-apoptotic effects upon endothelial cells under
specific pathological conditions®® ¥, others showed that platelets could trigger multiple anti-apoptotic mecha-
nisms, including the activation of Akt. Furthermore, literature shows that platelets can stimulate angiogenesis
through various proliferative pathways such as VEGE, PDGF and bFGF signalings**>*'. In terms of tumorigenicity,
platelets can promote the growth of various tumors, including bone, colorectal, and ovarian cancers®>*-#, In the
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Figure 7. Knockdown of integrin 33 expression and inhibition of Akt activation attenuated HE growth in vivo.
(a) EOMA cells were first transfected with control or integrin 33 siRNA for 4 days, then injected into C57BL/6]
mice on day 0. The tumors were collected on day 7. (b) Representative images showing subcutaneous growth of
HE in response to the knockdown of integrin 33. Scale bar, 1 cm. Arrows indicated subcutaneous HE. (c) The
tumor volumes and weights in response to the knockdown of integrin 33. (d) C57BL/6 ] mice were injected with
EOMA cells in the presence of GSK690693 or vehicle on day 0, then subjected to an additional intratumoral
injection of GSK690693 or vehicle on day 3. Animals were sacrificed and the tumor tissues were harvested

on day 7. (e) Representative images showing subcutaneous HE in response to Akt inhibition. Scale bar, 1 cm.
Arrows indicated subcutaneous HE. (f) The tumor volumes and weights in response to Akt inhibition. n=4,
t-test. *P < 0.05.

present study we observed that platelets have a proliferative, rather than pro-apoptotic impact on EOMA cells.
However the effect of platelets may be influenced by numerous mediating mechanisms including, platelet-derived
adhesion molecules (e.g., CD62P), platelet-released angiogenic factors (e.g., VEGE PDGF), tumor cell membrane
receptors (e.g., VEGF receptor, PDGF receptor, transforming growth factor-3 receptor), and intracellular signal-
ing molecules (e.g., Akt)*>*>-#, For example, platelets were found to inhibit the growth of murine lymphoma and
prostate cancer cells*>. Thus, the responses of tumor cells to platelets may cancer type specific.
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Several studies have shown that tumors can activate platelets via promotion of aggregation and thrombo-
sis**. Upon activation, platelets undergo de-granulation, releasing vast amounts of protein modulating impor-
tant biological functions such as, thrombosis, angiogenesis, and would healing?-*!. Wu et al. reported that lung
cancer cells could induce platelets to release several pro-angiogenic factors, including IL-1c,, GM-CSE, MMP-1
and VEGE, resulting in enhanced endothelial cell migration and capillary tube formation?*. However, when we
evaluated CD62P surface levels we did not observe significant activation by EOMA cells. Similarly, antibody
array analysis revealed almost no up-regulation of pro-angiogenic protein release from platelets following tumor
cell conditioning. Our data suggest that platelet activation and subsequent release of pro-angiogenic factors do
not contribute to EOMA cell proliferation. We speculate that HE may have an inferior ability to activate platelets
when compared to other types of tumors cells.

Endothelial cells possess a strong phagocytotic capacity for a variety of particulates, including aged and apop-
totic cells®. Platelets and platelet-derived particles can also be effectively uptaken by endothelial cells®* *2, pro-
longing the survival of endothelial cells?®. While we observed mild uptake by MBMECs, we observed for the first
time that platelets are poorly internalized by EOMA cells, suggesting that tumor-derived endothelial cells exhibit
impaired phagocytosis of platelets. This could be due to reductions in receptor-mediated recognition of platelets,
or disrupted formation of phagocytotic vesicles. Further investigation is needed to determine why EOMA cells
have a reduced capacity for platelet internalization.

Integrins are highly important to cell-cell contac , which can contribute to platelet-induced endothelial
and tumor cell growth®> %, Integrin 33 is abundantly expressed on endothelial cells and exerts essential effects
on endothelial migration, adhesion, angiogenesis?’, and importantly tumor growth?. For example, Integrin
B3 plays a supportive role in melanoma survival in vivo and is a critical therapeutic target for the treatment
of human melanoma-bearing animals®®. Blockage of integrin (33 signaling can result in impaired angiogenesis
and is anti-tumorigenic** *’. The application of anti-integrin 33 antisera also helps ameliorate fetal and neona-
tal alloimmune thrombocytopenia-associated intracranial hemorrhage?*. In line with the previously mentioned
studies, we found that integrin 33 was involved in platelet-induced Akt phosphorylation and EOMA cell prolifer-
ation. However, the means by which integrin 33 activity on EOMA cells was regulated by platelets is still unclear.
Platelets caused no change of the membrane proportion of integrin 33, suggesting the membrane trafficking
of integrin33 was not influenced by platelets. Since platelets did not affect the transcription of Itgh3 gene, the
increased distribution of cytoplasmic integrin 33 by platelets could result from up-regulated mRNA translation
or reduced protein degradation. More research is needed to illustrate such post-transcriptional regulations.

While platelet-induced EOMA cell proliferation was integrin 33- and Akt phosphorylation-dependent, inac-
tivation of integrin 33 or Akt itself did not affect cell survival in vitro. The reason could be explained by the
in vitro culture condition we applied, in which low concentration of serum may minimize basal cell growth
along with minimal integrin 33 and Akt activation. When it comes to the in vivo situation, Akt is commonly
hyperactivated in tumor cells, thus inactivation of Akt is of interest as a cancer treatment strategy*®. Since the in
vivo anti-tumor efficacy of Akt inhibitor GSK690693 has been shown in mice bearing breast tumor, lymphoma,
endometrial tumor, ovarian carcinoma, and osteosarcoma® ®°, we also examined the role of GSK690693 in the
treatment of HE in animals. As anticipated, GSK690693 significantly suppressed HE development in vivo, which
supports a functional link between integrin (33, Akt activation, and HE progression. In summary, we demonstrate
that platelets induce EOMA cell proliferation via cell-cell contact-based activation of integrin 33/Akt signaling.
Furthermore, employing an in vivo HE model, our data indicate that the reductions of integrin 33 level and Akt
activity mitigate HE progression, offering novel avenues for HE treatment.

t53, 54

Materials and Methods

Animals, cell lines, and reagents. Female C57BL/6] mice (7-8 weeks of age) were purchased from the
Jinan University Laboratory Animal Center. All outlined in vivo procedures were approved by the Institutional
Animal Care and Use Committee of Jinan University. EOMA cells (CRL-2586), were obtained from the American
Type Culture Collection (ATCC, Manassas, VA) and maintained in full medium (DMEM supplemented with
10% FBS and antibiotics) (Life Technologies, Grand Island, NY) at 37°C, 5% CO,. MBMECs were prepared as
previously described®! and cultured in full medium. All reagents were obtained from Sigma-Aldrich (St Louis,
MO) unless otherwise indicated. QLT0267 was purchased from QLT, Inc. (Vancouver, Canada). The primary
antibodies used were: rabbit-anti-IkBa (sc-371) from Santa Cruz Biotechnology (Dallas, TX); FITC-conjugated
rat-anti-CD62P (#561923) and FITC-conjugated rat IgG1 isotype control (#553995) from BD Biosciences (San
Jose, CA); rabbit-anti-integrin 33 (#13166), rabbit-anti-integrin 34 (#14803), rabbit-anti-3-actin (#12620), rab-
bit-anti-ILK (#3856), rabbit-anti-PI3K p85 (#4257), rabbit-anti-phospho-PI3K p85 (#4228), rabbit-anti-NF-xB
P65 (#8242), rabbit-anti-phospho-NF-kB p65 (#3033), rabbit-anti- Akt (#4691), rabbit-anti-phospho-Akt (#4060)
and normal rabbit IgG (#2729) from Cell Signaling Technology (Danvers, MA); rat-anti-CD31 (ab7388) and
rabbit-anti-Na/K ATPase (ab76020) from Abcam (Cambridge, MA); goat-anti-Tie-2 (AF762-SP) and goat IgG
isotype control (AB-108-C) from R&D systems (Minneapolis, MN).

Platelet isolation. Mice were anesthetized with 4% trichloroacetaldehyde hydrate and the blood was col-
lected via the orbital sinus. Nine volumes of fresh blood were mixed with 1 volume of anticoagulant citrate dex-
trose solution, then further mixed 1:1 with Tyrode’s solution. The mixture was centrifuged twice at 150 x g for
8 minutes, then the platelet-rich plasma collected from the supernatant was passed over a Sepharose 2B gel fil-
tration column. The plasma-free platelets were eluted in Hepes-buffered modified Tyrode’s (HBMT) buffer and
centrifuged at 650 x g for 8 minutes. Resulting pellets were resuspended in DMEM containing 0.5% FBS. Platelets
were used at a final concentration of 5 x 10° per mL.
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Cell viability assay. Cells were seeded into 96-well plates at a density of 1000 cells per well in full medium for
24hours. The culture medium was then replaced with DMEM containing 0.5% FBS for 72 hours in the presence of
platelets. Additional wells did not receive platelet treatment and served as a control. The cell viability was determined
using the CCK8 assay (Dojindo molecular Technologies, Rockville, MD) according to the manufacturer’s instructions.

EdU proliferation assay. Cells were seeded onto cover slips in 24-well plates at a density of 5000 cells
per well in full medium for 24 hours, then cultured in DMEM with 0.5% FBS in the presence or absence of
platelets for specified times. Cells grown in DMEM supplemented with 5% FBS were used as a positive con-
trol. After treatment, cells were exposed to 50 uM EdU (Ribobio, Guangzhou, China) for 5hours, followed by
fixation with 4% paraformaldehyde (PFA). Cells were then washed with PBS, permeabilized with 0.5% Triton
X-100 for 10 minutes, and incubated with 300 pL of Apollo reaction cocktail for 30 minutes. Nuclei with yel-
low fluorescence were EdU-positive indicating proliferating cells. Total nuclei counts were determined via
4/,6-diamidino-2-phenylindole (DAPI) staining with blue fluorescence. The proliferation was stated as the ratio
of EQU/DAPI double positive nuclei divided by total DAPI-positive nuclei.

Annexin V-propidium iodide (PI) apoptosis assay. Cells were plated in 60-mm dishes containing full
medium for 24 hours, and then treated with platelets in DMEM supplemented with 0.5% FBS for another 24 or
48hours. Cells undergoing apoptosis were detected using the Annexin V-FITC apoptosis kit (BioVision, Milpitas,
CA) according to the manufacturer’s instructions and analyzed using the FACS-Aria cytometer (BD Biosciences).

Non-contact co-culture. EOMA cells were plated in 24-well plates containing full medium for 24 hours,
and then incubated in DMEM containing 0.5% FBS with the inserts of Transwell chamber (0.4 um pore size,
Sigma) for another 72 hours. Platelets were placed in 100 uL of DMEM containing 0.5% FBS into the inserts. Cells
grown in DMEM supplemented with 10% FBS were used as a positive control. Following co-culture, the cell via-
bility was determined using the CCK8 assay.

Platelet internalization assay. Platelets were labeled with CFSE, a cell-permeable fluorescent dye for
30 minutes, and then co-cultured with either EOMA cells or MBMEC:s for specified times. Un-ingested platelets
were washed away with PBS. Internalized platelets were assessed via the detection of intracellular CSFE fluores-
cence using immunofluorescent staining and flow cytometry.

Immunofluorescent staining. Cells were washed with PBS, fixed with 4% PFA and permeabilized with
PBS containing 0.3% BSA and 0.1% Tween 20. Cells were incubated with primary and corresponding secondary
antibodies at 4 °C (overnight) and room temperature (90 minutes), respectively. Image acquisition was performed
using the Zeiss LSM700 confocal scanning microscope and the ZEN software (Carl Zeiss, Goettingen, Germany).

Platelet activation assay. The platelets were treated as indicated, and the surface expression of CD62P,
a marker of platelet activation, was probed by the FITC-conjugated primary antibody and analyzed using the
FACS-Aria cytometer. The corresponding isotype control antibody was used as a negative control.

Murine angiogenesis protein analysis. Culture media from EOMA cells and MBMECs, alone or
co-cultured with platelets for 24 hours, were collected and centrifuged. The supernatants were used to detect the
levels of released angiogenic factors using the Proteome Profiler Mouse Angiogenesis Array Kit (ARY015, R&D
Systems) according to the manufacturer’s instructions.

Integrin 33 knockdown. Cells seeded into 6-well plate were transfected with 300 pmol of either con-
trol or integrin 33 siRNA (sc-35677, Santa Cruz Biotechnology) in the presence of lipofectamine 2000 (Life
Technologies) for 48 hours. Cells were then subjected to an additional transfection with 100 pmol of siRNA for
48hours in order to maximize the knockdown effect.

Western blot analysis. Following treatment, cells were lysed with RIPA buffer supplemented with protease
and phosphatase inhibitor, then subjected to SDS-PAGE. Total proteins were then transferred onto a PVDF mem-
brane (Immobilon-P; Millipore, Billerica, MA), blocked with 5% non-fat milk in 0.1% PBST, probed with pri-
mary antibodies (4 °C, overnight), and incubated with corresponding secondary antibodies (room temperature,
1 hour). After the enhanced chemiluminescence (ECL) with Luminata Forte Western HRP substrate (Millipore),
the protein bands were imaged using the ChemiDoc Touch Imaging System (Bio-Rad) and the band intensities
were analyzed with the Image] Software (https://imagej.nih.gov/ij).

Real-time PCR. Following 24-hour platelet treatment, total RNA was extracted from EOMA cells
using the Trizol reagent (Invitrogen) according to the manufacturer’s instruction. Reverse-transcription
was carried out using 1 ug of total RNA, and the levels of ITGB3 and ACTB mRNA were examined using
SYBR Green Master Mix kit (Invitrogen) according to the manufacturer’s protocol. Forward primer of Actb:
5'-GGCTGTATTCCCCTCCATCG-3/, reverse primer of Actb: 5'-CCAGTTGGTAACAATGCCATGT-3/,
Forward primer of Itgh3: 5'-CCACACGAGGCGTGAACTC-3', reverse primer of Itgb3: 5'-CTTCAGGTT
ACATCGGGGTGA-3'.

Cell fractionation. Cells were plated in 6-well plates containing full medium for 24 hours, and then treated
with platelets in DMEM supplemented with 0.5% FBS for another 24 hours. Cytoplasmic and membrane fractions
were separated using a cell fractionation kit (Cell Signaling Technology). These fractions were then analyzed by
Western blot analysis.
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Immunoprecipitation. Following a 30-minute treatment with or without platelets, EOMA cells were
lysed and immunoprecipitation was performed using a primary antibody directed against Akt (Cell Signaling
Technology, #4691). Then a Pierce Crosslink IP Kit (ThermoFisher Scientific, Waltham, MA) was used accord-
ing to the manufacturer’s instructions. Normal rabbit IgG was used as a negative control. Eluted proteins were
resolved by the SDS-PAGE.

Murine tumorigenesis. To generate HE, the injection of EOMA cells in mice was performed as previously
described!? with minor modifications. Briefly, EOMA cells were collected, resuspended in DMEM medium
(4.5 x 10° cells in 200 pL) and subjected to dorsally subcutaneous injection in shaved C57BL/6] mice. For
knockdown of integrin 33, EOMA cells were first transfected with integrin 33 for 96 hours prior to injection. For
inhibition of Akt, EOMA cells were co-injected with 2 pM GSK690693, followed by an additional intratumoral
injection of 2 M GSK690693 on day 3, when the tumors were palpable. Seven days post injection, mice were
sacrificed. Following skin detachment HE tissues were harvested, and the extra fluid was removed to assess the
tumor weights. The tumor volumes were measured using the formula volume = 0.52ab”, where a and b indicated
the long and short diameters of the tumors, respectively®.

Statistical analysis. Data were presented as mean + SEM. At a minimum each experiment was repeated
in triplicates (n=3-6). Student t-test, one-way analysis of variance (ANOVA) followed by Dunnett’s post hoc
test, and two-way ANOVA followed by Bonferroni’s post hoc test were performed depending on experiment.
Statistical significance was set at P value < 0.05.

Ethics statement. All experiments and methods were conducted strictly with relevant guidelines and regu-
lations of Jinan University. All animal procedures were performed according to the China’s animal welfare legis-
lation for the protection of animals used for scientific purposes and approved by the Committee on the Ethics of
Animal Experiments of Jinan University for care and use of laboratory animals. All efforts were made to minimize
the number of animals and decrease their suffering.
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