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Resilience of electricity grids 
against transmission line overloads 
under wind power injection at 
different nodes
Christoph Schiel, Pedro G. Lind & Philipp Maass

A steadily increasing fraction of renewable energy sources for electricity production requires a better 
understanding of how stochastic power generation affects the stability of electricity grids. Here, we 
assess the resilience of an IEEE test grid against single transmission line overloads under wind power 
injection based on the dc power flow equations and a quasi-static grid response to wind fluctuations. 
Thereby we focus on the mutual influence of wind power generation at different nodes. We find that 
overload probabilities vary strongly between different pairs of nodes and become highly affected by 
spatial correlations of wind fluctuations. An unexpected behaviour is uncovered: for a large number of 
node pairs, increasing wind power injection at one node can increase the power threshold at the other 
node with respect to line overloads in the grid. We find that this seemingly paradoxical behaviour is 
related to the topological distance of the overloaded line from the shortest path connecting the wind 
nodes. In the considered test grid, it occurs for all node pairs, where the overloaded line belongs to the 
shortest path.

With the constantly rising fraction of renewable energy sources in electricity production, it becomes an increas-
ingly challenging task to make electricity grids most efficient and reliable. In particular, the embedding of renew-
able power is one major problem when planning and upgrading power grids in what concerns the size, location 
and distribution of renewable power plants1. To tackle this problem, a combination of methods developed in 
the fields of nonlinear dynamics, network theory and stochastic modelling provides a promising approach2–5. 
Moreover, new control designs are required6. Achievements have been made in optimal embedding forecast, 
using machine learning methods7, and for providing optimal grid structures in terms of good connection condi-
tions8. Since one power grid can cover several countries, optimal solutions raise challenges on how to coordinate 
efforts between different countries, belonging to the European grid9.

Deriving embedding solutions is crucial for cost efficient design and stable functioning of the power grid10. 
A key element for stability of power grids is the adjustment of the generated power to the consumed power and 
power losses. In the absence of renewable energy sources, this adjustment needs to be ensured with respect to 
stochastic variations in the demands and failures of technology. Various control mechanisms have been imple-
mented successfully in the past to maintain frequency and voltage stability, and reserve capacities were allocated 
to establish a resilience against failures of generators, transmission lines or other components of the grid11. Given 
the stochastic nature of wind and solar power, the stability against fluctuations needs to be considered also from 
the production side. Fluctuations in renewable power occur on time scales much smaller than the fluctuations 
in the power demand12, 13 and they pose new challenges for the control and optimisation of power grids. Their 
intermittent nature occurs on different spatial and time scales13–15 and is reflected in properties of wind tur-
bines such as power and fatigue loads16, 17. These features raise questions on how control mechanisms need to 
be modified to guarantee the resilience and proper functioning of electricity grids in the future. One option to 
cope with this problem is to avoid a direct feed-in of renewable power into the grid, but to store the renewable 
energy before injecting it into the grid in a controlled way. However, this option can be expensive and limited 
by the available amount of storage facilities. A direct feed-in of renewable power, on the other hand, must be 
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supplemented by power from conventional generators to keep control over the balancing of generated and con-
sumed power. Therefore, in view of plans to substitute a considerable fraction of the total generated power by 
renewable energy18, it becomes important to study favourable embedding strategies of renewable energy sources 
into existing power grids19, 20.

In this paper, we study how wind power feeding at different nodes of a power grid affects its stability against 
overloads of transmission lines. Such overloading can lead to overheating and line overload. Specifically we 
address the following question: If a given amount of conventionally generated power shall be replaced by wind 
power, where are the most favourable locations for wind farms if single line overloads shall be avoided? The meth-
odology of our approach follows partly previous work19 and is illustrated in Fig. 1. Wind power is injected at the 
generator nodes of an IEEE test grid by replacing nodes of conventional generators. Thereby, heterogeneities in 
the power production and consumption, as well as in the transmission line properties are taken into account, and 
we embed the wind power in a topological environment typical for a generator node. For the distribution of the 
fluctuating wind power we choose a Weibull distribution. This is motivated by empirical results for wind veloc-
ities and the so-called “power curve”21, which describes the average relation between wind velocity and power. 
A quasi-static response of the grid state with respect to the wind fluctuations is considered and the balancing 
of generated and consumed power is ensured by scaling the power input from the remaining (non-substituted) 
conventional generators. For our analysis, the IEEE RTS-96 test grid22 is taken as an example.

After describing the methods more specifically, we first address the question how strongly the resilience 
against line overloads varies with the location of wind power injection, if exactly one conventional generator in 
the grid is replaced by a wind farm. It turns out that the grid resilience can be quite sensitive to the location of the 
injection node. For a wind farm with average power production of 200 MW, we find the overload probabilities to 
vary over more than two orders of magnitude. Nodes with highest overload probabilities have at most one genera-
tor node as neighbour and they have a comparatively low total capacity of their emanating transmission lines. We 
then study how simultaneous wind power input at different nodes affects the grid resilience against line overloads. 
Therefore, pairs of the conventional generators are replaced by wind farms with fluctuating power generation. We 
find that a higher wind power input at one of the injection nodes can increase the threshold power for line over-
load at the other node. This surprising behaviour is correlated with the distance of the overloaded line from the 
shortest path connecting the pair of wind nodes. Finally, we show that spatial correlations between wind power 
fluctuations at the two injection nodes need to be taken into account in order to identify the best pairs with lowest 
overload probabilities. We conclude the paper with a summary of the key results, their impact for applications and 
an outlook for further investigations.

Methods
Feasibility regions.  The power flow in the test grid is treated based on a linearised version of the ac power 
flow equations, which is an often applied procedure in the electric engineering literature23. In this approximation, 
three simplifications are made: (i) the resistances of the transmission lines [jk] between nodes j and k are neglected 
in comparison to their reactances, implying that their properties can be fully described by susceptances =b bjk kj, 
with =b 0lm  for all pairs of nodes l and m that are not connected, (ii) the moduli | |Vj  of the complex voltages 

= | | θV V ej j
i j at the nodes = …j N1, ,  are considered to be constant and here set to one, and (iii) the voltage phase 

Figure 1.  Illustration of the methodology for estimating line overload probabilities under wind power injection 
in the IEEE RTS-96 test grid. The IEEE RTS-96 test grid consists of 30 generator nodes (red circles, dark grey), 
41 load nodes (yellow circles, bright grey) and 108 transmission lines. Wind power is injected by replacing 
conventional generators as indicated (blue/grey circles). If the injected wind power becomes too strong, line 
overload occurs, as indicated by the red (dark) overloaded line. The radii of the circles is drawn proportional 
to the total power generated/consumed at the respective nodes (as listed in the IEEE data set, i.e. before 
replacement of conventional generators), and the thickness of the transmission lines is proportional to their 
maximum capacity. The two paths of connecting lines coloured in yellow (bright grey) mark shortest paths 
between the two wind feeding nodes.
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differences between nodes connected by a transmission line are assumed to be much smaller than one, 
θ θ− ( ) 1j k . Setting | | =V 1j  in reference units, the (real) powers Pj ejected from nodes j are then connected to 

the voltage phase angles by the dc power flow equations

∑ θ θ= − = … .
=

P b j N( ), 1, ,
(1)j

k

N

jk k j
1

In the IEEE test grid data, powers >P 0j
(g)  of generators and <P 0j

(d)  of consumers (demands) are listed for a 
typical situation, and yield the net power = +P P Pj j j

(g) (d) at each node j. Due to the lossless transmission in the 
dc power flow, there is a balancing of total generated and consumed power ∑ =P 0j j , which follows also from the 
symmetry of the bjk and Eq. (1). By choosing one voltage phase angle as the reference, e. g., θN = 0, Eq. (1) are 
solved to express the remaining N − 1 phase angles θj in terms of the N − 1 independent Pj (from power balancing, 

= −∑ =
−P PN j

N
j1

1 ). Knowing the phase angles θj, we can calculate the power flows θ θ≡ −P b ( )jk jk k j  along each 
transmission line [jk]. These flows are limited by a maximal capacity P jk[ ]

max for each transmission line,

θ θ= − < .P b P( ) (2)jk jk k j jk[ ]
max

If ≥P Pjk jk[ ]
max, the transmission line [jk] is considered to be overloaded.

In studying the stability of the grid under additional injection of wind energy, we follow previous work19 and 
assume that the fluctuations of wind power occur on time scales short compared to that of load fluctuations and 
long compared to time scales needed for power adjustment of conventional generators. Accordingly, the con-
sumed powers Pj

(d) are taken to be constant. For including wind energy, we replace n of the Pj
(g) by powers >g 0l  

from wind farms, = …l n1, , , and rescale the remaining ones with a common factor to ensure ∑ =P 0j j . This 
rescaling can be viewed as a simple means to account for droop control or regulation response19. As for the values 
of the P jk[ ]

max in Eq. (2), we use the short-time emergency ratings of the IEEE Reliability Test System 1996 (IEEE 
RTS-96). This test grid was developed for comparative and benchmark studies22 and provides 15 tables of data. In 
Table 1 we list the entries in the IEEE RTS-96 data set, from which the relevant information for this work was 
extracted.

Given a replacement, the phase angles from the solutions of Eq. (1) become linear functions of the wind 
powers,

∑θ α β= + = … −
=

g j N, 1, , 1,
(3)j j

l

n

jl l
1

with coefficients αj, βjl depending on the Pj
(d), the non-substituted Pj

(g) and the set of susceptances of the transmis-
sion lines. Inserting these solutions into the conditions (2) yields, for each transmission line, feasibility regions in 
an n-dimensional Cartesian space +

n  spanned by the wind powers. For the line [jk], this region is bounded by the 
two limiting planes α α β β− + ∑ − = ± | |g P b( ) ( ) /k j l

n
kl jl l jk jk[ ]

max . Considering the set of all such limiting planes, 
there is a subset, which, together with the coordinate planes, confines a convex n-polytope around the origin of 
the wind power space, which is not intersected by any of the limiting planes. This polytope constitutes the feasi-
bility region with respect to a line overload anywhere in the grid. If the n wind powers …g g( , , )n1  lie inside this 
region, no overload occurs. Otherwise, at least one transmission line overloads.

In this work, we consider either one (n = 1) or two (n = 2) wind farms. Then the polytope becomes a line 
(n = 1) or polygon (n = 1). The line is given by a threshold value gi

(c) for each possible wind node i, and the poly-
gons are denoted as Pij for the possible pairs (i, j) of injection nodes.

Statistics of wind power fluctuations and line overload probabilities.  To capture the statistics of 
wind power fluctuations is a difficult task that requires a good model for the transformation of wind speed into 
wind power (as performed by wind mills) and a description of the wind velocity statistics in the turbulent flow of 
the atmosphere, which shows long-ranged temporal and spatial correlations. There is continuing progress in the 
modelling of these issues13, 16, 24–26 but this progress has not yet matured to a state of established standard models. 
Here we base our description on empirical findings for the distribution of wind velocities and on the known aver-
age relation between wind speed and power characterised by the power curve21, 27. As for the spatial correlations 
between wind powers at different nodes, we consider the two extremes of completely uncorrelated and completely 
correlated fluctuations. This allows us to gain insight into the importance of such correlations for the probability 
of line overloads.

Information Source location

Power demand Pj
(d) Table 1, column 4

Power generation Pj
(g) Table 7, column 4

Lines jk[ ] Table 12, columns 2 and 3

Reactances = −x bjk jk
1 Table 12, column 9

Rating P jk[ ]
max Table 12, column 13

Table 1.  Information extracted from the IEEE RTS-96 test grid.
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To be specific, we take the Weibull distribution

 λ
λ λ λ

=






−






−( ) ( )x k k x x( ; , ) exp ,
(4)

k k1

for the probability distribution function (PDF) ρ v( )v  of wind velocities with a shape parameter k 2v , as reported 
in the literature28, 29, ρ λ=v v( ) ( ; 2, )v v . In contrast to the shape parameter, the scale parameter λv depends 
significantly on the location of the wind farm, because locations with comparable k 2v  and stronger mean wind 
speed must have larger λv. This variation, however, is not relevant in our modelling approach, because we con-
sider a situation, where a given mean amount of wind power ḡ (tot) shall be injected into the grid. Different λv then 
amount to different wind farm sizes.

According to the power-curve, the power g  of a wind farm is on average proportional to the cube of the wind 
speed v over the most relevant range of velocities27, where wind turbines operate. Taking ∝g v3, the PDF ρ g( ) of 
wind powers becomes a Weibull distribution as well with shape parameter = k k /3 2/3v , i. e. 
ρ λ λ=g g( ; ) ( ; 2/3, ) .

If one single wind farm is included into the grid, the scale parameter λ λ= i will be fixed for injection node i 
by the condition
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where Γ ⋅ ⋅( , ) is the incomplete Gamma function30,

∫Γ = .− −a x y e dy( , ) (6)
x a y

0

1

This equation is solved numerically for λ i. Knowing λ i, we obtain the line overload probability
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for wind power feeding at node i.
In the case of two wind farms, we need to specify the joint probability density ρ g g( , )2 1 2  for the powers g1 and 

g2 at the two wind farms. For a given pair of wind nodes (i, j), this gives the line overload probability

∫ ∫Π ρ= −
∞ ∞

g g I g g g g1 d d ( , ) ( , ) , (8)ij ij
0 1 0 2 1 2 2 1 2

where I g g( , )ij 1 2  is the indicator function of the feasibility region ij , i. e., =I g g( , ) 1ij 1 2  for ∈g g( , ) ij1 2   and zero 
otherwise. For uncorrelated wind velocity fluctuations at the two wind farm locations we have

 ρ λ λ= .( ) ( )g g g g( , ) ; , ; , (9)2 1 2 1
2
3 1 2

2
3 2

For completely correlated wind velocity fluctuations, i. e. equal wind speeds at the two wind farm locations, we 
can write λ=g g1 1 0 and λ=g g2 2 0, where g0 is a reference power, as, e. g., given by the transformation of speed 
into power by one wind mill (of the same type in the two farms). Different scale parameters λ λ≠1 2 take into 
account that the farms at the two locations can have a different size. Hence, we have λ λ=g g2 1 1 2 as a constraint, 
which implies that the conditional probability of power g2 for given power g1 is ρ δ λ λ| = −| g g g g( ) ( / )1 1 2 1 2 1 2 1 . The 
joint probability density then becomes

ρ ρ ρ λ δ λ λ= | = − .| ( )g g g g g g g g( , ) ( ) ( ) ; , ( / ) (10)2 1 2 1 1 1 2 1 1
2
3 1 2 1 2 1

In both the uncorrelated and correlated case, the two scale parameters λ λ( , )i j  are fixed by minimising the over-
load probability Πij in Eq. (8) under the constraint

∫ ∫ ρ= + .
∞ ∞

ḡ g g I g g g g g gd d ( , ) ( , )( ) (11)ij ij
(tot)

0 1 0 2 1 2 2 1 2 1 2

The minimisation is performed by using the MATLAB Interior Point algorithm31 and corresponds to an opti-
misation of the wind farm sizes, if wind power with total mean amount ḡij

(tot) shall be injected at the nodes i and j. 
Hence, when comparing line overload probabilities for different pairs of wind feeding nodes, this optimisation is 
always implicitly assumed. We finally note that the ratio λ λ/j i in the correlated case is given by the slope of the 
longest line between the origin and one of the other corner points of ij.

Results
Grid resilience under wind power injection at a single node.  As described in the Methods, a critical 
power gi

(c) defines the feasibility region for wind power injection at a single node i: For ∈g g[0, ]i
(c)  no overload 

occurs in the grid, while for >g gi
(c) at least one transmission line overloads. Figure 2 shows the corresponding 
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overload probabilities Πi calculated from Eq. (7), where the λ i were determined from Eq. (5) for a wind farm size 
with an average power production =ḡ 200 MWij

(tot)  for all pairs. This corresponds to a power production of a 
mid-sized wind farm and also to the typical power production of the individual conventional generators in the 
test grid. The overload probabilities Πi vary by more than two orders of magnitude dependent on the selected 
injection node, showing that the protection against line overload can be an important factor for optimising wind 
power integration into existing grids. We found two structural features of the nodes to be particularly relevant for 
the magnitude of the associated overload probabilities. First, a fluctuation of high wind power should be more 
easily compensated by the grid, if it can be distributed among many strong lines in the immediate neighbourhood 
of the injection node. Analysing this correlation, we found the logarithms of the overload probabilities to linearly 
correlate with the capacity-weighted node degree with a Pearson correlation coefficient of −0.922. Secondly, 
conventional generator nodes in the neighbourhood of the wind node can help to stabilise the grid against line 
overload, because their regulated response implies a decrease of their power supply in the environment of the 
wind node upon increase of injected wind power. The most vulnerable nodes with high Πi in Fig. 2 have at most 
one conventional generator as neighbour and a small capacity-weighted node degree. The capacity-weighted node 
degrees for these nodes are even very similar in values, leading to seemingly repeated motifs of the corresponding 
Πij in Fig. 2.

Grid resilience under wind power injection at two nodes.  For wind power injection g g( , )1 2  at two 
nodes i and j, the feasibility regions are polygons ij : If ∈g g( , ) ij1 2   the grid is stable, otherwise a line overload 
occurs. In our model setup, 435 different polygons exist for the IEEE RTS-96 test grid, corresponding to the num-
ber of different pairings of distinct generator nodes. Representative examples of these polygons are shown in 
Fig. 3(a). The large polygon is the feasibility region for the wind feeding nodes =i 1 and =j 2, and the nine 
smaller polygons in the array refer to node pairs with different topological distances Lij (three polygon examples 
for three fixed distances Lij): In the lower row, =L 3ij , in the middle row, =L 5ij , and in the upper row, =L 7ij .

Let us first consider the areas Fij of the polygons, which give a rough measure for overload probabilities in the 
case of uncorrelated powers injected at the two wind farms [cf. Eqs. (8) and (9)]. The examples in Fig. 3(a) show 
that these areas can be quite different for given topological distance Lij. The histogram of all Fij in Fig. 3(c) displays 
a broad unimodal distribution with the mode at about (800 MW)2. The large spread of areas implies strong varia-
tions of overload probabilities for uncorrelated wind power feeding (see below) and hence reflects the relevance 
of proper node selection already seen in the case of single-node injection.

Interesting information on correlation properties of the two wind nodes with respect to line overload is pro-
vided by the shapes of the polygons. If wind power injection at one node would not affect the critical power 
injection for line overload at the other node, the polygons become simple rectangles. For comparison, two of such 
virtual rectangles, × 





g g[0, ] 0,i j
(0) (0)  and ×g g[0, ] [0, ]i j

(c) (c)  are indicated by the dashed lines for the polygon 
drawn in large scale in Fig. 3(a). Here, the value gi

(0) is the critical value for power injection at node i, if no power 
is generated at node j, and gj

(0) has the analogous meaning. The value gi
(0) differs from the critical value gi

(c) for 
single node injection, because the latter refers to a situation, when there is a nonzero conventionally generated 
power at node j. With increasing topological distances Lij between the wind nodes, correlations decrease and the 
polygons tend to exhibit a more rectangular shape, see Fig. 3(a).

More detailed information on the correlations can be inferred by analysing the edges of the polygons. The two 
edges along the coordinate axes =g 01  and =g 02  are due to the constraints ≥g 02  and ≥g 01 , respectively, while 
the other edges are associated with overloads of transmission lines. If the wind powers g1 and g2 at the injection 
nodes i and j are driven out of the feasibility region due to high wind velocities at one or both injection nodes, one 

Figure 2.  Variation of line overload probabilities for wind power injection at one node. For an average power 
production of 200 MW by the wind farm, the overload probabilities vary by more than two orders of magnitude 
for different wind feeding nodes.
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edge of the polygon ij is passed, and the line kl[ ] associated with this edge becomes overloaded. The slope mij
kl[ ] of 

this edge, or the corresponding slope angle π π∈ −( )matan [ /2, /2[ij
kl[ ] , is a measure for the wind node coupling 

with respect to the overload of the line kl[ ]. For slope angles near zero (nearly horizontal edge) and π±( /2) 
(nearly vertical edge), a change of power at one injection node has almost no effect on the threshold power for line 
overload at the other node (as it is strictly the case for the edges in the rectangles). A negative slope means that an 
increase of wind power at one of the injection nodes decreases the threshold power at the other injection node for 
the overload of line kl[ ]. We refer to this expectable behaviour as negative node coupling. Interestingly, we also see 
in Fig. 3(a) that an increase of wind power at one injection node can rise the threshold power for line overload at 
the other injection node, i.e. it makes the grid more stable. This seemingly paradoxical behaviour occurs for pos-
itive slope angles and we then say that the wind nodes exhibit a positive coupling with respect to the overload of 
line kl[ ]. In a way, this resembles another peculiar behaviour known as Braess paradox32, where the addition of a 
transmission line, or an increase of its capacity, makes the grid less stable or weakens the flow.

Histograms of slope angles matan( )ij
kl[ ]  and edge lengths lij

kl[ ] from all edges of all polygons are displayed in 
Fig. 3(c) and (d), respectively. While the histogram of edge length shows a wide spread of lij

kl[ ] in the range of 100-
2000 MW without characteristic signatures, the histogram of slope angles exhibits pronounced peaks at the bins 
close to the angles zero (horizontal edges) and π±( /2) (vertical edges). Minima appear close to the angles 

π±( /4), where the edges have maximum negative or positive coupling.
Closer inspection of the distribution of the slope angles in dependence of the distances Lij between the wind 

nodes reveals that strong node couplings with π±matan( ) /4ij
kl[ ]  occur only for sufficiently small Lij. This is 

shown in Fig. 4(a), where all angles matan( )ij
kl[ ]  are plotted against the distances Lij. With increasing Lij, the angle 

distribution separates into two peaks around zero and π±( /2) (in a repeated scheme, the figure may be viewed as 
periodically continued along the slope angle axis). Overall, the couplings become small with increasing distance 
Lij.

Figure 3.  Shapes of feasibility regions and their statistics under wind power injection at two nodes. (a) 
Representative examples of feasibility regions (polygons) ij . The polygon on the left side is drawn in large scale 
for illustration and corresponds to wind power injections g1 and g2 at nodes =i 1 and =j 2. Each edge of this 
polygon not lying on the g1- or g2-axis corresponds to a transmission line kl[ ] that overloads if the wind power 
production g g( , )1 2  passes this edge. The edge associated with transmission line kl[ ] has length lij

kl[ ] and its slope 
mij

kl[ ] characterises the coupling between the two wind nodes with respect to an overload of the line kl[ ]. The two 
rectangles marked by the dashed lines are drawn for comparison (see text). The nine small polygons arranged in 
an array on the right side are examples of feasibility regions for node pairs i j( , ) with topological distances =L 3ij  
(lower row), 5 (middle row), and 7 (upper row). Powers are given in of units of 100 MW. (b)-(d): Histograms of 
(b) the polygon areas Fij, (c) the slope angles matan( )ij

kl[ ] , and (d) the edge lengths lij
kl[ ].
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The reason for the possibility to obtain positive couplings is that flows are directional and accordingly power 
injection from the wind nodes can compensate each other along a transmission line. If the overloaded line is on 
the shortest path connecting the two farms, one would therefore expect a compensating effect to occur with 
higher probability. More generally, we expect the positive couplings to be the more likely the closer the overload 
line lies on the shortest path. To quantify this feature, we introduce the following measure for the distance of the 
link kl[ ] to the shortest path connecting nodes i and j:

≡ + + − .L L L L L Lmin( , ) min( , ) 1 (12)ij
kl

ik il jk jl ij
[ ]

This measure corresponds to the excess length when subtracting the distance Lij from the length of the path con-
necting nodes i and j via link kl[ ], see the inset of Fig. 4(b). In particular, if the line kl[ ] belongs to the shortest path, 
one has =L 0ij

kl[ ] . In Fig. 4(b) the slope angles matan( )ij
kl[ ]  are plotted against the distances Lij

kl[ ]. Interestingly, posi-
tive node couplings become the more likely the smaller Lij

kl[ ]. If the overloaded line kl[ ] belongs to the shortest path 
connecting the wind nodes ( =L 0ij

kl[ ] ), positive node couplings are even found for all these lines. As shown in 
Fig. 4(c), the probability +|p L( )ij

kl[ ]  of finding positive node coupling under the condition of given Lij
kl[ ] rapidly 

decreases from one for =L 0ij
kl[ ]  to zero for ≥L 6ij

kl[ ] .
Mathematically, the slope mij

kl[ ] for the overload of line kl[ ] under wind power injection at nodes i and j follows 
from the solution of the dc power flow equations after the replacement of conventional generator nodes. If, for 
wind power feeding at nodes i and j, Eq. (3) is written in the form (with the superscript i j( , ) labelling the depend-
ence on the injection node numbers)

θ α β β= + + = … −g g m N, 1, , 1, (13)m
i j

m
i j

m
i j

m
i j( , ) ( , )

1
( , )

1 2
( , )

2

we obtain

β β

β β
= −

−

−
.m

(14)
ij
kl k

i j
l

i j

k
i j

l
i j

[ ] 1
( , )

1
( , )

2
( , )

2
( , )

The coefficients βkn
i j( , ), =n 1, 2, thus mediate the interplay of the power flows coming from the wind nodes. 

Intuitively, one can understand the enhanced likelihood of positive node coupling for small Lij
kl[ ], or at least for 

=L 0ij
kl[ ] , by the following argument: Flow emanating from a generator node i can be viewed as spreading in the 

“topological space” of the grid. Consequently, one should expect (with a high probability) that an increase in the 
generated power at node i leads to an increase of flow along the link kl[ ] in the direction k to l, if node k is closer to 
node i than node l, i.e. − =L L 1il ik , and to a decrease of flow in the same direction, if − = −L L 1il ik . The ana-
logue holds true for the power generated at node j. Therefore, if − − = −L L L L( )( ) 1il ik jl jk , power increments at 
the two nodes i and j likely are giving rise to mutually compensating flows through link kl[ ]. On the shortest path 
between nodes i and j, all links kl[ ] satisfy − − = −L L L L( )( ) 1il ik jl jk , and accordingly +| = =p L( 0) 1ij

kl[ ] .
Finally, we analyse the impact of spatial correlations between the wind powers at the injection nodes on the 

line overload probabilities Πij. We choose the same average total wind power production of =ḡ 200 MWij
(tot)  as 

considered in Fig. 2 for the single node injection. This average total power is generated now by two wind farms, 

Figure 4.  Character of node coupling in dependence of node distance and distance of overloaded line from 
shortest path. Plots of the slope angles matan( )ij

kl[ ]  versus (a) the topological distance Lij between the wind 
feeding nodes i and j, and (b) the distance Lij

kl[ ] of the overloaded line kl[ ] from the shortest path connecting the 
wind nodes, according to the measure introduced in Eq. (12), which is illustrated in the inset. (c) The 
probability +|p L( )ij

kl[ ]  of finding a positive (+) node coupling under the condition of given Lij
kl[ ] is shown in 

dependence of Lij
kl[ ]. For overloaded lines on the shortest path ( =L 0ij

kl[ ] ), the injection nodes i and j are always 
positively coupled.
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where the individual farm sizes are optimised to yield the lowest possible overload probability Πij (see Methods). 
For comparing the uncorrelated with the correlated case, we present the overload probabilities in an array in 
Fig. 5(a), where for each possible pair i j( , ) of injection nodes, Πij is plotted in a colour scale (see the scale bar in 
the figure). In the upper triangle of the array above its diagonal, the Πij are given for the uncorrelated case, and in 
the lower triangle for the correlated case.

As a first result from Fig. 5(a) we find that the smallest Πij are by about two orders of magnitude smaller than in 
Fig. 2 for single-node injection, which demonstrates the advantage of decentralised wind power generation for the grid 
stability (for same average total wind power feeding). The injection nodes 4, 10, 16, 20, and 30, yielding the lowest line 
overload probability under single node injection, cf. Figure 2, give also comparatively low overload probabilities when 
paired with another injection node, both in the uncorrelated and correlated case. Corresponding rows and columns of 
the Π matrix in Fig. 5(a) remain in the red (dark grey) regime of overload probabilities in the range −− −10 105 3 (with 
one exception for node number =i 20 in the correlated case, which shows higher Πij when paired with nodes =j 21, 
22, or 23). That pairs of nodes tend to give low Πij if one of its nodes yields a low overload probability as a single wind 
power source, is a consequence of our optimisation of the wind farm sizes: If a “good node” i (Πi low) is paired with a 
“bad node” j (Πj high), Πij can be avoided to become very high by increasing the farm size at node i.

These common features for the correlated and uncorrelated case, however, do not imply that the best pairs of 
injection nodes are the same for uncorrelated and correlated wind powers. The five pairs yielding lowest Πij are 
listed in Table 2. While one of the nodes with numbers 4, 10, and 30 appears in all pairings for both the uncorre-
lated and correlated case, its “pairing node” is always different, i.e. none of the five best pairs in the uncorrelated 
case agrees with one of the five best pairs in the correlated case. This demonstrates the relevance of wind power 
correlations in the search for optimal wind feeding nodes. Pairs of the same rank in Table 2 have about 2-3 times 
lower overload probabilities for correlated wind powers. For completeness, we show in Fig. 5(b) the ranking of all 
node pairs with respect to grid resilience against line overload.

Discussion and Outlook
In this work we studied the line overload probabilities under fluctuating wind power injection at different nodes 
of an IEEE test grid in a model setup, where one or two conventional generators are replaced by wind feeding 
nodes with given total average power production. A quasi-static response of the power flow to wind fluctuations 
was assumed and we calculated this flow from the dc power flow equations under the constraint of total balance 

Figure 5.  Effect of wind power correlations on line overload probabilities. (a) Outage probability and (b) 
ranking of the grid resilience against line overload for all possible pairings of wind feeding nodes and the same 
average total wind power production of =ḡ 200 MWij

(tot)  as in Fig. 2 (now generated by two wind farms). In 
each of the two arrays, the upper/lower triangle shows the results for uncorrelated/correlated wind powers at the 
two farm locations.

Uncorrelated Π × 10ij
5 Correlated Π × 10ij

5

4, 10 7.35 10, 28 4.35

4, 20 13.6 4, 28 5.31

10, 16 15.6 10, 26 5.97

10, 24 17.0 4, 26 6.82

20, 30 17.1 18, 30 8.27

Table 2.  Node pairs for wind power injection with the lowest line overload probabilities. The five most optimal 
pairs of nodes for wind power feeding yielding the lowest probabilities for line overload in the gird. Different 
optimal pairs are obtained for uncorrelated and correlated wind powers at the two wind farm locations.
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between generated and consumed power. This was achieved by a corresponding rescaling of the controllable 
generators. To describe the distribution of wind speeds, we used the Weibull distribution with a typical shape 
parameter =k 2 reported in the literature. By resorting to the known average relation between wind speed and 
power, this was transformed into a Weibull distribution of wind power with shape parameter =k 2/3. For two 
injection nodes we considered the two limiting cases of uncorrelated and completely correlated wind powers at 
the wind farm locations to get insight into the role of large-scale spatial correlations of wind fluctuations. Scale 
parameters of the Weibull distributions were optimised by adjusting the wind farm sizes to yield lowest overload 
probabilities in the case of two-node injection (at given total wind power injection).

The main findings of our study can be summarised as follows: (i) The overload probabilities vary strongly with 
the location of injection nodes as a consequence of the heterogeneous grid properties, showing their importance 
for optimal integration of wind energy. A reduction of overload probabilities by about two orders of magnitude is 
seen if the same average amount of wind power is injected via two nodes rather than a single node. This gives an 
estimate of the benefit of decentralising wind energy integration for avoiding line overloads. (ii) An analysis of the 
structure of feasibility regions in the two-node injection case allows one to obtain valuable insight into couplings 
between injection nodes with respect to transmission line overloads, which are independent of the detailed wind 
statistics. In particular, many positive couplings exist, where an increase of wind power at one injection node 
increases the threshold power for line overload at the other node. It was found that node pairs with positive cou-
plings need to be topologically close to each other and that overloaded lines for positively coupled injection nodes 
tend to lay along the shortest path between these nodes. The first feature can be understood from the decrease of 
coupling strength with injection node distance, and the second feature from the likelihood that flows emanating 
from the injection nodes mutually compensate each other along transmission lines close to the shortest path. (iii) 
Large-scale spatial correlations between wind fluctuations seem to be a relevant factor for optimal integration of 
wind power. We found them to change the best pairs of nodes yielding lowest overload probabilities, and for these 
pairs to reduce the risk of line overload by a factor of two to three.

Generally, it is an important goal to provide proper tools and measures for estimating risks of transmis-
sion line overloads under increasing integration of renewable energy sources into power grids, and to develop 
risk-minimising strategies for the design of new grid structures that are better suitable for transporting electric 
energy between a large number of small power sources. The methodology used in this study, where we followed 
previous work reported in ref. 19 is just one step towards these goals. An important issue to be clarified in future 
studies is how far the quasi-static approach can be considered to be valid. This question is intimately connected 
with the magnitude of various time scales, in particular those specifying the power response to a change in wind 
speed and the correlations of wind speed fluctuations. It needs to be checked also how far the primary stability 
control on the scale of seconds11 can be effectively accounted for by a simple power rescaling of controllable gen-
erators. We have started to investigate these problems by conducting dynamical studies based on swing equations 
for the IEEE RTS-96 test grid, i.e. the same test grid as used in this study. When succeeding to identify a time 
scale of the validity of the quasi-static approach it should become possible to connect the calculated values of the 
line overload probabilities to time intervals, where one can expect a line overload to occur. In the present study 
we have refrained to pursue any attempts in this direction and regarded the calculated overload probabilities 
solely as a relative measure for comparison of different wind power injections. Moreover, we have not considered 
the specific function that specifies the power curve of one wind turbine or one wind farm. It is known that this 
average function has a saturation level, above the so-called rated speed21, which is specific for each wind turbine 
and needs to be taken into account for calculating the costs associated with maintenance. For estimating overload 
probabilities with the proposed methodology, the saturation effect can be considered in the transformation of 
the velocity distribution (4) to the power distribution. However, a significant effect on the overload probabilities 
is only to be expected if the derivation from the Weibull distribution are pronounced in the feasibility regions.

Apart from these necessary checks, we believe that our concept of positive and negative node couplings with 
respect to flow through transmission lines can be a valuable general tool to qualify the mutual influencing of power 
injections. The concept can be generalised to more than two power injections ( >n 2). In this case, the feasibility 
region for power injection at n given nodes is an n-dimensional polytope with −n( 1)-dimensional hyperplanes 
confining it, and the set of coefficients βrs, = …r n1, , , = … −l N1, , 1, appearing in Eq. (3) define normal vectors 
to these planes, i. e. specify their orientations. For a transmission line kl[ ], a pair i j( , ) of the n injection nodes has a 
positive coupling, if β β−( )ki li  and β β−( )kj lj  have opposite signs, and negative coupling otherwise. One may ask 
then, for example, how strongly the character of node coupling changes with the addition of injection nodes and how 
far the combined effect of many nodes on the flow can be traced back to pairwise couplings.

The results of our work can help to reveal the influence brought by renewable energy sources on the electricity 
grid. For applications, it is also important to estimate costs and returns, and to develop optimisation strategies 
with respect to the expected gain. Such optimisations will depend also on specific objectives of an investor and 
hence should involve expertise from economists working in this field. To illustrate how the overload probabilities 
can enter corresponding optimisation problems, let us consider a simple approach, where we introduce two dif-
ferent kinds of costs, fixed costs, and maintenance costs that vary in time. The fixed costs λc ( )i i

(cu)  and λc ( )j j
(cu)  are 

due to construction or upgrading and depend on the parameters λ i and λ j controlling the farm sizes. The mainte-
nance cost per time unit will also depend on the farm sizes, and we denote them as λc ( )i i

(m)  and λc ( )j j
(m) . The total 

costs when implementing renewable sources at nodes i and j can then be defined as

λ λ λ λ κ λ λ λ λ τ= + + Π + +C c c c c( , ) ( ) ( ) [ ( , ) ( ) ( )] , (15)ij i j i i j j ij ij i j i i j j
(tot) (cu) (cu) (m) (m)

where τ is the time horizon for the investment. The term κ Πij ij is the average rate of overloads, with κij a propor-
tionality factor. This proportionality factor depends on the injection nodes due to the costs depending on the 
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overload lines kl[ ] forming the edges of the feasibility polygon, including an average over the respective lines kl[ ]. 
The overload probability Πij is given by Eq. (8), where now we state explicitly the dependence on the farm sizes, 

λ=g gij ij 0. Complementary to the total amount of costs, one has the expected return, which can be considered to 
depend on the total power production per unit time

λ λ τ λ λ= .¯R r g( , ) ( , ) (16)ij i j ij ij i j
(tot)

Both the total cost and the return can be determined from the sizes λ i and λ j of the nodes where power is injected 
in the grid. Accordingly from these functions one can calculate the gain

λ λ
λ λ

λ λ
Ω =

R

C
( , )

( , )

( , )
,

(17)
ij i j

ij i j

ij i j
(tot)

and optimize this with respect to the farm sizes. The best pair i j( , ) of nodes is the one with the largest Ωij. The full 
framework to account simultaneously for cost and overload probability could also be extended to incorporate an 
explicit time dependence of the maintenance costs as well as of the overload probability and the total power 
production.

Data Availability.  The data that support the findings of this study are available from reference 22 and also at 
https://www2.ee.washington.edu/research/pstca/rts/pg_tcarts.htm.
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