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Efficient and flexible 
implementation of Langevin 
simulation for gene burst 
production
Ching-Cher Sanders Yan1, Surendhar Reddy Chepyala1,2,3, Chao-Ming Yen1,4,5 & Chao-Ping Hsu1,6

Gene expression involves bursts of production of both mRNA and protein, and the fluctuations in their 
number are increased due to such bursts. The Langevin equation is an efficient and versatile means 
to simulate such number fluctuation. However, how to include these mRNA and protein bursts in the 
Langevin equation is not intuitively clear. In this work, we estimated the variance in burst production 
from a general gene expression model and introduced such variation in the Langevin equation. Our 
approach offers different Langevin expressions for either or both transcriptional and translational bursts 
considered and saves computer time by including many production events at once in a short burst 
time. The errors can be controlled to be rather precise (<2%) for the mean and <10% for the standard 
deviation of the steady-state distribution. Our scheme allows for high-quality stochastic simulations 
with the Langevin equation for gene expression, which is useful in analysis of biological networks.

Gene expression is a series of biochemical reactions that produce proteins for various biological functions. For 
cells with identical genes, gene expression noise is observed in both prokaryotes1,2 and eukaryotes3,4. One general 
source of such noise is from the probabilistic nature of chemical reactions, because the biological components 
involved in such reactions are in small copy numbers. In addition, as observed experimentally, both mRNAs5 and 
proteins6 are produced in discontinuous bursts of multiple copies in a short time, and thus, the corresponding 
fluctuation is increased7. Noise propagates through the biochemical networks8 and may further contribute to 
the heterogeneity in the phenotypes9–11. With the noise, fluctuation-dissipation theorem allows us to derive the 
dynamic response and infer dynamic properties in a cell12. When a precise control is needed, it may be necessary 
to reduce or buffer such noises13–15. Therefore, to gain insights into general biological processes by modeling, a 
good description for the fluctuation in gene expression is needed.

A complete accounting for the fluctuation in chemical reactions can be obtained by simulations with the 
Gillespie algorithm16. The Gillespie algorithm is a scheme that simulates every reaction event with a proper prob-
ability. Without imposing any additional approximations17, it generates trajectories that follow the exact proba-
bility distribution. Since each reaction involves only a small set of changes in molecular numbers, the process is 
time-consuming for a large system. To accelerate the simulation, a long leaping-time step can be used to account 
for several reaction events together. With slightly changed reaction propensities, a chemical Langevin equation 
can be derived18. Simulation is more efficient with the Langevin equation than the Gillespie algorithm. Moreover, 
the Langevin equation allows for a direct dissection and analysis of different noise sources8,11. It is therefore highly 
desirable to develop the Langevin equation for various biochemical processes.

To formulate a Langevin equation for gene expression, the burst properties need to be properly accounted for. 
Experiments found that for both mRNA and protein, the burst event can be described as a Poisson distribution, 
with the burst size as an exponential (or geometric) distribution. A general gene expression model4,19,20 shown in 
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Fig. 1 allows us to define the burst frequency and the burst size in transcription and translation with fundamental 
rate constants4,20–22. Furthermore, the distributions of burst events and sizes derived from this model have the 
same features as those observed in experiments. The gene expression model shown in Fig. 1a can be written as:

γ= − −
dg
dt

k g g(1 ) (1)g g

γ= −
dm
dt

k g m (2)m m

γ= −
dp
dt

k m p, (3)p p

where g is the fraction of active gene for transcription and (m, p) are the amount of mRNA and protein, respec-
tively; kg and γg are the gene’s activation and deactivation rates; km and kp are the production rates for mRNA and 
protein; and γm and γp are the corresponding degradation rates. Following previous works21,22, when 
γ γ k( , )g m g , mRNA production can be considered as occurring in bursts. Because the gene activation time 
(1/γg) is rather short, the average amount of mRNAs produced in such short time interval is the mean burst size22:

γ
= .b k

(4)
m

m

g

The low gene activation rate (kg) leads to well-separated burst events. The kg is considered the mRNA burst fre-
quency. Similar limiting set γ γ( )m p

7,20 applies to protein production, leading to an average burst size of protein 
as

γ
=b

k
,

(5)p
p

m

and burst frequency as the rate of mRNA production (g(t)km). In Fig. 1b, we include a stochastic trajectory under 
the limit of burst-like production. In this work, we aimed to derive a Langevin equation that includes burst pro-
duction effects and offers good number fluctuation for gene expression.

In the burst regime, when the upstream component is rarely-produced and fast-degraded, the slowly-degraded 
downstream component would be produced in bursts. Such difference in rates poses a difficulty for simulations 
with both the Gillespie algorithm and the standard Langevin equation. For the Gillespie algorithm, the slow 
reactions are sampled rarely, which leads to poor statistics. The Langevin simulation efficiency is also reduced, 
because the time step size has to be adjusted for the fast changes of the gene switching or mRNA number fluc-
tuation. Therefore, we need a Langevin equation for the protein fluctuation that does not have to track the fast 
changes of a gene’s state or mRNA’s number23,24.

Starting from the general model, we develop analytical expressions for the mean and variance in the produc-
tion with the burst effect, and such expression is included in the Langevin equation. Our approach allows for 
the flexibility to include either or both of the mRNA’s and protein’s burst effects. We also found that our burst 
Langevin expression has a large applicable region, which is not limited by the case of burst production. Our algo-
rithm can produce an accurate steady-state mean and similar distribution as that with Gillespie simulation. When 
a gene switches dynamically, our simulation also can produce accurate dynamics of average protein number. The 
burst Langevin equation we derived is effective in minimizing the computational time and memory in stochastic 
simulations. Our simulation scheme with the burst Langevin equation is useful in stochastic simulation for bio-
logical networks.

Theory
Langevin equation for burst production.  To simplify the derivation of burst Langevin equation, we first 
consider a two-component model for the burst of either mRNA or protein. In this model, a short-lived x results 
in a burst event of y:

γ= −
dx
dt

k x (6)x x

γ= − .
dy
dt

k x y (7)y y

For the mRNA’s burst production in equations (1) and (2), we assign x as the state of the gene and y as the mRNA. 
In this case, we can combine the terms kg + γg and set it to γx. Similarly, for the protein’s burst production, x is 
mRNA and y is protein. We treat g as a constant in equation (2) for a constant mRNA production rate and set kmg 
as kx. Thus, both the mRNA’s and protein’s production can be described by equations (6) and (7).

To develop an efficient stochastic simulation, we select a time interval τ that is longer than x’s lifetime (1/γx). 
When there are ey burst events and each burst size is denoted as byl, the change in y is:
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y t y t b y y( ) ( ) [ ( ) (0, 1)]
(8)l

e

yl y y
1

1/2
2

y

∑τ γ τ γ τ+ = + − + .
=

The burst production of y is the consequence of short-lived x. The number of burst events (ey) is determined by 
the number of x produced in τ and each burst size (byl) is determined by the survival time of each x. Simulation 
for the production in equation (8) can be performed with a random number for ey, followed by several random 
numbers for various burst sizes byl. For the degradation in τ, a Poisson distribution can be used, with both mean 
and variance being γyyτ18. A Gaussian random number with zero mean and unit variance  (0, 1)2  is scaled by the 
standard deviation (γyyτ)1/2 for the noise part of degradation. An alternative approach is to reformulate the pro-
duction of y in τ as:

 τ τ σ τ γ τ γ τ+ = + Δ + − +∆y t y t y y( ) ( ) [ ( ) ( ) (0, 1)] [ ( ) (0, 1)], (9)y y y1
1/2

2y

where Δy(τ) and σΔy(τ) are the mean and standard deviation of y’s production within time τ. In this way, the 
simulation steps are simplified, and the computation is more efficient. To estimate Δy(τ), the average production 
of y in time τ, we assumed that burst events and burst sizes are independent random processes. Therefore, we can 
take their average separately:

∑ ∑ ∑∆ τ = = =

= =

= = =
b b b

e b e b

( )

, (10)

y
l

e

yl
l

e

yl
l

e

y

y y y y

1 1 1

y y y

which is the product of average burst event e( )y  and average burst size b( )y .
The variance of y’s production distribution in time τ, σ τΔ ( )2

y
, was derived from the characteristic function of 

P(y), the probability distribution of y’s number, in the supplementary material of ref.25:

σ τ σ σ= +Δ e b( ) , (11)y by ey y
2 2 2 2

y

where σby
2  is the variance of burst size and σey

2  is that of burst event number in time τ. We found that it can also be 
derived directly,

Figure 1.  A general model of gene expression with burst productions and its stochastic dynamics of protein 
number. (a) The scheme of reactions for gene expression. (b) Shown are a stochastic trajectory (green) from the 
Gillespie algorithm, with the protein’s intermittent burst production indicated by red bars in time steps of 0.2 
protein lifetime (1/γp). Under the conditions applied, γ γ k( , )g m g  and γ γm p, rapid rises in the trajectory 
are seen, and protein production can be described as in bursts. Parameters used are kg = 5, γg = 95, km = 200, 
γm = 10, kp = 100 and γp = 1, which correspond to =p 100, average mRNA burst size γ= + =b k k/( ) 2m m g g  
and protein average burst size γ= =b k / 10p p m .
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With the same assumption that different processes are independent, ey and −e e( 1)y y  can be separated from 
byl

2  and ′b byl yl , respectively. We also replaced ′b byl yl  with by
2 by assuming different bursts are independent. 

With the definition of variance, we also replaced byl
2  with σ + bby y

2 2 and −e ey y
2 2 with σey

2 . Therefore, we obtain 
the same variance expression for y’s burst production as in ref.25 by direct estimation.

To simulate the downstream y’s fluctuation with burst production, we can follow the Langevin equation as in 
equation (9) including the mean propagation Δy(τ) as given in equation (10) and variance σ τΔ ( )2

y
 as in equation 

(11). The expressions derived in this section can be applied to either or both the mRNA’s and protein’s burst 
production.

Langevin equations for either or both mRNA and protein bursts.  Generally, different genes may 
have different dynamic behaviors depending on their degradation rates. Some genes in mammalian cells have 
only obvious mRNA burst production γ γ γ∼( )g m p

26,27, whereas some genes in yeast have only protein burst 
production γ γ γ∼( )m g p

4. Furthermore, some genes in bacteria have both mRNA and protein bursts 
γ γ γ ( )g m p  and some do not have any obvious burst production γ γ γ∼ ∼( )g m p

28. We further explored the 
criteria of γg and γm comparing to γp with and without burst production, as shown in Fig. 2a. For all these different 
burst cases, we show that the burst production variance in equation (11) has the flexibility to describe all of them.

mRNA burst.  With the condition γ γ γ∼( )g m p , only mRNA is generated in bursts. We rearranged the expres-
sion in equation (1) as:

γ= − +
dg
dt

k k g( ) , (13)g g g

which becomes identical to equation (6). For a single-copy gene, the activity fraction g in equation (13) is consid-
ered 0 or 1 for off or on state, respectively. Without loss of generality, we considered a single-copy gene in the 
present work. If the gene has n-copies, − g(1 ) in equation (1) can be replaced by −n g( ); thus, the first kg in 
equation (13) needs to be replaced by nkg.

mRNA burst frequency is equal to kg (or nkg for n-copy gene case). Assuming that each mRNA burst event is 
independent, we can approximate burst event distribution by a Poisson distribution, as observed in several exper-
iments5,22, where the mean of burst events τ=e k( )m g  equals the variance σ( )em

2 :

τ σ= = .e k (14)m g em
2

On the other hand, possible mRNA burst size (bm) can be described by a geometric distribution29,

= −P b q q( ) (1 ) , (15)m
bm

where q is the probability of no mRNA produced from this activation period, thus, q is proportional to kg + γg. 
One mRNA is produced with the probability of (1 − q), which is proportional to km, the transcription rate con-
stant in equation (2). The mean and variance of mRNA burst size are

γ
=

−
=

+
b q

q
k

k
1

(16)
m

m

g g

σ = + .b b (17)bm m m
2 2

We note that the mRNA burst size definition is modified as in equation (16), instead of γ=b k /m m g  in the litera-
ture which is obtained with very small kg

21,22. This new definition for bm yields accurate kinetic expression for the 
average amount of mRNA, as production (burst frequency (kg) multiplied by size b( )m ) divided by degradation 
rate constant (γm):

γ
= .m

k b

(18)
g m

m
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These are the statistical features of burst distributions that needs to be included in the Langevin equation of 
mRNA burst.

The mean of mRNA production with bursts (with large γg) can be expressed as:

τ τΔ = = .e b k b( ) (19)m m m g m

by following equation (10). The variance for mRNA is

σ τ σ σ

τ τ

τ

= +

= + +

= +

Δ e b

k b b k b

k b b

( )

( )

(2 1), (20)

m bm em m

g m m g m

g m m

2 2 2 2

2 2
m

by following equation (11). With equations (19) and (20), the Langevin equation for mRNA is then





τ τ τ

γ τ γ τ

+ = + + +

− +

m t m t k b k b b

m m

( ) ( ) ( ( (2 1)) (0, 1))

( ( ) (0, 1)), (21)

g m g m m

m m

1/2
1

1/2
2

and following the amount of mRNA, the Langevin equation for protein is

Figure 2.  Four cases of gene expression dynamics and errors from different Langevin equations. (a) Four 
possible cases of gene expression. When an activated gene state is short-lived, the Langevin equation skips the 
tracking for the gene state, and a burst production following the statistics is used for mRNA. Similarly, when the 
mRNA’s lifetime is short, burst production of protein is introduced, instead of tracking the mRNA. (b) Shown 
are normalized errors (%) of a steady-state protein’s standard deviation (σp ss, ) from the burst Langevin equations 
compared to the squared root of exact variance expression as in equation (26), as a function of gene deactivation 
rate γg and mRNA degradation rates γm. Red lines are the boundaries for the four different cases in the burst 
models. Other parameters are =p 100, kg = 5, mRNA burst size =b 2m , protein burst size =b 10p , and γp = 1.
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



τ τ τ

γ τ γ τ

+ = + +

− +

p t p t k m k m

p p

( ) ( ) ( ( ) (0, 1))

( ( ) (0, 1)), (22)

p p

p p

1/2
3

1/2
4

where the gene state is skipped. From the mRNA’s burst Langevin equation in equation (21), we derived the 
mRNA’s steady-state variance as:

σ ≈ + .m b( 1) (23)m ss m,
2

by following the supplementary material of ref.8. The steps are transforming m(t) in equation (21) to the Fourier 
space first and then squaring, averaging, and finally inverse Fourier transforming. The detailed derivation is in the 
supplementary information of this work. By comparing the production variance in equation (20) and steady-state 
variance in equation (23), we can see that the τ in equation (20) is replaced by 1/γm, leading to γ =k b m/g m m  in 
equation (23). Also, the b2 m in equation (20) becomes bm in equation (23). However, the mRNA’s exact variance 
expression in the steady state from linear noise approximation (LNA)30–32 is

σ
γ

γ γ γ

γ

γ γ
=





 + + +
+






=





 + +
+






m

k
k

k
m

k
b1 1 ,

(24)
m ss

g

g g m

m

g g

g

g g m
m,

2

with detailed derivation given in our supplementary information. By comparing equations (23) and (24), we can 
see that the burst Langevin approximation can be achieved by assuming γg/(kg + γg + γm) ≈ 1 in the LNA’s result, 
which is true that a large γg leads to mRNA bursts. Therefore, with equations (21) and (22), there is no need to 
track the fast-changing gene state g(t) in the simulation, and a modest error is introduced in the mRNA’s variance 
as in equation (23).

To further calculate the protein’s steady-state variance, because of γ γ∼m p, we can propagate σm ss,
2  from equa-

tion (23) by the variance propagation equation33 to obtain σp ss,
2 :

σ σ
γ γ γ

γ γ γ γ

=
+

+

=




 +
+

+
+






.

k k
p

p b
k k

1
(25)

p ss m ss
p

p

p

m p

m
p

m p

p

m p

,
2

,
2

This expression is also slightly different from the exact expression derived from LNA (details in the supporting 
information), which is given below:

σ
γ γ γ γ

γ γ γ γ γ γ γ γ γ
=







+ + +

+ + + + + +
+

+
+






.p

k
k k

k
k

k k( )
( )( )

1
(26)

p ss
g g m p g

g m g g p g

m

g g

p

m p

p

m p
,

2

In general, σp ss,
2  obtained by LNA as in equation (26) includes the overall intrinsic noise of a gene following equa-

tions (1) to (3). So it is desirable to compare the σ2
p,ss in equation (25) from the burst Langevin equation to the 

exact variance in equation (26). The difference between equations (25) and (26) gives us an indication of the burst 
Langevin equation’s accuracy. Such difference is shown in the lower right region in Fig. 2b, where γg ≥ 10 γm. The 
largest error of the bursting Langevin equation with mRNA burst alone is .12 5% that occurs at the lower left 
boundary of the region, which is still acceptable.

Both mRNA and protein bursts.  In the condition γ γ γ g m p, both the mRNA’s and protein’s production are 
produced in bursts. We can combine both bursts and derive one Langevin equation for the protein’s fluctuation, 
thereby greatly simplifying the simulation. Because each mRNA corresponds to a protein burst event, the number 
of protein burst events in τ is

τ=e k b , (27)p g m

leading to the protein production as

τΔ = .k b b (28)p g m p

Since mRNA is also produced in bursts, the variance of the protein’s burst event is

σ σ τ= = +Δ k b b(2 1), (29)ep g m m
2 2

m

which is identical to that in equation (20). The variance of the protein’s production following equation (11) is
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σ σ σ

τ τ

τ

= +

= + + +

= + + .

Δ e b

k b b b k b b b

k b b b b b

( ) (2 1)

(2 2 1) (30)

p bp ep p

g m p p g m m p

g m p m p p

2 2 2 2

2 2
p

We note that σbp
2  is equal to +b bp p

2 , by following the same assumption of geometric distribution as bm in equation 
(15). We also note that similar results with both bursts were derived using the generation function of P(p), the 
probability distribution of p’s number in the supplementary material of ref.34.

With equations (28) and (30), the Langevin equation for protein fluctuation with both bursts is





τ τ τ

γ τ γ τ

+ = + + + +

− + .

p t p t k b b k b b b b b

p p

( ) ( ) ( ( (2 2 1)) (0, 1))

( ( ) (0, 1)) (31)

g m p g m p m p p

p p

1/2
1

1/2
2

It allows us to efficiently simulate protein’s fluctuation, because we can skip tracking the gene state and the mRNA 
in the simulation.

Following the same process as we obtained the mRNA’s steady-state variance σm ss,
2  as in equation (23), here we 

obtained the protein’s steady-state variance from equation (31) as

σ ≈ + + .p b b b( 1) (32)p ss m p p,
2

In the upper right region of Fig. 2b, we show the normalized error in σp ss,  for equation (32) to that from LNA as 
equation (26) with the condition of both bursts as following:

γ γ γ≥ ≥ .10 100 (33)g m p

The largest possible error in the standard deviation is <6.5%, which is quite acceptable.

Protein burst.  When the gene’s active state is long-lived γ γ∼( )g p , the mRNA is not produced in bursts. For some 
genes γ γ γ∼( )m g p  reported in yeast4, short-lived mRNA leads to the protein’s burst production. Partial sim-
plification of the Langevin equations for the gene expression is still possible if the protein is produced in bursts. 
For such case, we keep track the gene’s activity, skip the short-lived mRNA, and develop the protein’s Langevin 
equation with bursts:

τ τ γ τ+ = + − −g t g t k g g( ) ( ) (1 ) (34)g g

 ¯τ τ σ γ τ γ τ+ = + + − +Δ ( )( )p t p t gk b p p( ) ( ) (0, 1) ( ) (0, 1) (35)m p p p p1
1/2

2

The gene-switching probability is kgτ with g = 0 and γgτ with g = 1. The mean production of the protein number 
in time τ is τgk bm p, which is gkmτ, the number of protein burst events (same as the number of mRNA molecules) 
produced in τ, multiplied by bp, the mean protein burst size. For the noise strength (σΔp) in equation (35), g(t)km 
can be considered a constant in τ because the state of the gene does not switch frequently in τ. Therefore, the 
mRNA produced or the protein burst event from equation (35) is a Poisson distribution, with the variance being 
the same as the mean:

σ σ τ= = .Δ g t k( ) (36)ep m m
2 2

Following equation (11), the variance of protein production in equation (35)can be written as

σ σ σ

τ τ

τ

= +

= + +

= + .

Δ e b

g t k b b g t k b

g t k b b

( ) ( ) ( )

( ) (2 1) (37)

p bp ep p

m p p m p

m p p

2 2 2 2

2 2
p

In a simulation trial, the noise strength of protein’s production σ∆( )
p

 follows the state of g(t). Also, because g(t) = 
1 in some τ steps and g(t) = 0 in others, the average gene state is γ= +g k k/( )g g g .

With only protein bursts, based on the condition of γ γ≥ 10m p, we can simplify σp ss,
2  in equation (26) from 

LNA to

σ
γ

γ γ
≈





 + +
+ +






p

k
b b b 1 ,

(38)
p ss

g

g g p
m p p,

2

by reducing the first fraction and using γ=b k /p p m. In the upper left region of Fig. 2b, comparison of σp,ss from 
equation (38) to that from the exact variance in equation (26) shows that the largest possible error is <5%.

In a special condition, where kg and γg are significantly smaller than other four kinetic parameters in the gene 
expression model (equations (1) to (3)), bimodal distribution of the protein number can be obtained from the 
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numerical simulation. Such parameter sets lie on the upper and most-left region of Fig. 2b, where the error of σp,ss 
from the burst Langevin is small as <5%. Considering kg = γg = 0.1γp with γm = 10γp, which leads to only protein 
bursts, the burst Langevin algorithm can fairly reproduce the bimodal distributions of the protein number with 
various combinations of km and bp. The comparison of distributions between the protein burst Langevin simula-
tion and Gillespie algorithm in this special condition are shown in the supplementary information.

Overall, our comparison shows that the burst Langevin equation can provide reliable estimations of σp,ss for 
all three cases, where bursts are observed in mRNA, protein or both mRNA and protein. For the three cases, we 
organized the statistical expressions including burst events, burst sizes, variance of production and steady-state 
variance in Table 1. For three cases of bursts, the variance of the burst event as in equation (11) needs to be mod-
ified accordingly.

Neither mRNA nor protein in bursts.  For the case that γg and γm are close to γp, simulations with the Gillespie 
algorithm or the τ-leaping algorithm35 would work well. The problems of inefficient simulation and poor statistics 
of rare events due to greatly different reaction rates do not exist in this case. Because mRNA and protein produc-
tion are not in bursts, all three species in equations (1) to (3) need to be tracked in the simulation to fully account 
for intrinsic noise of gene expression. Simulation with the Gillespie algorithm has no imposed approximation, 
and thus the steady-state variance it produces is close to LNA in equation (26). Therefore, the lower left region of 
Fig. 2b indicates zero error.

Results
Single gene expression.  The gene expression model as described in equations (1) to (3) is tested to see how 
the one-component burst Langevin equation in equation (31) can be used to replace a three-component model. 
We use the Gillespie algorithm to simulate the model as in equations (1) to (3) to obtain the exact numerical sim-
ulation results. We compared the normalized error of a protein’s mean p( ) in the steady state from the burst 
Langevin simulation to that from the Gillespie simulation.

There are six parameters in the model as in equations (1) to (3). We first chose the unit for time as 1/γp. In 
other words, the protein degradation rate was set to 1. We further set γm = 10 and γg = 100, for a fast degradation 
rate in mRNA and an even faster DNA deactivation rate, respectively. This is at the margin of treating both mRNA 
and protein production with bursts (equation (32)), where the largest error (<6.5%) could be produced, as shown 
in the upper right region of Fig. 2b. To test the applicable range of the burst Langevin simulation, we scanned the 
gene activation constant (kg = 1 − 100), which covers the mRNA burst frequency value of 5 to 45 as observed in 
the experiment22. The other parameter we scanned is the protein burst size = −b( 1 100)p , or equivalently pro-
tein production rate (kp = 10 − 1000), which also covers the values observed in the experiment28. We first fixed the 

mRNA burst (y = m) both bursts (y = p) protein burst (y = p)

condition γg ≥ 10 γm γg ≥ 10 γm ≥ 100 γp γm ≥ 10 γp

simulated subjects m(t), p(t) p(t) g(t), p(t)

burst event distribution:
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replaced by bp.
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parameter km as 100, which approximately yields =b 1m  by equation (16), similar to the value generally observed 
in bacteria28. The average amount of protein in the steady state from the parameter set we scanned can be calcu-
lated as

γ γ γ
=

+
=

+
p

k
k

k k k
k

k
100

100
10 1

,
(39)

g

g g

m

m

p

p

g

g

p

which covers . < ≤p0 9 5000, the range of observed protein copy number in an E. coli cell28.
We compared the average protein number p( ) of the steady-state distribution from the burst Langevin simu-

lation to that from the Gillespie simulation and shown in Fig. 3a. When kg ≥ 3 and ≥b 1p , corresponding to 
≥p 3, our algorithm’s error is <5%. The largest error of p  is found at the lower left corner, which is caused by the 

Gaussian function in the Langevin simulation deviating from the Poisson distribution. Such deviation affects all 
kinds of Langevin simulations, including our burst Langevin scheme.

Figure 3b compares the protein’s steady-state distribution with the burst Langevin simulation and Gillespie 
simulation. The burst Langevin simulation can reproduce the distributions with different combinations of burst 
frequency (kg) and burst size (bp).The normalized error in standard deviation for these cases ranges from −13% 
to 14% (details included in the supplementary information). Although all the steady-state distributions have some 
error in σp,ss, they are sufficiently good for further applications. We further analyzed the sources of such error and 
discussed them in the supplementary information for interested readers.

Figure 4 compares the computational time percentage with the burst Langevin simulation to that with the 
Gillespie simulation. The burst Langevin simulation always uses less time than the corresponding Gillespie sim-
ulation. When particle number is ≤100, the Gillespie simulation is already efficient; thus, the time usage with 

Figure 3.  Comparison of p  and steady-state distributions with the burst Langevin simulation and Gillespie 
simulation. Shown in (a) are the p  difference (in %) with the burst Langevin simulation and Gillespie simulation 
and in (b) steady-state distributions with the burst Langevin simulation (red) and Gillespie simulation (green) 
with different gene activation rates kg = 3,10,100 and burst size =b 1,10,100p . Statistics were taken at the steady 
state of 10,000 independent points for the model as defined in equations (1) to (3) with parameters km = 100, 
γg = 100, γm = 10 and γp = 1.
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the burst Langevin simulation is 40% to 80% of that with the Gillespie simulation. However, when the particle 
number is large, the burst Langevin uses only <10% simulation time as compared with the Gillespie simulation. 
Therefore, the burst Langevin simulation is efficient.

We also checked the accuracy of the burst Langevin simulation comparing to the Gillespie simulation by var-
ying mRNA burst size. In this test, with a fixed kg = 5, we scanned the other parameter pair: mRNA mean burst 
size, = −b 1 30m  and protein mean burst size, = −b 1 100p . The parameter = −b 1 30m  corresponds to the 
mRNA burst size observed in mammalian cells22. The parameter region tested corresponds to = −p 4 15,000. 
As shown in Fig. 5a, the errors in p  are within ±2%. The steady-state distributions between two methods shows a 
good agreement (Fig. 5b). Comparison of the standard deviation in the steady state (from −8% to 2.5%) is 
included in the supplementary information. These results indicate that our burst Langevin algorithm is applicable 
for a wide range of biological systems.

Burst Langevin for non-linear regulation.  We further tested a gene’s expression under regulation to 
show how steady-state distribution errors of the upstream can affect the downstream mean number, especially 
with a non-linear regulation. Here we chose repressing regulation as an example. We use the gene expression 
model shown in equations (1) to (3) as an upstream protein, p1 with varying bm1 and bp1 (as in Fig. 5a). The down-
stream gene’s transcription is repressed by p1 through the Hill function with threshold (K) as in the following 
equations:

γ= −
dp
dt

k b b p , (40)g m p p
1

1 1 1 1 1

γ=
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
 +

+
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
− .

dp
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k b K
K p
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(41)
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n

n n l p p
2

2 2
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2 2 2
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We compared the difference in p2 between the burst Langevin simulation and Gillespie simulation. The simula-
tion result for an activation regulation with negative nH (equivalent to a positive regulation) can be found in the 
supplementary information. We introduced kl for p2’s possible leaking of mRNA, so that the expression of an 
repressed gene may remain at a low level but not zero36. In this way, a basal production for p2 is introduced, and 
thus, the problem of the Langevin simulation with very low p2 can be mostly avoided.

In the lower-left corner of Fig. 6a, the downstream gene expression level is =p 1252 , which means that p2 is 
fully activated and there are only a few p1. With increasing p1, p2 is reduced to =p 252  as seen in the upper-right 
corner of Fig. 6a. The errors in p2 in Fig. 6b are from −4% to 8%. The red line in Fig. 6b indicates =p K1 , the 
threshold value of the repression. Within the region close to the threshold, the production of p2 is sensitive to 
fluctuations in p1. However, even in this region nearby, the error at most is only −4%. Therefore, even with a 
non-linear regulation in this system, the burst Langevin simulation can produce accurate results.

In Fig. 6b, the largest error in p2 is about 8%, found with =b 30m1  and ≥b 5p1 . In this region, p1’s copy number 
is high, and its number fluctuation is also high with such large burst-size pairs. p2 is fully repressed by high p1 
number and kept at its basal expression level, =p 252 . Here the 8% error comes from a two- to three-particle 
difference in p2, and such error is quite acceptable in stochastic simulations.

Figure 4.  Comparison of simulation time with the burst Langevin simulation and Gillespie simulation. Shown 
are the percentage of computer time used by the burst Langevin simulation compared to that by the Gillespie 
simulation for different kg and burst size bp.



www.nature.com/scientificreports/

1 1Scientific Reports | 7: 16851  | DOI:10.1038/s41598-017-16835-y

In the region that we scanned, p1’s σp1,ss error is from −8.5% to 2.5%, which mainly follows the value of bm1 (as 
shown in supplementary information). Such error may propagate through the regulation and cause error in p2. 
However, as seen in Fig. 6b, the error in p2 has only a mild correlation with increasing bm1 alone. The overall trend 
of increasing error roughly follows inversely with increasing p2 from the down-left corner to up-right corner in 
Fig. 6b, and thus, the errors in the standard deviation of the upstream do not affect the quality of the 
downstream.

Dynamics of average protein number.  Besides steady-state behaviors, we demonstrate the accuracy of 
the burst Langevin simulation in dynamics. In Fig. 7, we include the mean protein number dynamics with the 
burst Langevin simulation and Gillespie simulation. In this model, the gene is activated at time =t 7 by setting 
kg = 30 and deactivated at t = 14 by setting kg = 3. From Fig. 7, we can see that our simulation algorithm can pro-
duce reasonably accurate dynamics in the mean and standard deviation as compared with the exact Gillespie 
simulation. Only a small deviation can be found in the standard deviation. In this test, we selected =b 2m  and 

=b 10p . However, similar results with reasonable dynamics are obtained by varying combinations of bm and bp 
(supplementary information).

Discussion
In this work, we have developed a Langevin equation that can account for the noise arising from gene expression 
bursts. We found a large range of parameters with which our burst Langevin simulation can well reproduce the 
statistics comparing to the Gillespie algorithm, and it covers the protein expression level for more than 4 orders 
of magnitude. For the case of mRNA (protein) burst production, the deactivation (degradation) rates of the gene 
(mRNA) should be 10 times faster than that of mRNA (protein). The burst Langevin equation has the flexibility 
to include only mRNA or protein burst or both bursts. In addition, the gene activation rate constant (kg) has mul-
tiple effects in the mean and variance of the production distribution; thus, it is a critical parameter in the accuracy 

Figure 5.  Comparison between the burst Langevin simulation and Gillespie simulation with different bm and bp. 
Shown in (a) are the p  difference (in %) with the burst Langevin simulation and Gillespie simulation and in (b) 
steady-state distributions with the burst Langevin simulation (red) and Gillespie simulation (green) with 
different =b 1,8,30m  and =b 1,10,100p . kp and km were determined by equations (5) and (16) with given bp and 
bm, respectively, with the other parameters kg = 5, γg = 100, γm = 10 and γp = 1.
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of the burst Langevin simulation. When kg ≥ 3, which leads to ≥p 3, the burst Langevin simulation can produce 
an accurate steady-state mean and standard deviation as compared with the Gillespie simulation. Furthermore, 
the burst Langevin simulation can produce accurate dynamics of genetic switching and genes under non-linear 
regulation. Therefore, the burst Langevin equation is applicable for a wide range of genetic regulation network.

To fully consider all intrinsic noises of a gene, with the Gillespie simulation, all of the three components 
including the gene state, mRNA and protein are simulated with a total of six reaction channels. However, with the 
burst Langevin simulation, with both mRNA and protein bursts, the model can be reduced to only protein with 
two reaction channels. Thus, the burst Langevin simulation uses less computational time and memory than the 
Gillespie simulation. Therefore, our algorithm is an efficient stochastic simulation method.

Besides efficiency, the Langevin equation allows for easily dissecting the contribution of noise from different 
sources, because the Gaussian random number for each reaction channel can be easily set as zero. Therefore, the 
burst Langevin simulation can be used to analyze the dynamics of gene expression noises propagating through 
the regulation network8,11. Moreover, one can introduce a desirable scaling parameter to the noise strength in the 
Langevin equation for mimicking other possible sources. Therefore, one can reproduce the noises close to that 
from the Gillespie simulation or that observed in various biological systems.

With the variance expression in equation (11), our burst Langevin equation can be flexible to include various 
cellular factors. With the assumption that burst events and burst sizes are determined by independent processes, 
we use two different distributions to estimate the variance of burst production in the burst Langevin equation. For 
the cases of mRNA or protein burst alone, we use the Poisson distribution for burst events and geometric distri-
bution for burst sizes, whereas for the case of both bursts, the protein burst event’s variance is enhanced by the 
mRNA burst, and the overall variance is obtained by the same expression in equation (11). In general, gene 
expression in the model (equations (1) to (3)) may be influenced by other factors in the cell37, such as chromatin 

Figure 6.  A test for simulation error of gene expression under non-linear repressive regulation. Shown in (a) is 
the steady-state p2 with the burst Langevin simulation and in (b) the error in p2 from the burst Langevin 
simulation comparing to that from the Gillespie simulation. Here the p1’s burst frequency, bm1, and burst size, bp1, 
are varied over a range. Other parameters for p1 are kg1 = 5, γg1 = 100, γm1 = 10 and γp1 = 1. For p2, the 
parameters are kg2 = 5, γg2 = 100, km2 = 200, kl = 60, γm2 = 10, kp2 = 100 and γp2 = 1, K = 200 and nH = 3. The red 
line in (b) corresponds to =p K1 .
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template and promoter structure38,39, which leads to different mRNA and protein production distributions other 
than Poisson or geometric distributions40. Also, post-translational modification introduces an additional step 
after protein production, which can modify the overall protein production rate, kp. Thus, protein burst size bp and 
variance σbp

2  may also be modified from the geometric distribution. For a more detailed model40, if burst event and 
size are determined independently, their distributions can be introduced in equation (11) to estimate consequent 
burst production variance. Therefore, the burst Langevin equation in equation (31) can be modified accordingly 
to include other factors or more detailed steps in the gene expression model.

Different steps in gene expression are implemented by different molecular machineries. A gene is activated 
by chromatin remodeling4,21, whereas mRNA is produced by RNA polymerase and protein is produced by ribo-
some. There is no machinery competition between different steps. Therefore, we assumed that different steps 
in gene expression are independent processes and derived the variance of burst production. However, under 
different physiological conditions in bacteria41,42, negative correlations are reported between transcription and 
translation. And thus, regulation or competition for resources may exist between transcription and translation. 
Yet, once a gene is expressing, protein requires more biomass than transcripts. Protein synthesis also consumes 
most of the energy, but other processes in gene expression consume a non-relevant amount (<10%) of energy43,44. 
Therefore, energy competition may only be possible in some extreme conditions and assuming different steps in 
gene expression as independence processes is valid.

Methods
Burst Langevin Simulation Settings.  τ selection for burst events.  In propagating the Langevin equation, 
the Euler-Maruyama scheme45 is technically rather simple to implement. While using this scheme, we need to 
select a proper step size τ, such that all reactant’s expected changes are within a small proportion, ε. For a general 
biological model, besides the protein’s burst production and degradation in equation (31), the protein may involve 
other jth reaction with reaction propensity aj and number change νpj:
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Following the τ-leaping scheme35, the step size τ is determined by:
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where the first denominator multiplied by τ is p’s expected change in τ and the second denominator multiplied by 
τ is the variance of expected change. The τ is selected as the minimum τi among all reacting species i, including 
p. The setting in the numerator is for the efficiency of simulation. When the amount of protein is large, the term 
εp in the numerator includes as many reactions as possible in τ and accelerates the simulation being faster than 
Gillespie algorithm. When there are only a few proteins, with the second term, 1 in the numerator, the τ is large 

Figure 7.  Comparison of different algorithms for genetic switching dynamics. Shown are average protein 
numbers with the standard deviation of the distribution at different times from 10,000 independent stochastic 
trajectories with the burst Langevin algorithm (red) and Gillespie simulation (green) for the model defined 
in equations (1) to (3) with parameters kg = 30 for t = 7 to 14; otherwise kg = 3 and other parameters γg = 100, 
km = 200, γm = 10, kp = 100 and γp = 1.
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enough for some reactions such that reactant numbers are changed at least by one particle. In the situation of few 
particles, the τ-leaping scheme is close to the Gillespie algorithm, which tracks every reaction.

There are some reactions whose propensity changes drastically even with one reaction event. These are classi-
fied as critical reactions in the system35. Examples are the switching steps between the two gene states in equation 
(34) or the protein degradation reaction with protein number <10, where the number 10 is suggested in the liter-
ature35. Besides the τ selected from equation (43), when there are critical reactions in the current state, another τc 
is randomly selected from an exponential distribution function with τc, which is the average time for one critical 
reaction event. The τc is defined as the reciprocal of the sum of all critical reaction propensities. If τc is smaller 
than the τ from equation (43), the system is propagated with τc with one critical reaction event. Otherwise, the 
system is propagated with τ without any critical reactions.

However, in the Langevin simulation with bursts, a large-size burst causes an additional problem in the 
τ-leaping scheme35 when the amount of protein is low. In equation (43), large k b bg m p value in the denominator 
leads to a very small τ, and only one protein is produced. And such small τ will be selected consecutively for a 
complete burst event. No reactions occur in such small τ other than one protein produced, and thus, the simula-
tion time is wasted. To overcome this situation, we reformulated equation (43) such that one burst event is allowed 
in one τ step. With this modification in mind, we consider two different τ’s, one estimated from the burst produc-
tion and the other τ ∈( )pj nb  from other non-burst reactions (including protein degradation) following the original 
scheme as in equation (43). The smaller τ between the two is then chosen. Therefore, our τ selection scheme is 
modified as:
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Figure 8.  A representative burst production distribution and the effect of negative burst on a protein’s 
fluctuation. Shown in (a) is a typical burst production distribution as defined in equation (31) with τ = 0.03 and 
colored area as the negative production and in (b) are two stochastic trajectories from the algorithm following 
equation (31), with (blue) and removing (red) negative burst production. Parameters are kg = 5, γg = 95, 
km = 200, γm = 10, kp = 100 and γp = 1, corresponding to =p 100 with =b b 20m p .
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The first fraction is still the same as that from equation (43) for only burst production. When εp ≤ 1, we multiply 
the original selection of τ = k b b1/ g m p by bp to include a whole burst event. Further detailed models included 
effects of chromatin template and promoter structure38,39, which change the waiting time distribution for next 
burst event. And thus, the term τ = k b1/ g m, which is derived from an exponential distribution, needs to be mod-
ified accordingly if the chromatin structural change is considered. Other detailed considerations are included in 
the supplementary information accompanying this work.

With a selected τ, we can determine the protein’s burst production number and degradation number accord-
ing to equation(31). When p(t) is small, a randomly selected degradation number may be so large that nega-
tive p(t + τ) is obtained. If p(t + τ) becomes negative, we take half of the originally selected τ, such that particle 
changes become small, and repeat this procedure if necessary, until p(t + τ) ≥ 0. Such half-τ scheme is suggested 
in the work of Cao et al.35.

Removing negative production.  The protein’s production number in each τ is calculated by the second term in 
the right-hand side of equation (31) and then rounded to the nearest integers. Shown in Fig. 8a is the Gaussian 
distribution we used to approximate the burst production. With τ = 0.03, the mean production number is 3 and 
the standard deviation is about 13.5. From such Gaussian distribution, there is a nearly 40% chance to obtain a 
negative random number, which is then rounded to a negative production number when it is ≤−0.5. Even with a 
high expression level, with kg = 100 and =b 100p , the negative part still can be >15% of burst production. A more 
complete profile for the negative burst percentages is included in the supplementary information. Such negative 
production also reduces the protein number as the degradation process and leads to many sudden drops in the 
blue trajectory in Fig. 8b. Negative production is an artifact due to the Gaussian distribution used in the Langevin 
simulation.

We used a rather simple approach to remove such negative productions and keep the mean of the distribution 
at the same time. When a negative production number is selected, the negative number is temporarily stored for 
accumulation with the next production. The production in the current time step is zero, as the silent moment 
between two bursts. Only when the accumulated protein number becomes positive is there a burst with such a 
positive number, and the protein number is increased by production. As seen in Fig. 8b, the unrealistic sudden 
drop is removed in the red trajectory. We note that the red trajectory has a similar shape due to the rapid produc-
tion and slow degradation as in Fig. 1b.

Data Availability.  All data generated or analysed during this study are included in this published article (and 
its supplementary information file).
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