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Gene expression involves bursts of production of both mRNA and protein, and the fluctuations in their
number are increased due to such bursts. The Langevin equation is an efficient and versatile means

to simulate such number fluctuation. However, how to include these mRNA and protein bursts in the
Langevin equation is not intuitively clear. In this work, we estimated the variance in burst production
from a general gene expression model and introduced such variation in the Langevin equation. Our
approach offers different Langevin expressions for either or both transcriptional and translational bursts
considered and saves computer time by including many production events at once in a short burst

time. The errors can be controlled to be rather precise (<2%) for the mean and <10% for the standard
deviation of the steady-state distribution. Our scheme allows for high-quality stochastic simulations
with the Langevin equation for gene expression, which is useful in analysis of biological networks.

Gene expression is a series of biochemical reactions that produce proteins for various biological functions. For
cells with identical genes, gene expression noise is observed in both prokaryotes'? and eukaryotes®*. One general
source of such noise is from the probabilistic nature of chemical reactions, because the biological components
involved in such reactions are in small copy numbers. In addition, as observed experimentally, both mRNAs® and
proteins® are produced in discontinuous bursts of multiple copies in a short time, and thus, the corresponding
fluctuation is increased’. Noise propagates through the biochemical networks® and may further contribute to
the heterogeneity in the phenotypes®'!. With the noise, fluctuation-dissipation theorem allows us to derive the
dynamic response and infer dynamic properties in a cell'>. When a precise control is needed, it may be necessary
to reduce or buffer such noises'*-1°. Therefore, to gain insights into general biological processes by modeling, a
good description for the fluctuation in gene expression is needed.

A complete accounting for the fluctuation in chemical reactions can be obtained by simulations with the
Gillespie algorithm'¢. The Gillespie algorithm is a scheme that simulates every reaction event with a proper prob-
ability. Without imposing any additional approximations', it generates trajectories that follow the exact proba-
bility distribution. Since each reaction involves only a small set of changes in molecular numbers, the process is
time-consuming for a large system. To accelerate the simulation, a long leaping-time step can be used to account
for several reaction events together. With slightly changed reaction propensities, a chemical Langevin equation
can be derived'®. Simulation is more efficient with the Langevin equation than the Gillespie algorithm. Moreover,
the Langevin equation allows for a direct dissection and analysis of different noise sources®!!. It is therefore highly
desirable to develop the Langevin equation for various biochemical processes.

To formulate a Langevin equation for gene expression, the burst properties need to be properly accounted for.
Experiments found that for both mRNA and protein, the burst event can be described as a Poisson distribution,
with the burst size as an exponential (or geometric) distribution. A general gene expression model*'** shown in

Unstitute of Chemistry, Academia Sinica, Taipei, 115, Taiwan. 2Bioinformatics Program, Taiwan International
Graduate Program, Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan. 3Institute of Biomedical
Informatics, National Yang-Ming University, Taipei, 112, Taiwan. “Institute of Biochemical Sciences, College of Life
Science, National Taiwan University, Taipei, 106, Taiwan. °Institute of Biological Chemistry, Academia Sinica, Taipei,
115, Taiwan. *Genome and Systems Biology Degree Program, National Taiwan University, Taipei, 106, Taiwan. Ching-
Cher SandersYan and Surendhar Reddy Chepyala contributed equally to this work. Correspondence and requests for
materials should be addressed to C.-P.H. (email: cherri@sinica.edu.tw)

SCIENTIFICREPORTS|7: 16851 | DOI:10.1038/s41598-017-16835-y 1


mailto:cherri@sinica.edu.tw

www.nature.com/scientificreports/

Fig. 1 allows us to define the burst frequency and the burst size in transcription and translation with fundamental
rate constants»**~?2, Furthermore, the distributions of burst events and sizes derived from this model have the
same features as those observed in experiments. The gene expression model shown in Fig. 1a can be written as:
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where g is the fraction of active gene for transcription and (m, p) are the amount of mRNA and protein, respec-
tively; k, and -y, are the gene’s activation and deactivation rates; k,, and k, are the production rates for mRNA and
protein; and v,, and 1, are the corresponding degradation rates. Following previous works*"*?, when
> (Y ko), mRNA production can be considered as occurring in bursts. Because the gene actlvatlon t1me
(i/fyg) is rather short, the average amount of mRNAs produced in such short time interval is the mean burst size??

% (4)

The low gene activation rate (k,) leads to well-separated burst events. The k, is considered the mRNA burst fre-
quency. Similar limiting set (-,, > ,Yp)zzo applies to protein production, leading to an average burst size of protein
as

Py (5)

and burst frequency as the rate of mRNA production (g(t)k,,). In Fig. 1b, we include a stochastic trajectory under
the limit of burst-like production. In this work, we aimed to derive a Langevin equation that includes burst pro-
duction effects and offers good number fluctuation for gene expression.

In the burst regime, when the upstream component is rarely-produced and fast-degraded, the slowly-degraded
downstream component would be produced in bursts. Such difference in rates poses a difficulty for simulations
with both the Gillespie algorithm and the standard Langevin equation. For the Gillespie algorithm, the slow
reactions are sampled rarely, which leads to poor statistics. The Langevin simulation efficiency is also reduced,
because the time step size has to be adjusted for the fast changes of the gene switching or mRNA number fluc-
tuation. Therefore, we need a Langevin equation for the protein fluctuation that does not have to track the fast
changes of a gene’s state or mRNA’s number?4,

Starting from the general model, we develop analytical expressions for the mean and variance in the produc-
tion with the burst effect, and such expression is included in the Langevin equation. Our approach allows for
the flexibility to include either or both of the mRNA’s and protein’s burst effects. We also found that our burst
Langevin expression has a large applicable region, which is not limited by the case of burst production. Our algo-
rithm can produce an accurate steady-state mean and similar distribution as that with Gillespie simulation. When
a gene switches dynamically, our simulation also can produce accurate dynamics of average protein number. The
burst Langevin equation we derived is effective in minimizing the computational time and memory in stochastic
simulations. Our simulation scheme with the burst Langevin equation is useful in stochastic simulation for bio-
logical networks.

Theory

Langevin equation for burst production.  To simplify the derivation of burst Langevin equation, we first
consider a two-component model for the burst of either mRNA or protein. In this model, a short-lived x results
in a burst event of y:

&

a ©6)
dy _

E = kyx - - )

For the mRNA's burst production in equations (1) and (2), we assign x as the state of the gene and y as the mRNA.
In this case, we can combine the terms k,+ 7, and set it to +y,. Similarly, for the protein’s burst production, x is
mRNA and y is protein. We treat g as a constant in equation (2) for a constant mRNA production rate and set kg
as k.. Thus, both the mRNA’ and protein’s production can be described by equations (6) and (7).

To develop an efficient stochastic simulation, we select a time interval 7 that is longer than x’s lifetime (1/,).

When there are e, burst events and each burst size is denoted as by, the change in y is:
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Figure 1. A general model of gene expression with burst productions and its stochastic dynamics of protein
number. (a) The scheme of reactions for gene expression. (b) Shown are a stochastic trajectory (green) from the
Gillespie algorithm, with the protein’s intermittent burst production indicated by red bars in time steps of 0.2
protein lifetime (1/7,). Under the conditions applied, 7, > (v, k,)and v, >> ~,, rapid rises in the trajectory
are seen, and protein production can be described as in Y bursts. Parameters used are ky=5,~,=95, k,,= 200,
V=10, k,= 100 and -y, = 1, which correspond to p = 100, average mRNA burst size h =k, /(ky + ) =2
and proteln average burst size b = ky/% = 10.

y(t+ 1) =y + ibyl — [yyr + ()P N(0, )] ©
I=1

The burst production of y is the consequence of short-lived x. The number of burst events (e,) is determined by
the number of x produced in 7 and each burst size (b)) is determined by the survival time of each x. Simulation
for the production in equation (8) can be performed with a random number for e, followed by several random
numbers for various burst sizes b For the degradation in 7, a Poisson distribution can be used, with both mean
and variance being 7,y7'%. A Gaus51an random number with zero mean and unit variance N, (0, 1) is scaled by the
standard deviation (’yny)“ 2 for the noise part of degradation. An alternative approach is to reformulate the pro-
duction of y in T as:

M+ 1) = (0 + (A7) + 05 (DN, D] = [y + (pm) 2 A500, 1), ©

where A (7) and 0,,(7) are the mean and standard deviation of y’s production within time 7. In this way, the
simulation steps are simplified, and the computation is more efficient. To estimate A (7), the average production
of y in time 7, we assumed that burst events and burst sizes are independent random processes. Therefore, we can
take their average separately:
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which is the product of average burst event (g,) and average burst size (b,).
The variance of y’s production distribution in time 7, 0} (7), was derived from the characteristic function of
P(y), the probability distribution of y’s number, in the supplementary material of ref.?>:

O’A (1) =¢ O’by + O’eyby, (1)

where O'h is the variance of burst size and a is that of burst event number in time 7. We found that it can also be
derived élrectly,
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With the same assumption that different processes are 1ndependent g, and <e (g, — I)Z’can be separated from
<b > and (b b l,>, respectively. We also replaced <b b l,> with b by assuming dlﬁerent ursts are independent.

With the definition of variance, we also replaced <b;l> with O'b}, + by and <e},> —-¢ 2 with a . Therefore, we obtain
the same variance expression for y’s burst production as in ref.?® by direct estimation.

To simulate the downstream y’s fluctuation with burst production, we can follow the Langevm equation as in
equation (9) including the mean propagation A (7) as given in equation (10) and variance o A, % (7)as in equation
(11). The expressions derived in this section can be applied to either or both the mRNA’s and protein’s burst
production.

Langevin equations for either or both mRNA and protein bursts. Generally, different genes may
have different dynamic behaviors depending on their degradation rates. Some genes in mammalian cells have
only obvious mRNA burst production (7, > 1, ~ 7, %7, whereas some genes in yeast have only protein burst
production (y,, > v, ~ )" Furthermore, some genes in bacteria have both mRNA and protein bursts
(,y > 7, > ,) and some do not have any obvious burst production (v, ~ 7, ~ 8. We further explored the
criteria of Ve and 7m cOmparing to -y, with and without burst productlon, as shown 1n£i:1g 2a. For all these different
burst cases, we show that the burst production variance in equation (11) has the flexibility to describe all of them.

mRNA burst.  With the condition (v, >> +,, ~ 7,), only mRNA is generated in bursts. We rearranged the expres-
sion in equation (1) as:

dg_k
dt

which becomes identical to equation (6). For a single-copy gene, the activity fraction g in equation (13) is consid-
ered 0 or 1 for off or on state, respectively. Without loss of generality, we considered a single-copy gene in the
present work. If the gene has n-copies, (1 — g) in equation (1) can be replaced by (n — g); thus, the first k, in
equation (13) needs to be replaced by nk,.

mRNA burst frequency is equal to k, (or nk, for n-copy gene case). Assuming that each mRNA burst event is
independent, we can approximate burst event drstrrbutlon by a Poisson dlstrlbutlon, as observed in several exper-
iments>?, where the mean of burst events (¢,, = k 7') equals the variance ( )

(kg + ’Yg)g’ (13)

Ty = kyT = 0 (14)
On the other hand, possible mRNA burst size (b,,) can be described by a geometric distribution?’,

P(b,) = q(1 — @), (15)

where g is the probability of no mRNA produced from this activation period, thus, q is proportional to k,+,.
One mRNA is produced with the probability of (1 — g), which is proportional to k,,, the transcription rate con-
stant in equation (2). The mean and variance of mRNA burst size are

pool=-a_ _ky
g kit (16)
2 2 r
Opm = bm + bm (17)

We note that the mRNA burst size definition is modified as in equation (16), instead of b,, = k,,/ 7, in the litera-
ture which is obtained with very small k"%, This new definition for b,, yields accurate kinetic expressron for the
average amount of mRNA, as production (burst frequency (k) multlphed by size (b )) divided by degradation
rate constant (vy,,):

Vo (18)
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Figure 2. Four cases of gene expression dynamics and errors from different Langevin equations. (a) Four
possible cases of gene expression. When an activated gene state is short-lived, the Langevin equation skips the
tracking for the gene state, and a burst production following the statistics is used for mRNA. Similarly, when the
mRNAS lifetime is short, burst production of protein is introduced, instead of tracking the mRNA. (b) Shown
are normalized errors (%) of a steady-state proteins standard deviation (UP,SS) from the burst Langevin equations
compared to the squared root of exact variance expression as in equation (26), as a function of gene deactivation
rate 7,and mRNA degradation rates ,,. Red lines are the boundaries for the four different cases in the burst
models. Other parameters are p = 100, k,= 5, mRNA burst size b, = 2, protein burst size b, = 10, andy,=1.

These are the statistical features of burst distributions that needs to be included in the Langevin equation of
mRNA burst.

The mean of mRNA production with bursts (with large 7,) can be expressed as:

A, (1) =¢,b, = kgTEm. (19)
by following equation (10). The variance for mRNA is
Oﬁm(T) = Emgbzm + Uezrnyri

=2 - ~2
k,(b, + b,) + kb,
= kgrEm(zEm +1),

(20)
by following equation (11). With equations (19) and (20), the Langevin equation for mRNA is then
m(t + 1) = m(t) + (k,7b,, + (k,7b,,(2b,, + 1))">N;(0, 1))
— (YT + (,m7)2N5(0, 1)), Q1)

and following the amount of mRNA, the Langevin equation for protein is
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pt+7) = pt) + (kymr + (k;mr)>Ny(0, 1))
— (b7 + (1) PN (0, 1)), (22)

where the gene state is skipped. From the mRNA’ burst Langevin equation in equation (21), we derived the
mRNAS steady-state variance as:

op o ~ b, +1). (23)

by following the supplementary material of ref.?. The steps are transforming m(t) in equation (21) to the Fourier
space first and then squaring, averaging, and finally inverse Fourier transforming. The detailed derivation is in the
supplementary information of this work. By comparing the production variance in equation (20) and steady-state
variance in equation (23), we can see that the 7 in equation (20) is replaced by 1/, leading to k b,,/7,, = m in
equation (23). Also, the 25, in equation (20) becomes b in equation (23). However, the mRNA’ exact variance
expression in the steady state from linear noise appr0x1mat10n (LNA)*-32 s

X% uft +1]:m
kg + %+ T kg

_ Ve -
m,ss — M —bm + 11,
ke + % + Wm

(29)

with detailed derivation given in our supplementary information. By comparing equations (23) and (24), we can
see that the burst Langevin approximation can be achieved by assuming ~,/(k, + 7, +¥,») = 1 in the LNA’ result,
which is true that a large -, leads to mRNA bursts. Therefore, with equations (21) and (22), there is no need to
track the fast-changing gene state g(t) in the simulation, and a modest error is introduced in the mRNA’ variance
as in equation (23).

To further calculate the protein’s steady-state variance, because of,, ~ 7, We can propagate o . from equa-
tion (23) by the variance propagation equation® to obtain ap

k, k
2 _ 2 P )4 5
Up,ss - Gm SS + P

Y% Mm%
_ Kk k

by—Lr— + —L— 4+ 1|
YT % Tt Y

Ss°

p

(25)

This expression is also slightly different from the exact expression derived from LNA (details in the supporting
information), which is given below:

2 =
Jp,ss -

m

p
g+ T k) + %+ k) kg + %Y+ % Y T

Y+ T+ + ) k k, N ky +1

(26)

In general, o, . obtained by LNA as in equation (26) includes the overall intrinsic noise of a gene following equa-

p ss
tions (1) to (3). So it is desirable to compare the 07, in equation (25) from the burst Langevin equation to the
exact variance in equation (26). The difference between equations (25) and (26) gives us an indication of the burst
Langevin equation’s accuracy. Such difference is shown in the lower right region in Fig. 2b, where -y, > 10 ym. The
largest error of the bursting Langevin equation with mRNA burst alone is 12.5% that occurs at the lower left
boundary of the region, which is still acceptable.

Both mRNA and protein bursts. In the condition v, >> ~,, > ,, both the mRNA’s and proteins production are
produced in bursts. We can combine both bursts and derive one Langevm equation for the protein’s fluctuation,
thereby greatly simplifying the simulation. Because each mRNA corresponds to a protein burst event, the number
of protein burst events in 7 is

EP = kgEmT, (27)
leading to the protein production as
A, =k,b,b,T. (28)
Since mRNA is also produced in bursts, the variance of the protein’s burst event is
0;, = O'im = kgEmT(ZEm + 1), (29)

which is identical to that in equation (20). The variance of the protein’s production following equation (11) is
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= e Uhp -+ U'epbp

2
|

by 7(B, + b)) + kb, (2b, + D,

= kgbmrbp(zb b + 2Ep +1). (30)

We note that crbi, is equal to E; + Ep, by following the same assumption of geometric distribution as b,, in equation
(15). We also note that similar results with both bursts were derived using the generation function of P(p), the
probability distribution of p’s number in the supplementary material of ref.>".

With equations (28) and (30), the Langevin equation for protein fluctuation with both bursts is

plt+7) = p(t) + (k,b,b,m + (kb,b,m(2b,B, + 2B, + 1))*N(0, 1))

—(ppT + (ppm) PN, 1)). o

It allows us to efficiently simulate protein’s fluctuation, because we can skip tracking the gene state and the mRNA
in the simulation.

Following the same process as we obtained the mRNA’ steady-state variance o, ., as in equation (23), here we
obtained the protein’s steady-state variance from equation (31) as

« =P (b,b, + b, + 1). (32)

In the upper right region of Fig. 2b, we show the normalized error in g, , for equation (32) to that from LNA as
equation (26) with the condition of both bursts as following:

Y% = 107, = 1007, (33)

The largest possible error in the standard deviation is <6.5%, which is quite acceptable.

Protein burst. 'When the gene’s active state is long-lived (7, ~ +,), the mRNA is not produced in bursts. For some
genes (7, > 7, ~ 7,) reported in yeast*, short-lived mRNA leads to the protein’s burst production. Partial sim-
plification of the Langevin equations for the gene expression is still possible if the protein is produced in bursts.
For such case, we keep track the gene’s activity, skip the short-lived mRNA, and develop the protein’s Langevin
equation with bursts:

g+ 1) = g(t) + k(1 — g)7 — 87 (34)

Pt +7) = p(0) + (gk, B, + on, N0, 1)) = (o7 + (4p7) N0, 1)) (35)

The gene-switching probability is k,m with g=0 and ~,7 with g= 1. The mean production of the protein number
in time 7 is gk, 7b,, which is gk,,, the number of protein burst events (same as the number of mRNA molecules)
produced in 7, multiplied by bp the mean protein burst size. For the noise strength (o,,) in equation (35), g(H)k,,
can be considered a constant in 7 because the state of the gene does not switch frequently in 7. Therefore, the
mRNA produced or the protein burst event from equation (35) is a Poisson distribution, with the variance being
the same as the mean:

Oy = O = &(DK,T. (36)

Following equation (11), the variance of protein production in equation (35)can be written as

2
g
AP

e pr + Uepbp

g0k, 7(5, + b)) + g(t)k,, 7,
80k, mh,(2b, + 1). (37)

In a simulation trial, the noise strength of protein’s production (¢, ) follows the state of g(t). Also, because g(t) =
4
1in some 7 steps and g(#) = 0 in others, the average gene state is g = k,/(k, + ,)-
X\hth only protein bursts, based on the condition of 5, > 107, we can 51mp11fy :)SS in equation (26) from
LNA to

_ Y

PSS ~p bb+b+1

m=p
kg + 7% + (38)

by reducing the first fraction and using b, = k,/~,,. In the upper left region of Fig. 2b, comparison of o, from
equation (38) to that from the exact variance in equation (26) shows that the largest possible error is <5%.

In a special condition, where k, and ~y, are significantly smaller than other four kinetic parameters in the gene
expression model (equations (1) to (3)), bimodal distribution of the protein number can be obtained from the
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mRNA burst (y=m) | both bursts (y=p) protein burst (y=p)
condition Ye= 107, Y= 107,,> 1007, Ym =107,
simulated subjects m(t), p(t) p(t) g(), p(t)
burst event distribution:
e,(7) ket kgrh,} gDk, T
(1) kg kyb,(2b,, + 1 g0k,
burst size' distribution:
b, b, b, b,
o, b + b, b, + b, 5, + b,
burst production in Langevin equation:
A () by equation (10) korh, % k,7b,b, g0k, b,
o,(r) by equation (11) k,7b,,(2b,, + 1)¥ kgrb,b,(2b,b, + 2b, + 1) | gO)k,7b,(2B, + 1)
steady-state distribution: exact expression”
m= g’%" same as exact — —
o2 = Hi(Eb, + 1) (b, + 1y° — —
p= Wlfl same as exact same as exact same as exact
02 =P b + b + 1) Pbubp+ b+ 1° | PG5, + B, + 1) P(EB,B, + b, + 1)

Table 1. Summary of statistics for three different cases of burst in gene expression. "Definition for burst sizes
ok
krk ]1’ b p = —2. *The mean and variance of mRNA production with mRNA burst are the
Ytk Tt Vo
mean and variance of the burst events of protein in the case of both bursts. “Definitions for the fractions are:
%O T TR _ % B % SWith th diti £ d F
R O L G A 0 e A ith the conditions of 5, >, and, > kp,
replaced by 1 with mRNA burst. ‘With the conditions of 7, > ,, and 4, > k,, F, replaced by 1 with mRNA
burst. HWith_the conditions of 4, >+, and 5, >> k,, F, replaced by 1 with both bursts; with 5, > ~,, EpO_
replaced by b,. *With the conditions of ,, > 7> Fy replaced by F, with protein burst; and with ,, >+, b,

are: bm = ’pr =

replaced by EP.

numerical simulation. Such parameter sets lie on the upper and most-left region of Fig. 2b, where the error of o,
from the burst Langevin is small as <5%. Considering k,= v, = 0.1+, with ~,, = 10-y,, which leads to only protein
bursts, the burst Langevin algorithm can fairly reproduce the bimodal distributions of the protein number with
various combinations of k,, and b,. The comparison of distributions between the protein burst Langevin simula-
tion and Gillespie algorithm in this special condition are shown in the supplementary information.

Overall, our comparison shows that the burst Langevin equation can provide reliable estimations of o, for
all three cases, where bursts are observed in mRNA, protein or both mRNA and protein. For the three cases, we
organized the statistical expressions including burst events, burst sizes, variance of production and steady-state
variance in Table 1. For three cases of bursts, the variance of the burst event as in equation (11) needs to be mod-
ified accordingly.

Neither mRNA nor protein in bursts.  For the case that 7, and v, are close to +,, simulations with the Gillespie
algorithm or the 7-leaping algorithm?® would work well. The problems of inefficient simulation and poor statistics
of rare events due to greatly different reaction rates do not exist in this case. Because mRNA and protein produc-
tion are not in bursts, all three species in equations (1) to (3) need to be tracked in the simulation to fully account
for intrinsic noise of gene expression. Simulation with the Gillespie algorithm has no imposed approximation,
and thus the steady-state variance it produces is close to LNA in equation (26). Therefore, the lower left region of
Fig. 2b indicates zero error.

Results

Single gene expression. The gene expression model as described in equations (1) to (3) is tested to see how
the one-component burst Langevin equation in equation (31) can be used to replace a three-component model.
We use the Gillespie algorithm to simulate the model as in equations (1) to (3) to obtain the exact numerical sim-
ulation results. We compared the normalized error of a protein’s mean (p) in the steady state from the burst
Langevin simulation to that from the Gillespie simulation.

There are six parameters in the model as in equations (1) to (3). We first chose the unit for time as 1/, In
other words, the protein degradation rate was set to 1. We further set ,,= 10 and ~,= 100, for a fast degradation
rate in mRNA and an even faster DNA deactivation rate, respectively. This is at the margin of treating both mRNA
and protein production with bursts (equation (32)), where the largest error (<6.5%) could be produced, as shown
in the upper right region of Fig. 2b. To test the applicable range of the burst Langevin simulation, we scanned the
gene activation constant (k,= 1 — 100), which covers the mRNA burst frequency value of 5 to 45 as observed in
the experiment?. The other parameter we scanned is the protein burst size (b, = 1 — 100), or equivalently pro-
tein production rate (k,= 10 — 1000), which also covers the values observed in'the experiment™. We first fixed the
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Figure 3. Comparison of p and steady-state distributions with the burst Langevin simulation and Gillespie
simulation. Shown in (a) are the p difference (in %) with the burst Langevin simulation and Gillespie simulation
and in (b) steady-state distributions with the burst Langevin simulation (red) and Gillespie simulation (green)
with different gene activation rates kg: 3,10,100 and burst size b, = 1,10,100. Statistics were taken at the steady
state of 10,000 independent points for the model as defined in equations (1) to (3) with parameters k,, = 100,
¥,=100,y,,=10and 7, =1.

parameter k,, as 100, which approximately yields b,, = 1by equation (16), similar to the value generally observed
in bacteria?®. The average amount of protein in the steady state from the parameter set we scanned can be calcu-
lated as

_ kK kK k100K
ky + % %mp kg + 100 10 1 (39)

which covers 0.9 < p < 5000, the range of observed protein copy number in an E. coli cell*.

We compared the average protein number (p) of the steady-state distribution from the burst Langevin simu-
lation to that from the Gillespie simulation and shown in Fig. 3a. When k,> 3 and EP > 1, corresponding to
P > 3, our algorithm’s error is <5%. The largest error of p is found at the lower left corner, which is caused by the
Gaussian function in the Langevin simulation deviating from the Poisson distribution. Such deviation affects all
kinds of Langevin simulations, including our burst Langevin scheme.

Figure 3b compares the protein’s steady-state distribution with the burst Langevin simulation and Gillespie
simulation. The burst Langevin simulation can reproduce the distributions with different combinations of burst
frequency (k,) and burst size (b,).The normalized error in standard deviation for these cases ranges from —13%
to 14% (details included in the supplementary information). Although all the steady-state distributions have some
error in 0, they are sufficiently good for further applications. We further analyzed the sources of such error and
discussed them in the supplementary information for interested readers.

Figure 4 compares the computational time percentage with the burst Langevin simulation to that with the
Gillespie simulation. The burst Langevin simulation always uses less time than the corresponding Gillespie sim-
ulation. When particle number is <100, the Gillespie simulation is already efficient; thus, the time usage with
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Figure 4. Comparison of simulation time with the burst Langevin simulation and Gillespie simulation. Shown
are the percentage of computer time used by the burst Langevin simulation compared to that by the Gillespie
simulation for different k, and burst size b,.

the burst Langevin simulation is 40% to 80% of that with the Gillespie simulation. However, when the particle
number is large, the burst Langevin uses only <10% simulation time as compared with the Gillespie simulation.
Therefore, the burst Langevin simulation is efficient.

We also checked the accuracy of the burst Langevin simulation comparing to the Gillespie simulation by var-
ying mRNA burst size. In this test, with a fixed kg= 5, we scanned the other parameter pair: mRNA mean burst
size, b, = 1 — 30 and protein mean burst size, b, = 1 — 100. The parameter b, = 1 — 30 corresponds to the
mRNA burst size observed in mammalian cells??. The parameter region tested corresponds to = 4 — 15,000.
As shown in Fig. 5a, the errors in p are within £2%. The steady-state distributions between two methods shows a
good agreement (Fig. 5b). Comparison of the standard deviation in the steady state (from —8% to 2.5%) is
included in the supplementary information. These results indicate that our burst Langevin algorithm is applicable
for a wide range of biological systems.

Burst Langevin for non-linear regulation.  We further tested a gene’s expression under regulation to
show how steady-state distribution errors of the upstream can affect the downstream mean number, especially
with a non-linear regulation. Here we chose repressing regulation as an example. We use the gene expression
model shown in equations (1) to (3) as an upstream protein, p, with varyingb,,; and b, , (as in Fig. 5a). The down-
stream gene’s transcription is repressed by p, through the Hill function with threshold (K) as in the following

equations:
dap, -
? = kglbmlbpl - FYplpl’ (40)
dp, _ K™ -
—= =k,|b,,————— + ki|b,, — .
It 22| Om2 e o 1192 — 2Py ()

We compared the difference in p, between the burst Langevin simulation and Gillespie simulation. The simula-
tion result for an activation regulation with negative ny (equivalent to a positive regulation) can be found in the
supplementary information. We introduced k; for p,’s possible leaking of mRNA, so that the expression of an
repressed gene may remain at a low level but not zero®. In this way, a basal production for p, is introduced, and
thus, the problem of the Langevin simulation with very low p, can be mostly avoided.

In the lower-left corner of Fig. 6a, the downstream gene expression level is p, = 125, which means that p, is
fully activated and there are only a few p,. With increasing p;, p, is reduced to p, = 25 as seen in the upper-right
corner of Fig. 6a. The errors in p, in Fig. 6b are from —4% to 8%. The red liné in Fig. 6b indicates p, = K, the
threshold value of the repression. Within the region close to the threshold, the production of p, is sensitive to
fluctuations in p,. However, even in this region nearby, the error at most is only —4%. Therefore, even with a
non-linear regulation in this system, the burst Langevin simulation can produce accurate results.

In Fig. 6b, the largest error in p, is about 8%, found with b,, = 30and b > 5. In this region, p,’s copy number
is high, and its number fluctuation is also high with such large burst- size palrs P is fully repressed by high p,
number and kept at its basal expression level, p, = 25. Here the 8% error comes from a two- to three-particle
difference in p,, and such error is quite acceptable in stochastic simulations.
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Figure 5. Comparison between the burst Langevin simulation and Gillespie simulation with different b,, and b,.
Shown in (a) are the p difference (in %) with the burst Langevin simulation and Gillespie simulation and in (b)
steady-state distributions with the burst Langevin simulation (red) and Gillespie simulation (green) with
different b, = 1,8,30and b, = 1,10,100. k, and k,, were determined by equations (5) and (16) with given l;p and
b, respectively, with the other parameters k,= 5, v,= 100, v,,= 10 and 7, = 1.

m

In the region that we scanned, p;’s 0, ., error is from —8.5% to 2.5%, which mainly follows the value of b, (as
shown in supplementary information). Such error may propagate through the regulation and cause error in p,.
However, as seen in Fig. 6b, the error in p, has only a mild correlation with increasing b, alone. The overall trend
of increasing error roughly follows inversely with increasing p, from the down-left corner to up-right corner in
Fig. 6b, and thus, the errors in the standard deviation of the upstream do not affect the quality of the
downstream.

Dynamics of average protein number. Besides steady-state behaviors, we demonstrate the accuracy of
the burst Langevin simulation in dynamics. In Fig. 7, we include the mean protein number dynamics with the
burst Langevin simulation and Gillespie simulation. In this model, the gene is activated at time t = 7 by setting
k,=30 and deactivated at t =14 by setting k,= 3. From Fig. 7, we can see that our simulation algorithm can pro-
duce reasonably accurate dynamics in the mean and standard deviation as compared with the exact Gillespie
simulation. Only a small deviation can be found in the standard deviation. In this test, we selected b, = 2 and
b, = 10. However, similar results with reasonable dynamics are obtained by varying combinations of b,, and EP
(supplementary information).

Discussion

In this work, we have developed a Langevin equation that can account for the noise arising from gene expression
bursts. We found a large range of parameters with which our burst Langevin simulation can well reproduce the
statistics comparing to the Gillespie algorithm, and it covers the protein expression level for more than 4 orders
of magnitude. For the case of mRNA (protein) burst production, the deactivation (degradation) rates of the gene
(mRNA) should be 10 times faster than that of mRNA (protein). The burst Langevin equation has the flexibility
to include only mRNA or protein burst or both bursts. In addition, the gene activation rate constant (k,) has mul-
tiple effects in the mean and variance of the production distribution; thus, it is a critical parameter in the accuracy
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Figure 6. A test for simulation error of gene expression under non-linear repressive regulation. Shown in (a) is
the steady-state p, with the burst Langevin simulation and in (b) the error in p, from the burst Langevin ~
simulation comparing to that from the Gillespie simulation. Here the p,’s burst frequency, b,,;, and burst size, b, ,
are varied over a range. Other parameters for p, are k,; =5, 7,; = 100, ,,; = 10 and y,; = 1. For p,, the
parameters are kp, =5, 7, = 100, k,,,, =200, k;= 60, ,,, = 10, k,, =100 and -y,, = 1, K=200 and n,;= 3. The red
line in (b) corresponds to p, =K.

of the burst Langevin simulation. When k, > 3, which leads to p > 3, the burst Langevin simulation can produce
an accurate steady-state mean and standard deviation as compared with the Gillespie simulation. Furthermore,
the burst Langevin simulation can produce accurate dynamics of genetic switching and genes under non-linear
regulation. Therefore, the burst Langevin equation is applicable for a wide range of genetic regulation network.

To fully consider all intrinsic noises of a gene, with the Gillespie simulation, all of the three components
including the gene state, nRNA and protein are simulated with a total of six reaction channels. However, with the
burst Langevin simulation, with both mRNA and protein bursts, the model can be reduced to only protein with
two reaction channels. Thus, the burst Langevin simulation uses less computational time and memory than the
Gillespie simulation. Therefore, our algorithm is an efficient stochastic simulation method.

Besides efficiency, the Langevin equation allows for easily dissecting the contribution of noise from different
sources, because the Gaussian random number for each reaction channel can be easily set as zero. Therefore, the
burst Langevin simulation can be used to analyze the dynamics of gene expression noises propagating through
the regulation network®!!. Moreover, one can introduce a desirable scaling parameter to the noise strength in the
Langevin equation for mimicking other possible sources. Therefore, one can reproduce the noises close to that
from the Gillespie simulation or that observed in various biological systems.

With the variance expression in equation (11), our burst Langevin equation can be flexible to include various
cellular factors. With the assumption that burst events and burst sizes are determined by independent processes,
we use two different distributions to estimate the variance of burst production in the burst Langevin equation. For
the cases of mRNA or protein burst alone, we use the Poisson distribution for burst events and geometric distri-
bution for burst sizes, whereas for the case of both bursts, the protein burst event’s variance is enhanced by the
mRNA burst, and the overall variance is obtained by the same expression in equation (11). In general, gene
expression in the model (equations (1) to (3)) may be influenced by other factors in the cell”’, such as chromatin
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Figure 7. Comparison of different algorithms for genetic switching dynamics. Shown are average protein
numbers with the standard deviation of the distribution at different times from 10,000 independent stochastic
trajectories with the burst Langevin algorithm (red) and Gillespie simulation (green) for the model defined

in equations (1) to (3) with parameters k,= 30 for =7 to 14; otherwise k,= 3 and other parameters v,= 100,
k,, =200, v,,= 10, k,= 100 and 7, = 1.

template and promoter structure®®*, which leads to different mRNA and protein production distributions other
than Poisson or geometric distributions*’. Also, post-translational modification introduces an additional step
after protein production, which can modify the overall protein production rate, k,. Thus, protein burst size b, and
variance g/, may also be modified from the geometric distribution. For a more detailed model®, if burst event and
size are determined independently, their distributions can be introduced in equation (11) to estimate consequent
burst production variance. Therefore, the burst Langevin equation in equation (31) can be modified accordingly
to include other factors or more detailed steps in the gene expression model.

Different steps in gene expression are implemented by different molecular machineries. A gene is activated
by chromatin remodeling*?!, whereas mRNA is produced by RNA polymerase and protein is produced by ribo-
some. There is no machinery competition between different steps. Therefore, we assumed that different steps
in gene expression are independent processes and derived the variance of burst production. However, under
different physiological conditions in bacteria**, negative correlations are reported between transcription and
translation. And thus, regulation or competition for resources may exist between transcription and translation.
Yet, once a gene is expressing, protein requires more biomass than transcripts. Protein synthesis also consumes
most of the energy, but other processes in gene expression consume a non-relevant amount (<10%) of energy*>*.
Therefore, energy competition may only be possible in some extreme conditions and assuming different steps in
gene expression as independence processes is valid.

Methods

Burst Langevin Simulation Settings. 7 selection for burst events. In propagating the Langevin equation,
the Euler-Maruyama scheme® is technically rather simple to implement. While using this scheme, we need to
select a proper step size 7, such that all reactant’s expected changes are within a small proportion, e. For a general
biological model, besides the protein’s burst production and degradation in equation (31), the protein may involve
other jth reaction with reaction propensity a; and number change v;:

pt+7) = pt) + (k;b,b,m + (kb,b,m(2b,b, + 25, + 1))">N;(0, 1)

— (7 + () N0, 1))

+ D W + (e PN(0, 1)).
i (42)
Following the 7-leaping scheme™, the step size 7 is determined by:
max{ep, 1} max{ep, 1}
T= mm Tizep( >
Ikgbuby + (=D + Syl keBuby + (=D pp + Sivpa, (43)

where the first denominator multiplied by 7 is p’s expected change in 7 and the second denominator multiplied by
7 is the variance of expected change. The 7 is selected as the minimum 7; among all reacting species , including
p. The setting in the numerator is for the efficiency of simulation. When the amount of protein is large, the term
ep in the numerator includes as many reactions as possible in 7 and accelerates the simulation being faster than
Gillespie algorithm. When there are only a few proteins, with the second term, 1 in the numerator, the 7 is large
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Figure 8. A representative burst production distribution and the effect of negative burst on a protein’s
fluctuation. Shown in (a) is a typical burst production distribution as defined in equation (31) with 7=0.03 and
colored area as the negative production and in (b) are two stochastic trajectories from the algorithm following
equation (31), with (blue) and removing (red) negative burst productim_l. Parameters are ky=5,7,=95,
k,,=200, v,,= 10, k,= 100 and 7, =1, corresponding to p = 100 with b,,b, = 20.

enough for some reactions such that reactant numbers are changed at least by one particle. In the situation of few
particles, the T-leaping scheme is close to the Gillespie algorithm, which tracks every reaction.

There are some reactions whose propensity changes drastically even with one reaction event. These are classi-
fied as critical reactions in the system®. Examples are the switching steps between the two gene states in equation
(34) or the protein degradation reaction with protein number <10, where the number 10 is suggested in the liter-
ature®. Besides the 7 selected from equation (43), when there are critical reactions in the current state, another 7,
is randomly selected from an exponential distribution function with 7, which is the average time for one critical
reaction event. The 7, is defined as the reciprocal of the sum of all critical reaction propensities. If 7, is smaller
than the 7 from equation (43), the system is propagated with 7, with one critical reaction event. Otherwise, the
system is propagated with 7 without any critical reactions.

However, in the Langevin simulation with bursts, a large-size burst causes an additional problem in the
7-leaping scheme® when the amount of protein is low. In equation (43), large kb, l;p value in the denominator
leads to a very small 7, and only one protein is produced. And such small 7 will be selected consecutively for a
complete burst event. No reactions occur in such small 7 other than one protein produced, and thus, the simula-
tion time is wasted. To overcome this situation, we reformulated equation (43) such that one burst event is allowed
in one 7 step. With this modification in mind, we consider two different 7’s, one estimated from the burst produc-
tion and the other (7, ) from other non-burst reactions (including protein degradation) following the original
scheme as in equation (43). The smaller 7 between the two is then chosen. Therefore, our 7 selection scheme is
modified as:

. . ep Ep
T = min m_m max P I; E N m > Tpienb (> 7}=P .
i i=p ¢%mY  KgUmY (44)
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The first fraction is still the same as that from equation (43) for only burst production. When ep < 1, we multiply
the original selection of 7 = 1/k,b,,b, by b, to include a whole burst event. Further detailed models included
effects of chromatin template and promoter structure’®**, which change the waiting time distribution for next
burst event. And thus, the term 7 = 1/k,b,,, which is derived from an exponential distribution, needs to be mod-
ified accordingly if the chromatin structural change is considered. Other detailed considerations are included in
the supplementary information accompanying this work.

With a selected 7, we can determine the protein’s burst production number and degradation number accord-
ing to equation(31). When p(t) is small, a randomly selected degradation number may be so large that nega-
tive p(t+ 7) is obtained. If p(t + 7) becomes negative, we take half of the originally selected 7, such that particle
changes become small, and repeat this procedure if necessary, until p(t+ 7) > 0. Such half-7 scheme is suggested
in the work of Cao et al.*.

Removing negative production. 'The protein’s production number in each 7 is calculated by the second term in
the right-hand side of equation (31) and then rounded to the nearest integers. Shown in Fig. 8a is the Gaussian
distribution we used to approximate the burst production. With 7= 0.03, the mean production number is 3 and
the standard deviation is about 13.5. From such Gaussian distribution, there is a nearly 40% chance to obtain a
negative random number, which is then rounded to a negative production number when it is <—0.5. Even with a
high expression level, with k,= 100 and EP = 100, the negative part still can be >15% of burst production. A more
complete profile for the negative burst percentages is included in the supplementary information. Such negative
production also reduces the protein number as the degradation process and leads to many sudden drops in the
blue trajectory in Fig. 8b. Negative production is an artifact due to the Gaussian distribution used in the Langevin
simulation.

We used a rather simple approach to remove such negative productions and keep the mean of the distribution
at the same time. When a negative production number is selected, the negative number is temporarily stored for
accumulation with the next production. The production in the current time step is zero, as the silent moment
between two bursts. Only when the accumulated protein number becomes positive is there a burst with such a
positive number, and the protein number is increased by production. As seen in Fig. 8b, the unrealistic sudden
drop is removed in the red trajectory. We note that the red trajectory has a similar shape due to the rapid produc-
tion and slow degradation as in Fig. 1b.

Data Availability.  All data generated or analysed during this study are included in this published article (and
its supplementary information file).
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