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In this work, the relative dielectric permittivity of graphene oxide (GO), both its real and imaginary
parts, have been measured under various humidity conditions at GHz. It is demonstrated that the

* relative dielectric permittivity increases with increasing humidity due to water uptake. This finding is

. very different to that at a couple of MHz or lower frequency, where the relative dielectric permittivity
increases with decreasing humidity. This GO electrical property was used to create a battery-free wireless
radio-frequency identification (RFID) humidity sensor by coating printed graphene antenna with the
GO layer. The resonance frequency as well as the backscattering phase of such GO/graphene antenna
become sensitive to the surrounding humidity and can be detected by the RFID reader. This enables
battery-free wireless monitoring of the local humidity with digital identification attached to any location
or item and paves the way for low-cost efficient sensors for Internet of Things (IoTs) applications.

Graphene oxide (GO) is a chemical derivative of graphene functionalised with hydroxyl and epoxy groups. GO
is a hydrophilic material and is capable to absorb a significant amount of water. Its water uptake depends strongly
* on the humidity of the environment and was previously studied by X-ray and neutron diffraction and in-situ elec-
: tron microscopy. It was established that oxygen functional groups in GO drive intercalation of water molecules
. between individual GO sheets, which results in an increase in the inter-layer spacing in GO thin films'->. The
. presence of inter-layer water in a GO film can be crucial for a number of its properties, such as electrical conduc-
© tivity®’, molecular permeation®’, mechanical'® and dielectric properties”!!.
: Multi-layered GO electrical and dielectric properties under various humidity conditions have been studied at
. low frequency5”'2. Of particular interest would be the relative dielectric properties of multi-layered GO as a func-
. tion of water uptake, considering the low intrinsic relative permittivity £, of GO and the high ¢, of water at GHz.
. GO relative dielectric permittivity measurement at low frequency has been based on the equivalent circuit model
of GO capacitor®”!12. While the equivalent circuit technique works well at low frequency, it is not suitable for high
frequency, such as at GHz, due to parasitic effects. In this work the GO relative dielectric permittivity was
obtained based on the measured transmission and reflection parameters (S-parameters) at GHz. There is no need
of equivalent circuit model for the GO.
: Pristine GO has been used in this work, which is a relatively good insulator at room temperature and low
: humidity. At high humidity, the ionic conductivity due to the intercalated water increases and GO becomes poorly
. conductive®. We experimentally determine both the real and imaginary parts of the GO relative dielectric permit-
. tivity at GHz. The findings in this work are very different to those reported in”!? - both the real and imaginary parts
. ofthe GO relative dielectric permittivity decrease with decreasing humidity, from ~17 at 100% RH to 12 at 10% RH
. (thereal part of the relative permittivity) and from 6 at 100% RH to 2 at 10% RH (the imaginary part of the relative
© permittivity). In particular, the imaginary part (¢”) changes by almost 200% depending on the water uptake, which
. is explained by a strong adsorption of RF waves by water. Furthermore, the electrical properties of the GO are used
. to construct battery-free wireless RFID humidity sensors for Internet of Things (IoTs) applications.
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Figure 1. (a) Resonator circuit for GO permittivity measurement and (b) Measured (solid lines) and simulated
(dashed lines) transmission coefficients (S,;) of the samples with/without GO layer for various RH.

Results and Discussions

Extraction of GO relative dielectric permittivity under various humidity conditions through full
electromagnetic wave simulation and experimental measurements. The electrical property of GO
can be completely characterized by its relative dielectric permittivity, e, = &’ — i”%". There are several classical
methods to measure relative permittivity in microwave band, including the transmission line (TL) method, free
space method, resonator cavity, etc.!*. However, all these methods do not suit permittivity measurement for small
and thin piece of GO under different humidity environments.

Here, to measure the relative permittivity of the GO layer under various humidity conditions, a resona-
tor circuit was designed (Fig. 1a,) with GO (thickness 30pm =+ 2pm) printed on the top of the capacitor area
(15mm x 8 mm) of the resonator (see Method for the details of GO preparation and sample fabrication). In order
to extract the relative permittivity, a calibration circuit with exactly the same parameters was prepared, where GO
layer was mimicked by a thin dielectric layer of exactly the same thickness as GO with known relative permittivity
(see Supporting Materials, Fig. S1b).

Both the GO and the calibration circuits were placed in a hermetic container (2 litre in volume, see Supporting
Materials, Fig. $3) in which constant humidity conditions were achieved by placing various saturated salt solu-
tions inside the container. Three phase (vapour-liquid-solid) saturated salt solutions made of different salts were
used to create different humid environments with constant RH values as these systems produce a constant vapour
pressure over a long period of time'*>!6. The saturated salt solutions used were LiCl (RH-11%), K,CO; (RH-43%),
Mg (NO3), (RH-55%), NaCl (RH-75%) and K,SO, (RH-98%) aqueous solutions prepared by dissolving excess
amount of salts in deionised water. Before each measurement with each particular salt, the humidity was set to be
stabilised for at least 48 hours. All measurements are done at 24 °C. When the electrical property of GO (such as
its permittivity) changes with humidity, it alters the loading of the resonator and results in a shift of the resonance
frequency as well as change of the backscattering phase.

The measured transmission coefficients (S,,) for the samples with and without printed GO layer are dis-
played in Fig. 1b, together with the full electromagnetic wave simulation results for permittivity extraction (see
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Figure 2. (a) Resonance frequency as function of RH and (b) Relative permittivity components and the loss
tangent of the GO under various humidity conditions.

Supporting Materials, Fig. S2). By comparing the simulated and measured transmission coeflicients of the GO
covered resonator, the GO relative dielectric permittivity under different humidity can be extracted.

From the measurement results, it becomes clear that the sample with GO layer has responded to the humidity
change, whereas the sample without GO hasn’t. The different responses of these two resonators can only be caused
by the change of GO electrical properties due to water uptake. For the resonator with GO layer, it can be observed
that the resonance shifts to lower frequency and its fractional bandwidth increases as the humidity rises. This
reveals that both the real (¢/) and the imaginary (¢”) parts of the relative permittivity of GO increase as GO
absorbs more water.

The resonance frequency of the GO covered resonator, as well as the extracted €/, ¢” and the loss tangent
(tand = £"/£’) are presented in Fig. 2a,b. It can be seen that ¢’ and ¢” of the GO change from about 11 to 17.6 and
2.3 to 6.4, respectively, as RH varies from 11% to 98%. These findings are very different to those published works
at low frequency. It is revealed that GO permittivity can be very different in different frequencies. At low fre-
quency, a large permittivity change can be observed”!?, whereas the change is much smaller at high frequency.
This is probably due to the orientation polarization of absorbed water. At low frequency, the polarization of the
water can follow the electrical field direction and hence large permittivity changes as humidity varies. At high
frequency, the electrical field direction changes fast so that the polarization of the water can’t catch up and hence
the dielectric permittivity has relatively smaller change with humidity'”. Water has dielectric permittivity of ~80.
As humidity increases, more water will be absorbed by the GO hence higher permittivity'’.

Battery-free Wireless GO sensing enabled by printed graphene RFID technology. It’s well
known that GO is sensitive to humidity”!2. However, the sensing mechanism proposed here is different to those
published works. In this work, the GO layer was directly coated on the graphene radio-frequency identification
(RFID) antenna. Instead of using GO capacitor to sense the humidity”!2, the phase shift of the backscattering sig-
nal due to the humidity change was detected by the RFID reader. The GO sensor is battery-free, wireless and fully
printable. Battery-free wireless sensing is in the heart of IoTs technology'®'®, allowing collection of information
about the immediate state of the object without the need of batteries. Here we demonstrate a battery-free RFID
humidity sensor by combining printable graphene RFID antenna with GO coating.

RFID antennas are sensitive to changes in the environment due to proximity effects. When a layer of GO is
printed on top of an RFID antenna - the resonance frequency of the latter becomes sensitive to the permittivity of
the GO layer (and thus to humidity) as it alters the antenna impedance. Other parameters, such as the phase of the
backscattered signal, change as well, which can be easily detected by the RFID reader. The operating principle and
use of the phase of the backscattered signal to measure the relative humidity (RH) with the GO-coated printed
graphene RFID antenna, shown in Fig. 3b, are explained and demonstrated in this work.

When a RFID reader transmits an electromagnetic wave signal (also called ‘forward electromagnetic wave
signal’) to an RFID antenna, the antenna draws energy from this forward signal and activates the RFID chip on
the antenna. The backscattered signal is both amplitude and phase modulated by the RFID chip through varying
the chip’s input impedance. Modulation occurs as the RFID chip rapidly switches between two discrete imped-
ance states?*?!,

The operating principle and equivalent circuit for the antenna’s amplitude and phase modulation are schemat-
ically shown in Fig. 3 (detailed information about the experimental setup for sensing measurement can be found
in Supporting Materials, Fig. S4).

Different to a normal antenna, impedance of a RFID antenna is typically designed to conjugately match to the
higher impedance state of the chip in order to maximize the collected power. The equivalent open source voltage
V, on the antenna in Fig. 3¢ can be given as:*

‘/“ = ’*'SPAntRe(Za) > (1)
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Figure 3. (a) Operating principle of the GO based printed graphene RFID sensor system, (b) Printed graphene
antenna with a layer of GO on top(the thickness of the GO layer is 15 pm) and (c) The equivalent circuit of the
RFID tag.

where P,,, is the power available at the antenna port, Z, is the antenna impedance. The switching between the two

input impedance states Z¢, and Z, generates two different currents at the antenna port, which can be calculated
22

as:

1 Vu[—l ]
Za+ch (2)

L

7z
Za + ZCZ (3)

When the humidity changes, the GO layer on the RFID antenna changes its dielectric property. At high
humidity, the ionic conductivity due to the intercalated water increases and even pristine GO becomes conductive
but only poorly (mega ohms resistance at 100% RH and Giga ohms at 0% RH?). The resistance of the GO coating
is still several orders of magnitude higher than the resistance of the printed graphene RFID antenna in this experi-
ment (fractions of Ohm?%), so the effects of the change of the GO conductivity can be ignored and only the change
in dielectric property are taken into account. The GO dielectric property change alters the antenna impedance Z,.
As Z, changes so do I and I,, causing the backscattered signal phase varies accordingly. The backscattered signal
phase change can be detected by the RFID reader. In this work, the backscattered signal phase was measured
using Voyantic Tagformance under various humidity conditions and depicted in Fig. 4%°.

From Fig. 4a, it can be seen that the humidity has clear effects on the backscattered signal phase at typical
RFID frequency spectrum from 880 MHz to 920 MHz, which experimentally proves that the backscattered sig-
nal contains humidity information. Together with the ID information of the sensing tag, a printed graphene
enabled battery-free RFID GO humidity sensing system is presented. As it can be seen from Fig. 4b and c, the
backscattered 910 MHz and 900 MHz signal phases increase by 44.6° and 39.5°, respectively, as RH rises from
11% to 98%. For 910 MHz signal, average phase change of 0.5° every 1% RH (sensitivity of 0.5°/1% RH) can be
observed, unambiguously demonstrating the effectiveness of wireless printed graphene enabled battery-free RFID
GO humidity detection.

It is worth to notice that the technique used here to detect the humidity change is very different to that
employed in other reported printed battery-free UHF RFID sensors**-?%. In those reported works, the mini-
mum power-on-tag was measured and the resonance frequency was then extracted from the minimum
power-on-tag. This technique requires the reader to scan the whole allocated UHF RFID frequency spectrum
and post-measurement data processing to find out the minimum power-on-tag and resonance frequency. In this
work, the backscattered signal phase was measured. The advantage of measuring the backscattered signal phase
is that there is no need for the reader to scan the whole allocated frequency spectrum in order to find out the
resonance frequency. As it can be seen in Fig. 4, the humidity change can be simply detected at a single frequency
point, which greatly simplifies and speeds up the measurement.

Conclusions

We have experimentally extracted the GO relative dielectric permittivity under various humidity conditions at
GHz. The measurement results clearly reveal that the GO dielectric property (relative permittivity, or dielectric
constant and loss tangent) changes with the humidity but in a different manner as it does in a couple of MHz or
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Figure 4. (a) Measured backscattered signal phases with various humidity as functions of frequency, (b)
Enlarged backscattered signal phases at 910 MHz as function of humidity and (c) Enlarged backscattered signal
phase at 900 MHz as function of humidity.

Figure 5. SEM view of GO layer on printed graphene RFID antenna on paper substrate. (a) Large view and (b)
Enlarged view, layers from top to bottom are GO, printed graphene and paper in sequence.

lower frequency. Most distinguishingly, the relative dielectric permittivity does not have large changes (from
~ten to a few thousands’) and decreases with decreasing humidity at GHz. Furthermore the dielectric property
has been used to design and build a RFID sensing tag which can act as a battery-free wireless humidity sensor,
by coating GO layer on top of the printed graphene RFID antenna. Such combination can form bases for future
energy harvesting enabled RFID sensors for IoTs applications. Furthermore, backscattered signal phase rather
than minimum power-on-tag or resonance frequency has been used to detect the humidity change, which can
significantly simplify and speed up the monitoring process.

Method

Full Electromagnetic Wave Simulation. Commercially available CST MICROWAVE STUDIO 2015 is
used for the full electromagnetic wave simulation. CST can solve Maxwell’s equations numerically in both time and
frequency domains. The resonators coated with GO and without GO are simulated. Waveguide ports are used to
feed the simulated structures. The ports are matched to the ports of the structures to excite the fundamental propa-
gation mode and to ensure a low level of reflection. CST can provide many outputs based on the simulation results
calculated from Maxwell’s equations, such as electric field, magnetic field, Poynting vector, scattering parameters
(S-parameters), etc. The S-parameters were used to extract the relative dielectric permittivity in this work.

Preparation of GO. Modified Hummers method was employed to prepare GO. The typical oxygen content
for GO produced by this technique is around~ 30-40%%°*°. In brief, 4 grams of graphite was mixed with 2 grams
of NaNO; and 92 mL of H,SO,. KMNO, was subsequently added in incremental steps in order to achieve a homo-
geneous solution. The temperature of the reaction was monitored and kept near 100 °C. The mixture was then
diluted by 500 mL of deionised water and 3% H,O,. The resulting solution was washed by repeated centrifugation
until the pH value of the solution was around 7. The GO was then diluted to the required concentration. Lateral
size of GO flakes is about 500 pm x 500 pm.
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The water uptake with two different flake sizes (0.5 pm and 10 pm) has been measured by monitoring the
weight change of GO exposed to different humidity conditions. The results show that the small and large flakes
only have a few percentage decrease in mass uptakes indicating similar hydration behaviour (see Supporting
Materials, Fig. S5). The interlayer spacing measurement using X-Ray Diffraction (XRD) is consistent with mass
uptake data showing monotonic increase of interlayer spacing of GO from 6.5 A to 10 A by changing humidity
from 0 to 100%°!.

For the purpose of coating GO on a printed graphene RFID antenna, a 10 grams per litre viscous GO solu-
tion was used. This allowed direct screen printing of the GO on the antenna, which was left to dry overnight in
a fume hood under continuous air flow. The printed graphene RFID antenna is made with screen printing and
rolling compression®**2. The lateral SEM view of the GO coated on printed graphene on paper substrate is shown
in Fig. 5. As it can be seen, the three-layer structure is obvious and clear - GO layer, printed and compressed
graphene layer and paper substrate, stacked in sequence from top to bottom.

Data availability. All data generated or analysed during this study are included in this published article and
its supplementary information file.
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