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Heterogeneity Analysis and 
Diagnosis of Complex Diseases 
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Understanding genetic mechanism of complex diseases is a serious challenge. Existing methods 
often neglect the heterogeneity phenomenon of complex diseases, resulting in lack of power or low 
reproducibility. Addressing heterogeneity when detecting epistatic single nucleotide polymorphisms 
(SNPs) can enhance the power of association studies and improve prediction performance of complex 
diseases diagnosis. In this study, we propose a three-stage framework including epistasis detection, 
clustering and prediction to address both epistasis and heterogeneity of complex diseases based on 
deep learning method. The epistasis detection stage applies a multi-objective optimization method 
to find several candidate sets of epistatic SNPs which contribute to different subtypes of complex 
diseases. Then, a K-means clustering algorithm is used to define subtypes of the case group. Finally, 
a deep learning model has been trained for disease prediction based on graphics processing unit 
(GPU). Experimental results on pure and heterogeneous datasets show that our method has potential 
practicality and can serve as a possible alternative to other methods. Therefore, when epistasis and 
heterogeneity exist at the same time, our method is especially suitable for diagnosis of complex 
diseases.

Since complex diseases such as cancer, diabetes and so on pose a very big threat to human health, they have been 
extensively studied in the past decades1. However, the underlying pathogenesis of complex diseases is still not 
clearly known. With the rapid development of genomics technologies, the big data of variations on DNA level 
such as SNP and CNV (copy number variation) allow comprehensive characterization of complex diseases and 
provide potential biomarkers to predict the status of complex diseases.

Due to the ‘missing heritability’ and lack of reproducibility, the exploration of relationships between SNPs 
and complex diseases have been transferred from single variation to biomarkers interactions which are defined 
as epistasis2. Epistasis analysis on genome-wide faces at least three challenges. First, as the number of variants 
increases, the combination space expands exponentially, resulting in the ‘curse of dimensionality’ problem. 
Furthermore, when the higher order of epistasis is considered, the situation becomes even worse. Second, numer-
ous biomarkers epistasis will be tested for significant association with complex diseases from statistical view, 
leading to the ‘multiple testing’ problem. Therefore, the association results may be false positive and are hard to 
be replicated. Third, from the statistical learning view, the large number of SNPs but small sample poses the ‘high 
dimensional and small sample size’ problem, which causes the lack of generalization ability.

By now, lots of methods have been proposed to analyze the epistasis and can be roughly classified into 
exhaustive method3,4, heuristic method5,6 and machine learning method7,8. When handling the large number 
of loci, exhaustive methods take huge computational costs. There are many strategies to accelerate process of 
exhaustive search. For example, multifactor dimensionality reduction (MDR)3 and exhaustive search based on 
multi-objective optimization (ESMO)4 apply parallel computing to save running time. With using the exhaustive 
strategy, all of epistatic combinations have been tested, so that the power of association studies is relatively higher. 
Heuristic methods such as AntEpiSeeker9 and MACOED10 use prior knowledge or information retrieved by 
swarm intelligence to narrow down the combination space. The main limitation of heuristic methods is random-
ness. It means that the results may be different during different iterations. Machine learning based methods such 
as logistic regression11 and Bayesian network12 operate as a black box which indirectly profile the relationship 
between genetic variants and complex diseases.
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In addition to epistasis, heterogeneity is another key factor contributing to complexity of locating the patho-
genesis loci of complex diseases13. Due to heterogeneity, there may be several different combination patterns of 
epistasis existing in the cases. And, different patterns contribute to different subtypes of complex disease. In some 
situations, the subtypes may be caused by incorrectly sampled or classified, so that data stratification is a common 
way to preprocess the data14. However, if the subtypes of complex diseases really exist, data stratification could 
lead to the loss of power. In this work, we assume that all the samples are well defined and sampled and heteroge-
neity analysis is considered as potential pathogenic pattern recognition and multiple classification.

As far as we know, only a few approaches can concurrently consider both epistasis and heterogeneity in asso-
ciation studies without resorting to some forms of stratification. For instance, ESMO not only applies multiple 
scoring criteria to complementarily evaluating each candidate epistatic combination, but also returns multiple 
epistatic combinations corresponding to different subtypes. MDR profiles heterogeneity by ranking multiple 
epistatic models according to the prediction accuracy. However, the prediction accuracy of these methods still 
needs to be improved. More importantly, MDR only classified samples into two categories: case and control, 
without considering multiple subtypes, namely multi-classification.

In this study, we propose a deep learning method for epistasis and heterogeneity analysis (DPEH). DPEH 
detects epistasis and heterogeneity with using a three-stage framework as depicted in Fig. 1. After introducing the 
method of DPEH, the experimental results both on pure and heterogeneous datasets are provided to demonstrate 
the practicality of DPEH.

Results
When analyzing the pure datasets, we use the deep learning model to make a binary classification as depicted 
in Fig. 2. However, for heterogeneous datasets, we can predict the samples by binary classification or multiple 
classification, respectively. To evaluate the prediction performance, we compare DPEH with MDR on prediction 
accuracy.

Results on pure datasets.  As mentioned above, the test samples in pure datasets will be classified as case or 
control. Consequently, the prediction can be considered as a binary classification.

In the Fig. 3(a), both DPEH and MDR use 2 epistatic SNPs as features to build classification model and we find 
that the results of prediction accuracy are mostly around 69%. From these results, we cannot tell which method is 
dominant, which means that for pure datasets our method DPEH can serve as a possible alternative to MDR. We 
also find that during the training of DPEH, the accuracy of cross validation increases as the number of iterations 
grows. However, when predicting on test samples, the accuracy of cross validation is slightly higher than testing 
accuracy. In the Fig. 3(b), both DPEH and MDR use 3 epistatic SNPs as features to build classification model, our 
method DPEH is better than MDR. For Pure6, its accuracy reaches 81%.

Results on heterogeneous datasets.  In this study, heterogeneous datasets are simulated with two dis-
ease models H1 and H2. In the step of prediction, we can simply classify a test sample as normal or sick (binary 
classification), while we also can precisely predict the subtypes of sample (triple classification: normal, H1 or H2). 

Figure 1.  The three-stage of the DPEH.



www.nature.com/scientificreports/

3SciEntific Reports |  (2018) 8:6155  | DOI:10.1038/s41598-018-24588-5

Therefore, with using DPEH, researchers can choose to make a binary classification denoted as DPEH(2) or triple 
classification denoted as DPEH(3).

From Fig. 4(a), we find that MDR is slightly better than DPEH(2) and DPEH(3). However, for Fig. 4(b), it is 
interesting that DPEH is better than MDR, on average. We guess the reason is that the deep learning model may 
be more suitable for complex classification situations, especially when the sample size is large. But for simple situ-
ations or lack of training samples, the deep learning model may be underfitting, which is validated by Fig. 5(a,b).

The comparison results of Fig. 6 demonstrate the most important merits of DPEH when handling heteroge-
neity. Because MDR cannot directly handle the heterogeneity, we select the maximum prediction accuracy value 
MDR(max) of H1 and H2 to represent the result of MDR.

From the results in Fig. 6, the DPEH shows better performance than MDR in most datasets. Note that both 
H1 and H2 compose with two epistatic SNPs in Fig. 6(a) but three epistatic SNPs in Fig. 6(b). If we use MDR to 
search epistasis with high order 4, MDR will return a best epistatic combination with prediction accuracy 0.67 
on Hete1. But, none of the SNP in the best epistatic combination is the true pathogenic SNP. Therefore, MDR will 
experience a serious problem of generalization, which is not conducive for clinical research.

Figure 2.  The framework of the DLM.

Figure 3.  The prediction accuracy on pure datasets: (a) All the pure datasets are generated by 2 epistatic SNPs; 
(b) All the pure datasets are generated by 3 epistatic SNPs.

Figure 4.  The prediction accuracy in disease model H1: (a) All the datasets are generated by 2 epistatic SNPs; 
(b) All the datasets are generated by 3 epistatic SNPs.
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Discussions
This paper has introduced a computational method DPEH which borrows a three-stage framework to concur-
rently handle epistasis and heterogeneity. Through the experimental results, we believe that DPEH has two main 
merits. First, DPEH returns several non-dominant epistatic combinations of SNPs which may contribute to dif-
ferent subtypes of complex diseases. It means that DPEH can effectively address the heterogeneity of complex dis-
ease. Furthermore, with using deep learning method, we can classify samples into more precise categories, namely 
subtypes of complex diseases. Consequently, DPEH may play important role in personal medical treatment. We 
now discuss some of the issues of DPEH:

The scope of application.  As mentioned above, the performance of DPEH is not always better than MDR, 
especially when the sample size is small or the epistatic pattern is simple (e.g. pure dataset and low epistatic 
order). In these simple situations, traditional machine learning models may show a comparable or even better 
performance. However, we find that as the sample sizes increases or the epistatic pattern becomes more complex, 
the merits of DPEH will become even more pronounced. Therefore, we suggest that when searching low epistatic 
order of epistasis in a small dataset, MDR may be a primary choice. If researchers need to handle heterogeneity or 
search high order epistasis, DPEH may be more suitable.

Epistasis order.  Theoretically, DPEH and MDR can search epistasis with order larger than 3. At the same 
time, when more SNPs are used as features, the prediction accuracy of training model may increase. However, 
only the 2 and 3 orders of epistasis are analyzed in this work. This is because in practical applications, the number 
of SNPs involved in epistasis is unlikely too big2,15. If we train prediction model with non-pathogenic biomarkers, 
the prediction accuracy on independent (test) samples will decrease significantly.

The parameters of Clustering algorithm.  In this study, only epistatic SNPs are considered as the features 
of samples, which means that the dimension of the data input to K-means clustering is equal to the epistatic 
order. For the number of clusters K, we can set the value of K to be the number of disease models. In this work, we 
simulate heterogeneous datasets with two disease models. In practical applications, the number of clusters always 
derives from prior knowledge of clinic research. It means that before clustering, we should search prior knowl-
edge for a specific complex disease to determine the number of subtypes. Note that control samples do not need 
to be clustered and in the clustering step only case samples are clustered into different clusters corresponding to 
different subtypes.

Figure 5.  The prediction accuracy in disease model H2: (a) All the datasets are generated by 2 epistatic SNPs; 
(b) All the datasets are generated by 3 epistatic SNPs.

Figure 6.  The prediction accuracy in disease model H1 and H2: (a) All the datasets composed with two disease 
models and each model involved in 2 epistatic SNPs; (b) All the datasets composed with two disease models and 
each model involved in 3 epistatic SNPs.
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The implement of deep learning model.  In the Fig. 2, the architecture of DLM is illustrated. The input 
dimension of the deep learning model is the number of SNPs in the datasets and output dimension is equal to the 
total number of classes. Apart from the input and output layer, there are millions of weights (2048*1024*512*25
6*128*64 = 251) during the fully connected hidden layers. Therefore, mini-batch algorithm and GPU device are 
applied for effectively training. To avoid overfitting, the value of dropout is set to be 0.5. Nowadays, there are lots 
of successful frameworks for building deep learning model such as TensorFlow16, Caffe17 and so on. Keras written 
in Python is a high-level neural networks API, providing features such as user friendliness, modularity and easy 
extensibility. With using it, researchers can quickly build a prototype model to validate their ideas.

Computing resources.  Both DPEH and MDR have apply parallel computing techniques to accelerate the 
model training. Note that high-performance computing platform is important for practical applications, espe-
cially when the sample size of training data and the number of training epochs are large. In this work, we training 
our deep learning method on GTX 1080 (Total memory: 8.00GiB; MemoryClockRate 1.873 GHz). In addition, 
the offline training of DLM is also useful for improving the scalability and adaptability.

In summary, DPEH is an alternative to existing methods for epistasis analysis, with interesting characteristics. 
Among these, we demonstrate that DPEH can find complementary epistatic combinations contributing to differ-
ent subtypes of complex diseases. Another advantage is that it is capable to recognize the subtypes of samples and 
help researches to carry on personal medical treatments.

Although DPEH is potentially beneficial for heterogeneity and epistasis analysis, several aspects should be 
addressed in further study. For example, for genome-wide epistasis analysis, the architecture of DPEH may be 
quite time consuming or even unsuitable, so that DPEH should be further investigated on real genomic data 
of complex disease. In addition, friendly graphic user interface should be developed for non-computer science 
professionals. Last but not least, in order to further improve the diagnostic accuracy of complex diseases, DPEH 
should fuse other biological information such as ncRNA biomarkers18–28.

Methods
Materials and evaluation.  In this study, a widely used tool GAMETES_2.129 can simulate both pure and 
heterogeneous datasets for evaluating DPEH. The GAMETES_2.1 is an easy-use software and provides parame-
ters (e.g. minor allele frequency abbreviated as MAF, heterogeneity proportion, sample size, epistatic order and 
total number of SNPs) to customize various datasets. Table 1 lists the details of pure and heterogeneous datasets.

All of these datasets contains 100 SNPs. The ‘Pure’ prefix of dataset ID denotes that the dataset is pure. The 
heterogeneity proportion of pure dataset equals to 1.0 and in pure dataset there is only one disease model. For two 
epistatic SNPs disease model, the MAFs are (0.2, 0.2). For three epistatic SNPs, their MAFs are (0.2, 0.2, 0.2). For 
heterogeneous datasets with ‘Hete’ prefix, there are two disease models (H1 and H2) coexisting and each disease 
model takes 50%. For dataset Hete1, the MAFs of H1 are (0.2, 0.2) and the MAFs of H2 are (0.3, 0.3). For dataset 
Hete6, the epistatic order is 3 and the MAFs of H1 are (0.2, 0.2, 0.2) and the MAFs of H2 are (0.3, 0.3, 0.3). Note 
that MAF can be set between 0 and 0.5, but it will result in a very large combination of parameters for simulating 
datasets. Therefore, we only selected representative values 0.2 and 0.3 for MAF.

For complex diseases diagnosis, prediction accuracy is a natural measure to evaluate the performance of pro-
posed method. However, ‘high dimension but small sample’ could lead to overfitting, so that training accuracy, 
validation accuracy and test accuracy may be quite different. To fairly get the performance of DPEH, here we 
randomly select 10% samples from each dataset as test samples. Then, divide the remaining samples into 90% 
training samples and 10% validation samples. The accuracy is defined as equation (1).

=Acc n
N (1)

where N is the total number of samples tested and n is the number of samples correctly classified.

The framework of DPEH.  Addressing epistasis and heterogeneity in a three-stage framework as illus-
trated in Fig. 1, DPEH firstly uses a epistasis detection step to search candidate epistatic combinations based on 
multi-objective optimization and then the Chi-square test is applied to filter false negative epistasis by statisti-
cal significance analysis. After that, for clustering stage, a K-means clustering algorithm is utilized to recognize 
potential subtypes. In this stage, we will use the clustering results to relabel the cases, dividing into multiple sub-
types. Finally, we will use the deep learning method to predict the status (subtypes) of samples.

The first stage: epistasis detection.  To fully capture the heterogeneity existing in samples, we use ESMO 
to detect epistasis. For the completeness of the description, the relevant details of the ESMO are introduced.

By using equation (2), we can measure the information contribution of a k order epistatic combination to 
sample state Y (or vice versa).

| ... = + ... − ...I Y X X H Y H X X H Y X X( , ) ( ) ( , ) ( , , ) (2)k k k1 1 1

where X represents a SNP and I(Y|X1, … Xk) denotes the uncertainty reduction of the sample state when the 
k-epistatic combination is observed.

The K2 score is defined as equation (3) when the prior distribution is assumed to be a Dirichlet distribution 
α α...D[ , ]ij11 . When there is no prior knowledge about pathogenesis, α = 1ij .
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where I is the number of epistatic combinations and I = 3k. ri is the frequency of i-th genotype in all samples and 
rij denotes the number of i-th genotype in samples with j-th state.

For Chi-square tests equation (4), suppose that m observations randomly drawn from a population are divided 
into s classes and in each class there are Oi samples.
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where Ei is the expected number of i-th class.

The second stage: clustering.  After the epistasis detecting stage, multiple pathogenic genotype may pass 
the significance test. In this stage, we will use these epistatic SNPs as features to cluster all case samples. It means 
that all cases can be divided into several subtypes. Note that this stage is alternative. If the clustering stage is not 
applied, the prediction stage (the third stage) will run a binary classification. If this stage is implemented, the 
prediction can be taken as a multiple classification.

In this stage, lots of popular clustering algorithms can be applied to recognize the subtypes within the cases, 
such as density-based methods and hierarchical clustering method and so on. Various applications have proved 
that K-means clustering is a simple yet powerful tool30. In this study, we also apply the K-means to classify m sam-
ples into K subtypes S = {S1, S2, …, SK}(K ≧ 2). The dissimilarity between samples can be calculated by Euclidean 
distance on epistatic SNPs.

Since the cases are divided into several subtypes, we will relabel all the cases according to the cluster results. 
This process may play an important role in complex diseases diagnosis for personal medical treatment. Note that 
the value of K is determined by the prior knowledge of complex diseases.

The third stage: prediction.  Prediction is a key stage for building diagnosis model for complex diseases. 
Using deep learning model (DLM), it can not only elevate the performance of prediction, but also quicken the 
response by offline training. Deep learning methods use deep neural networks to portray the data in hierarchi-
cal abstractions, and they have been successfully applied in various studying area, such as image recognition31, 
speech recognition32 and so on. And, many studies believe that the deep learning model can help the bioinformat-
ics researchers to make new breakthroughs33,34.

In the input layer of the DLM, the number of epistatic SNPs equals to the number of neurons. And, rectified 
activation function adopted in this study is defined as equation (5).

=f a a( ) max(0, ) (5)

Data ID Sample size MAF Heterogeneity proportion

Pure1 1000 (0.2, 0.2) 1.0

Pure2 2000 (0.2, 0.2) 1.0

Pure3 3000 (0.2, 0.2) 1.0

Pure4 4000 (0.2, 0.2) 1.0

Pure5 8000 (0.2, 0.2) 1.0

Pure6 1000 (0.2,0.2,0.2) 1.0

Pure7 2000 (0.2,0.2,0.2) 1.0

Pure8 3000 (0.2,0.2,0.2) 1.0

Pure9 4000 (0.2,0.2,0.2) 1.0

Pure10 8000 (0.2,0.2,0.2) 1.0

Hete1 1000 (0.2, 0.2) (0.3,0.3) H1 = 50%, H2 = 50%

Hete2 2000 (0.2, 0.2) (0.3,0.3) H1 = 50%, H2 = 50%

Hete3 3000 (0.2, 0.2) (0.3,0.3) H1 = 50%, H2 = 50%

Hete4 4000 (0.2, 0.2) (0.3,0.3) H1 = 50%, H2 = 50%

Hete5 8000 (0.2, 0.2) (0.3,0.3) H1 = 50%, H2 = 50%

Hete6 1000 (0.2,0.2,0.2) (0.3,0.3,0.3) H1 = 50%, H2 = 50%

Hete7 2000 (0.2,0.2,0.2) (0.3,0.3,0.3) H1 = 50%, H2 = 50%

Hete8 3000 (0.2,0.2,0.2) (0.3,0.3,0.3) H1 = 50%, H2 = 50%

Hete9 4000 (0.2,0.2,0.2) (0.3,0.3,0.3) H1 = 50%, H2 = 50%

Hete10 8000 (0.2,0.2,0.2) (0.3,0.3,0.3) H1 = 50%, H2 = 50%

Table 1.  The configurations of experimental datasets.
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In the output layer of the DLM, there are C nodes and C equals to the number of classes involved in prediction. 
The activation function of output nodes is a softmax function which is a generalization of the logistic function 
defined as equation (6).

σ =
∑ =

e
e

z( )
(6)

j

z

c
C z

1

j

j

where z is a C-dimensional vector and zj is a real value in the range [0, 1].
To reduce overfitting in deep neural networks, we apply a regularization technique dropout which random 

drops out both hidden and visible units in neural network for preventing complicated co-adaptations on training 
data. Studies proved35 that it is a very simple way but efficient to prevent neural networks from overfitting.

Using the platform Keras (https://keras.io/), we build a deep neural network with 8 layers. And the infrastruc-
ture of our DLM is depicted as Fig. 2. The numbers of each hidden layer are the total number of neural nodes.

In Fig. 2, neurons in different layers are fully connected, so that there are lots of parameters that will be 
adjusted during training. In this work, to quicken the process of training, the mini-batch technique is used in 
model fitting. In addition, we also use GPU to accelerate the training based on a device GTX 1080.
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