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Vibration and damping 
characteristics of 3D printed 
Kagome lattice with viscoelastic 
material filling
Rong Wang   1, Jianzhong Shang1, Xin Li2, Zirong Luo1 & Wei Wu1

Constrained layer dampers (CLD) are in widespread use for passive vibration damping, in applications 
including aerospace structures. However, the introducing of the damping layer can reduce the stiffness 
of the sandwich structures. A viscoelastic material filling (VMF) is chosen to balance structural and 
vibrational performance of lattice truss in this work. The recently brought forward 3D Kagome truss 
with face sheet was manufactured by selective laser sintering technology and the thermosetting 
polyurethane was chosen as the viscoelastic filling material. A novel complex modal analysis finite 
element method for Hybrid composite lattice truss sandwich is introduced in this paper. Dynamic 
analysis experiment results show that the VMF method is found to be effective in reducing the vibration 
amplitude and it has the potential for band-gap design. The VMF method can provide high stiffness at 
low mass and considerable vibrational performance at low cost and it can be considered as a general 
vibration design method in lattice truss manufacture.

3D truss lattices have relatively high stiffness and yield strength that are achievable at low density. They play a 
significant role in achieving fuel efficiency goals1–3 and have been developed and optimized in various applica-
tions4–6. Unfortunately, lightweight 3D truss lattices structures are usually associated with relatively low damp-
ing7–10 which can cause early mechanical damage caused by resonant vibration11.

To seek optimal solutions satisfying both structural and vibrational requirements, an excellent combination 
of stiffness and damping can be obtained by choosing suitable materials and geometric configurations of the face 
sheets and cores.

The method of constrained layer damping (CLD) was introduced by Kerwin12 and it has been the most used 
technique in vibration suppression13. Many optimization techniques such as Genetic Algorithm14, Moving 
Asymptotes method15, Topology Optimization method16, modal strain energy method17 and recently Double 
Shear Lap-Joint-configuration13,18 were successfully adopted to optimize the location and dimensions of CLD, in 
order to maximize the structural damping while minimizing additional mass. However, the introducing of the 
damping layer can reduce the stiffness of the sandwich structures11.

In addition, filling of the core voids with foam or viscoelastic material have also been investigated in hybrid 
structures design to balance structural and vibrational performance of lattice truss. Zhang19 investigated that 
pyramidal lattice core sandwich panels filled with polyurethane foam have a greater load carrying capacity com-
pared to the sum of the unfilled specimens and the filled polyurethane block. Li20 studied the frequency depend-
ence of damping for foam-filled honeycomb sandwich beams by using the Ross–Ungar–Kerwin model. However, 
to the authors’ knowledge, there are only few reports on vibration damping optimization of composite sandwich 
structures order to improve the structural damping loss factors with honeycomb cores13,18,20, and much less for 
complicated lattice truss cores.

The purpose of the present work is to explore a way to balance structural and vibrational performance of 
lattice truss by viscoelastic material filling (VMF). The VMF method is generally based on filling viscoelastic 
materials to the voids in the lattice structure so that the viscoelastic material can absorb the vibrational energy. 
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Dynamic properties of this method is evaluated by the finite element method. The recently brought forward 3D 
Kagome21,22 truss (Fig. 1) with face sheet was taken as an example to demonstrate this new optimization method.

In this study we introduce two novel research strategies lacking in previous work: (1) this is the first work 
studied the mechanical properties of 3D printed complicated structures with viscoelastic material filling. Previous 
VMF work20 focused the honeycomb sandwich beams. A 3X3 3D Kagome structure with face sheet was manu-
factured and polyurethane is used as the viscoelastic solid for filling in this study. This design technique is theo-
retically analyzed by the finite element method and the constitutive model of the viscoelastic material is assumed 
as the standard linear solid from generalized Maxwell model23. (2) To introduce a new complex modal analysis 
method, Frequency domain dividing complex modal analysis method. The elastic modulus and damping ratio 
of viscoelastic solids cannot be directly taken into the matrix formula to solve eigenfrequency24, since they vary 
with frequency. This paper proposes an ideal of taking the elastic modulus and damping ratio of viscoelastic solids 
from each frequency segment into FEM model respectively, then use the window function to process the data, 
and get the final result of eigenfrequency.

In this paper we show for the first time that using the viscoelastic material filling in 3D truss lattices for 
vibration optimization other than using the damping layer. The viscoelastic material has good ability of vibra-
tion absorption. but it cannot be used independently in engineering for load resisting, because of its low elastic 
modulus24. The lattice structures have relatively high rigidity, so the VMF method can balance the structural and 
vibrational performance of 3D truss lattices.

To evaluate the effect of the design method, polyurethane is chosen as the viscoelastic filled material. The 
nylon PA6 is chosen as the material of 3D lattice structure. Kagome structure with face sheets were manufac-
tured by the selective laser sintering technology and fixed vibration modal tests showed that compared with the 
traditional Kagome lattice plate, the acceleration amplitude of VMF Kagome lattice plate at natural frequency is 
reduced by 18.19 dB. The acceleration amplitude of VMF Kagome lattice plate at natural frequency is decreased 
by 6.03 dB, compared with solid plate.

This paper also find that the VMF method has the potential for band-gap design.

Mechanical model of polyurethane viscoelastic solid
The viscoelastic material play an important role in vibration elimination and noise elimination. Thermosetting 
polyurethane viscoelastic solid have the advantages of: wide range of mechanical performance, strong adhesive 
ability, good aging resistance. So polyurethane is chosen as the viscoelastic filling material.

Viscoelastic materials have the characteristics of elastic modulus and loss factor varying with load frequency 
and environmental temperature, which has an important influence on the dynamic calculation of structures. The 
accuracy of measurement of elastic modulus and loss factor of viscoelastic material determines the accuracy of 
design evaluation.

In this paper, a simple method is used to obtain the frequency dependent characteristics of viscoelastic materi-
als. The properties of viscoelastic materials are measured by stress relaxation test. The design does not involve the 
change of temperature, so the influence of temperature on the elastic modulus and the loss factor of the material 
is not considered.

Viscoelasticity is the property of materials that exhibit both viscous (ideal Newtonian liquid) and elastic (ideal 
elastic solid) characteristics when undergoing deformation. Viscoelastic substances behave as a combination of 
viscous and elastic. Some phenomena in viscoelastic materials are: (1) if the stress is held constant, the strain 
increases with time (creep); (2) if the strain is held constant, the stress decreases with time (relaxation); (3) the 
effective stiffness depends on the rate of application of the load; (4) if cyclic loading is applied, hysteresis (a 
phase lag) occurs, leading to a dissipation of mechanical energy. The study of viscoelasticity of solid matter usu-
ally assumes the following hypothesis: (a) continuity; (b) uniformity; (c) isotropic; (d) without initial stress and 
deformation.

The classic viscoelastic constitutive model consists of a spring element (elastic) and a dashpot (viscous). For a 
spring element, there are the following relations between stress and strain according to hook’s law:

σ ε= E (1)

where σ is the stress, ε is strain, and E is Young’s modulus of elasticity. For a dashpot, the stress is proportional to 
the strain rate and can be regarded as:

Figure 1.  Kagome truss. (a) 3X3 Kagome lattice plate with face sheet, (b) single Kagome structure. Image 
acquisition tool: SolidWorks software (Dassault Systèmes SolidWorks Corp., USA).
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d
dt (2)σ η ε ηε= = 

In Equation 2, η is the coefficient of viscosity, and ε is the first derivative of strain to time, that is strain rate.
The properties of viscoelastic materials are some kind of combination of these two simple cases. The most 

commonly used two parameter models are Maxwell model and Kelvin model (Fig. 2). The constitutive equations 
of the two models can be regarded as:

Constitutive equations of Maxwell model:

σ σ ε+ =p q (3)1 1


Constitutive equations of Kelvin model:

q q (4)0 1σ ε ε= +

The Maxwell model can reflect the relaxation phenomenon of the material, when loaded, as long as the exist-
ence of stress, the deformation will not stop, it is also known as the Maxwell fluid, which is obviously not in 
conformity with the preparation of polyurethane elastomer. The Kelvin model can eventually reach a limit when 
loading, thus reflecting the nature of the solid.

Xue25 studied that there is large deviations when representing viscoelastic properties with 2-parameter model 
while the 3-parameter model can describe the viscoelastic behavior of materials better. Figure 3 shows the stand-
ard 3-parameter viscoelastic solid model:

Its constitutive relation is:

p q q (5)1 0 1
σ σ ε ε+ = +
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The stress relaxation properties are studied by using the 3-parameter viscoelastic solid model. When stress 

relaxation tests are applied, each particular strain value is applied. Corresponding to each particular strain value 
ε ε=t( ) H(t)0 , H(t) is the unit Heaviside step function defined as zero for t less than zero, one for t greater than 
zero, and 1/2 for t = 026.

put ε ε=t( ) H(t)0  into Equation 5 and use the Laplace transform we can get:

p s q q s s(1 ) ( ) / (6)1 0 1 0σ ε+ = +
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Then:

σ = + −t A Be( ) (8)t p/ 1

Equation 8 is the material’s constitutive relation of stress relaxation in time domain. Where p1 represents the 
relaxation time of the material, and ε0 is the initial strain. Stress relaxation tests are required when determining 
the internal parameters.

Figure 2.  Maxwell (a) and Kelvin (b) model.

Figure 3.  Standard 3-parameter viscoelastic solid model.
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The stress relaxation test is similar to the compression test. Three specimens of the same size 
(16 mm*16 mm*16 mm) were used in the test. Initially, compression test is performed on one of the specimens, 
with the compression speed of 1.4 mm/min. When the strain reaches a certain value, the strain remains constant 
(that is, the stamping head stays still), Observe and record the change of stress. At this point, the stress decreases 
as time goes on, since the relaxation occurs. When the total time of the experiment reaches a certain time (720 s), 
remove the load and change another specimen. Then continue to load at the original speed until the strain reaches 
second the set points and do the relax experiment again. Repeat the above process and measure the rest of the 
sample.

Figure 4 illustrates the polyurethane viscoelastic solid strain relaxation curve. Three specimens were com-
pressed to about 5%; 10%, 17% (corresponding to a/b/c points), then the stamping head is stopped. The left side of 
these curves from a/b/c points can be regarded as a material compression experiment while the right side are the 
stress relaxation curves. The stress relaxation curve of the material can be described by Equation 8. Fit the three 
stress relaxation curves by MATLAB respectively. Three fitting equations can be obtained. The corresponding 
fitting parameters are listed in Table 1. Nonlinear properties in polyurethane are ignored in this tests25.

Where R-square stands for the coefficient of determination is defined as the ratio of SSR to SST:

= = −R square SSR
SST

SSE
SST

1 (9)–

SSR is the sum of squares due to regression and SSE is the sum of squares due to error means: the square sum of 
the error of the corresponding points of the fitted data and the original data:

ˆSSE w y y( )
(10)i

n

i i i
1

∑= −
=

SST, total sum of squares, is the sum of squares of the difference between the original data and the mean:

Figure 4.  Compression and stress relaxation curves of polyurethane viscoelastic solid. Straight line, dotted line, 
dash dot are respectively corresponding to the compression and stress relaxation curves of the 1, 2, 3 specimens. 
Points a/b/c are the relaxation starting points for each tests.

Number Fitting equation R-squre A B Pt

1 t e( ) 14 194 5 412 t0 04387σ = . + . − . 0.9176 14.194 5.412 22.795

2 t e( ) 6 305 1 838 t0 03397σ = . + . − . 0.9098 6.305 1.838 29.438

3 t e( ) 3 491 0 651 t0 03562σ = . + . − . 0.8932 3.491 0.651 28.074

Number Initial compression length Initial strain E1(MPa) E2(MPa) η(MPa · s)

1 2.6896 16.81% 305.87 116.63 9630.72

2 1.6320 10.20% 273.86 79.83 10411.83

3 0.8048 5.03% 443.37 82.68 14768.38

Table 1.  Curve fitting equation and parameters.
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SST w y y( )
(11)i

n

i i
1

∑= −
=

The coefficient of determination is a representation of the quality of curve fitting. From the Equation 11, we 
can know that the normal value range of the coefficient of determination is [0, 1]. The better the formula fits the 
data in experiment, the closer the value of R-square is to 1.

Take the average value of E1 E2 and η. Then constitutive equation of standard 3-parameter viscoelastic solid 
model is obtained:


σ σ ε ε+ . = . + .26 73 73 10 9116 36 (12)

Design of 3D Kagome structure and viscoelastic material filling
2D Kagome structure originated as a traditional bamboo basket weave pattern and was identified by topology 
optimization as an optimal structure based on its elastic modulus for a range of fraction volumes27. The 3D variant 
was proposed by a recent research investigating28.

Compared with tetrahedral and pyramidal truss cores, 3D-Kagome truss core possesses the higher strength, 
greater resistance to plastic buckling and shows the excellent isotropic performance. This structure resembles the 
rod-like internal structure of cancellous bone and has been shown to exhibit exceptional strength properties in 
compression and shear29.

Figure 5 shows the 3D Kagome truss core and its main parameters. The 3D Kagome structure is formed by 
having pairs of tetrahedrons vertically inverted and rotationally offset from each other by 60°. A Kagome truss 
may be geometrically parameterized by internal angle of the truss structure θ, length of truss members l, cell 
height h and truss diameter d. In this study, the height h of the cell is fixed to a height of 11.5 mm, which is a 
typical core height in sandwich panels29. The diameter is 1.2 mm and internal angle of the truss structure θ is 60°. 
These two parameters play an important role in characterizing the mechanical properties and are considered key 
parameters in optimization studies. The value of d and θ are determined considering the previous work30. The 
length l of the truss members is a dependent variable and will be controlled only by the internal angle of the truss 
and cell height. In order to determine the mechanical properties of the single cell, it is built in its truss-based form 
with attached face sheets of 2 mm thickness31.

The 3D printing system chosen is a selective laser sintering system produced by FarsoonTech while the mate-
rial selected is nylon. Its properties are listed in Table 2.

The selected viscoelastic filling material is thermosetting polyurethane. It is important to note that, when the 
thermosetting viscoelastic material is used for filling, the curing temperature should be less than 145 degrees 
Celsius, since the used nylon material has a thermal deformation temperature of 145 degrees Celsius. The prop-
erties of polyurethane are listed in Table 3.

Figure 5.  Parameters of Kagome truss. Image acquisition tool: SolidWorks software (Dassault Systèmes 
SolidWorks Corp., USA).

Thermal deformation temperature(0.46 MPa) 145 °C

Tensile Modulus 1646 MPa

Density 1002 Kg/m³

Poisson ratio 0.34

Table 2.  Properties of Nylon PA6.
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We fill the polyurethane in the voids of the printed lattice structure after its printing. Figure 6 shows the finite 
element model of the hybrid structures in this study. It is important to simplify the structure and the connection 
between the lattice structure and the polyurethane because there are many complex structures in the model and 
the bonding surfaces between the 3D truss lattices and polyurethane are complicated. The case discussed in this 
paper is complete bonding without considering slip state, so the bonding surface of polyurethane and nylon is 
treated by way of node combination (Fig. 6).

Finite element calculation and modal experiment
Modal analysis can be regarded as a coordinate transformation process, which is the decoupling process of the 
system vibration differential equation from the physical space through the modal transformation equation to the 
modal space. Since the modal transformation belongs to the linear transformation, the response of the system 
under external excitation can be considered as a linear superposition of its various modes, and the magnitude of 
the system depends mainly on the participation coefficients of the various modes. In general, the participation 
coefficients of the low order modes are much higher than those of higher order modes, and the dynamic response 
of the system can be obtained by only taking the superposition of the previous n order modes. The differential 
equation of vibration of a viscous damped vibration system with n degrees of freedom is24:

+ + =m u c u k u f t[ ]{ } [ ]{ } [ ]{ } { ( )} (13)̈ 

̈u u u{ }; { }; { } are the displacement matrix, velocity matrix and acceleration matrix described by physical coor-
dinates respectively.

[m]; [c]; [k] represent the mass matrix, damping matrix and stiffness matrix of the system, respectively.
{f(t)} is the external excitation matrix.
For free vibration:

̈ + + =m u c u k u[ ]{ } [ ]{ } [ ]{ } {0} (14)

Assume

=u U e{ } { } (15)st

where: U is a time independent vibration mode function; s is complex number
Substituting Equation 15 into Equation 13

m s c s k u f t([ ] [ ] [ ]){ } { ( )} (16)2 + + =

The eigenequation is

+ + =m s c s k[ ] [ ] [ ] {0} (17)2

The Equation 13 is transformed by Laplace:

Curing Temperature 120 °C

Constitutive equation


26 73 73 10 9116 36σ σ ε ε+ . = . + .

Density 1068 Kg/m³

Poisson ratio 0.475

Table 3.  Properties of polyurethane in this paper.

Figure 6.  Combine surfaces with node merging. The white part stands for the 3D printed Kagome lattice with 
Nylon PA6 and the green part is the polyurethane solid. Image acquisition tool: HyperMesh (version 14.0, 
Altair, Troy, MI, USA).
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m s c s k u s f s([ ] [ ] [ ]){ ( )} { ( )} (18)2 + + =

where: s is the Laplace coefficient

f s L f t{ ( )} [{ ( )}] (19)=

Through this transformation, the problem of solving differential Equations (13) is transformed into the prob-
lem of solving algebraic Equation 18. For free vibration:

+ + =m s c s k[ ] [ ] [ ] {0} (20)2

This is the characteristic Equation 17. Then, the eigenvalue problem of structural dynamical systems is the 
root of the homogeneous algebraic equations for Laplace differential equations. For single degree of freedom 
systems, these two roots are:

ω ω ξ= − ±
−

= − ± −s c
m

c km
m

j
2

4
2

1 (21)1,2

2

0 0
2

where: k
m0

2ω =  ξ = = =
ω

c
c

c
km

c
m2 20 0

S1 and S2 are conjugate complex numbers, and the real part is the attenuation factor, which reflects the damp-
ing of the system, and the imaginary part represents the natural frequency of the damped system32.

Viscoelastic materials exhibit behavior somewhere in between that of purely viscous and purely elastic mate-
rials, exhibiting some phase lag in strain. Complex modulus is used in modal analysis:

⁎ ω ω ω= +G i G iG( ) ( ) ( ) (22)1 2

G* (iω) is the complex modulus. G1 (ω) is the real part, reflecting the same phase change relation between 
stress and strain. G1 (ω) is also known as the storage modulus, which is applied to the calculation of elastic mod-
ulus; G2 (ω) is the imaginary part and the phase difference between stress and strain is PI/2. G2 (ω) is also called 
loss modulus

G G( ) ( )/ ( ) (23)2 1η ω ω ω=

η is called damping factor.
For Standard 3-parameters viscoelastic solid model:

ω ω ω= +G p q p( ) /(1 ) (24)1 1 1
2

1
2 2

ω ω ω= +G q p( ) /(1 ) (25)2 1 1
2 2

The common finite element modal calculation generally assumes that the modulus of elasticity of the mate-
rial is constant. This assumption does not hold true in the presence of viscoelastic materials. As shown in Fig. 7, 
the elasticity modulus and damping factor of the viscoelastic material involved in the paper varies considerably 
within the frequency band (0~10000 Hz). The changing of viscoelastic material’s elasticity modulus and damping 
factor should be considered when designing the viscoelastic material filling 3D truss lattices.

Figure 8 shows the flow chart of the complex modal calculation. Compared with other complex modal cal-
culation methods24, this simple method can effectively control the amount of calculation and greatly shorten the 

Figure 7.  Storage modulus and loss factor vary with frequency. Straight line stands for damping factor. Dotted 
line stands for storage modulus.
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computation time. Eigenfrequency calculation can be time consuming (there are 0.6 million elements in this 
finite element model). In such a large calculation, time saving is very important.

Suppose the first M orders Eigen frequency needs to be calculated and the frequency of interest is classified as 
N, and the frequency of each corresponds to [freqLi, freqUi),

Eigenfrequency window selection function

=





≤ <
W eigen

eigen freqL eigen freqU
else

( )
,

0, (26)
ij

ij i ij i

In this paper, first 3 orders of modes of VMF Kagome plate are calculated. Firstly, we set M = 3 and N = 5. 
We divide the interested frequency domain (0.1, 10000) into five sections, that is, (0.1, 1), [1, 10), [10, 100), [100, 
1000), [1000, 10000). The median of each frequency band is introduced into Equations 23 and 24 for the calcula-
tion of approximate damping factor and storage for each frequency section. Take the results of the calculation to c 
and k in Equation 20. Then start the loop in Fig. 8. In fact, we find out that the eigenfrequency calculation results 
of first four sections are not in the corresponding frequency domain, so after the window function is processed, 
they turns into 0, and only the fifth frequency domain is really recorded in the result of the calculation.

The method of frequency segmentation is the average allocation of frequency segments on logarithmic func-
tion. Other frequency segmentation methods can be applied like segmentation according to the mechanical prop-
erties of materials or the detailed segmentation at a special frequency section.

This is the first work studied the mechanical properties of 3D printed complicated structures with viscoelastic 
material filling. Previous method can be very time consuming in the complicated finite element model because of 
the excessive number of iterations24. So a complex modal analysis method with seldom and predictable iterations 
is needed in this kind of research. The upper limit of the number of iterations in this article is 5.

The vibration modal analysis equipment used in this paper is DEWETRON dynamic signal analyzer. It mainly 
includes the hammer with force sensor, acceleration sensor, integrated charge amplifier, dynamic signal analyzer 
and modal analysis software. The type of hammer is Dytran 5800B4, and the sensitivity is 42.35 mV/N. The sensor 
is a piezoelectric accelerometer, Dytran 3035B, and the sensitivity is 92.85 mV/g. Hitch the specimen to the steel 
frame with the cord fastened and a small circular magnet (0.75 g) is glued on the test piece with epoxy resin.

After setting the relevant parameters and arranging the knocking point, the hammer is used to hit the refer-
ence point take the average value after 10 times knocking and measuring.

The hammer force generates a pulse signal, then the pulse signal is transmitted to the charge amplifier through 
the force sensor. Meanwhile, the accelerometer collects vibration signal of the reference point through the accel-
eration sensor, then the vibration signal is transmitted to the charge amplifier. These two signals are amplified 
and transmitted directly to the dynamic signal analyzer for post processing analysis to obtain the frequency 
response function and the related modal parameters. The torsional mode of the structure cannot be measured 
in this experiment. In the experiment, the excitation point is the geometric is the projected point on one side of 
face sheet from center of the Kagome in the first row and the second column (shown in Fig. 5), and the measuring 
point is the projection of that geometric center on the other face sheet.

Figure 8.  Flow chart of the complex modal calculation.
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Table 4 shows the calculated values and experimental results of the first three order natural frequencies of two 
kinds of plates. The natural frequencies are calculated and arranged in the finite element software Hypermesh in 
accordance with the method of Fig. 8. It can be seen that the calculated values are in good agreement with the 
experimental ones, and the error is less than 8%.

Another thing to note is that the over 1000 Hz data of material properties of polyurethane are mainly used 
in the calculation process. When the frequency range of study is greater than 1000 Hz, the damping factor of the 
material is very small (η < 3*10–5). In fact, even assuming that the material had a large damping factor in very 
high frequency range and that such data is taken into software calculations, the final natural frequencies are 
less affected (assuming that the damping factor of the material is 0.5 at high frequency and that the free modal 
frequency is within 3% of the actual calculation error). Although the damping factor in the material has limited 
influence on the value of the natural frequency, it has a great influence on the amplitude of vibration.

Figure 9 is a comparison of acceleration transfer function of Kagome lattice plate and that of VMF Kagome 
lattice plate. The acceleration transfer function of Kagome lattice plate reached the peak value at 1658Hz, 1907Hz 
and 2633 Hz respectively, the corresponding amplitude were 28.77 dB, 22.78 dB, 18.60 dB. While the acceleration 
transfer function of VMF Kagome lattice plate reached the peak value at 2641 Hz, 3231 Hz, 3525 Hz respectively, 
the corresponding amplitude were 18.74 dB, 15.53 dB, 14.22 dB. At low frequencies (before 2100 Hz), the acceler-
ation amplitudes of VMF Kagome lattice plate are significantly smaller than those of Kagome lattice plate, while 
at high frequencies (greater than 2100 Hz), the amplitudes of VMF Kagome lattice plate are generally greater than 
the original ones. Another thing to note is that, at 2050 Hz, the acceleration transfer function of the VMF Kagome 
lattice plate is only −14.4 dB, which means it has a noticeable shock absorption capability at that frequency.

Figure 9 illustrates the shock absorption capability of VMF Kagome lattice plate to a certain extent, but in fact, 
for mechanical systems, there is a transfer function: 

H s
m s c s k

[ ( )] 1
[ ] [ ] [ ] (27)2=

+ +

Adding viscoelastic material to the lattice element greatly influenced the mass matrix of lattice and plate. Wang33 
carried out that the damping variation was found to be effective in reducing the amplitude without significantly 
shifting the natural frequency of the cantilever when he added extra mass balls to the honeycomb beams. To 
further illustrate the problem, another solid plate is made. The density of nylon (1002 kg/m3) used in this paper is 
similar to that of polyurethane density (1068 kg/m3). Therefore, the influence of mass matrix on transfer function 
can be neglected in the experimental comparison.

Mode

Kagome lattice plate VMF Kagome lattice plate

Calculated 
value (Hz)

Experimental 
value (Hz) Error

Calculated 
value (Hz)

Experimental 
value (Hz) Error

1 1653.3 1658 0.28% 2463.0 2641 6.74%

2 2052.5 1907 7.63% 3451.1 3231 6.81%

3 2447.2 2633 7.06% 3671.9 3525 4.17%

Table 4.  The calculated values and experimental results of the three order natural frequencies of two kinds of 
plates.

Figure 9.  Acceleration transfer function for 2 types of plate in free modal tests. (a) Kagome lattice plate, (b1) 
VMF Kagome lattice plate under natural light, (b2) VMF Kagome lattice plate with light passing through. 
Straight black line stands for acceleration transfer function for VMF Kagome lattice plate. Dotted blue line 
stands for acceleration transfer function for kagome lattice plate.
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The natural frequencies of solid plates are much higher than those of Kagome plates (the first three natural 
frequencies are 4453 Hz, 5643 Hz and 8085 Hz), so we choose constrained modal analysis for comparison. The 
fixed way of constrained modal analysis is: put the lower edge (Fig. 5) in the fixture and the clamping depth is 
8 mm. The measuring point and the exciting point remain unchanged.

Figure 10 shows acceleration transfer function for 3 types of plate under fixed support. In free modal exper-
iment, the specimen was suspended in the air by a cord. When the hammer strikes the specimen, most of the 
energy is converted to the motion of the specimen. When the specimen is fixed, the specimen cannot move freely, 
so the energy is dissipated mainly by vibration. Therefore, the amplitude of the acceleration transfer function in 
the fixed mode experiment is much larger than that in the free mode. Due to the change of the fixed form and 
the prestress brought by the fixture, the frequency of maximum amplitude of the acceleration transfer function 
of the three plates is closer to that of the free mode. At most frequencies, the amplitude of VMF Kagome plate is 
much less than that of Kagome plate, there is only one resonance frequency at 397.3 Hz between 200–1800 Hz 
and the amplitude is as much as 52.51 dB. In contrast, the amplitude of the solid plate and VMF Kagome plate is 
much smaller, consistent with the previous research by Wang33, the addition of the mass can lead to the amplitude 
reduction in vibration. VMF Kagome plates and solid plate have almost the same mass matrix. Their different 
vibration characteristics are due to the mechanical properties of viscoelastic material. The maximum amplitude 
of VMF Kagome plate is 34.32 dB at 755.6 Hz, while the maximum amplitude of solid plate is 40.35 dB at 639.6 Hz. 
For this observation point, the amplitude at natural frequency is reduced by 6.03 dB. There is a distinct band-gap 
at 524.3 Hz.

Discussion and Application
Passive damping as a technology has been dominant in the non-commercial aerospace industry since the early 
1960s34. Depending on the layout method, the damping layer can be divided into two types (Fig. 11). One is that 
the damping layer is attached to the surface of the main structural layer, as shown in Fig. 11(a). The damping 
layer can be deformed freely, so it is called the “free damping layer”. When the structure is excited, the damping 
layer mainly produces tensile compression deformation. Another kind of damping application is to paste a layer 
of material similar to the material of the main structure on the surface of the free damping layer, as shown in 

Figure 10.  Acceleration transfer function for 3 types of plate under fixed support. (a) Kagome lattice plate, (b1) 
VMF Kagome lattice plate under natural light, (b2) VMF Kagome lattice plate with light passing through, (c) 
solid plate. Straight black line stands for acceleration transfer function for VMF kagome lattice plate. Dotted 
blue line stands for acceleration transfer function for Kagome lattice plate. Red dash dot stands for acceleration 
transfer function for solid plate.

Figure 11.  Free damping layer (a) and constrained damping layer (b).
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Fig. 11(b). When the structure is excited, the damping layer is fixed by two solid plate constraints, mainly produce 
shear deformation, so called “constrained damping layer”. In general, the “constrained damping layer” is better 
than the “free damping layer” in damping effect. VMF can be regarded as a special “constrained damping layer”, 
and the damping material receives more constraints and may cause more types of deformation. Compared with 
the traditional methods, the greatest advantage of the VMF method is that it can guarantee the component to 
have better rigidity. Since the lattice structure itself has very high specific stiffness, and it is a consensus that add-
ing material to the existing structure cannot reduce its strength or stiffness35.

The complex modal calculation method introduced in this paper is not limited to the mechanical model 
obtained by stress relaxation test. The frequency dependent elastic moduli and damping ratios of materials 
obtained with other methods (e.g. viscoelastic spectrometers36) can also be calculated by this method.

In fact, compared with polyurethane in other literatures25, the damping of polyurethane material used in this 
paper is relatively small. Polyurethane viscoelastic solid have wide range of mechanical performance, so we can 
reasonably guess that by making more suitable polyurethanes (or other viscoelastic solids), the damping perfor-
mance of VMF can be manifested more clearly.

In order to reduce the influence of mass distribution on damping effect, nylon, whose density is similar to pol-
yurethane material density, is chosen as the printing material of lattice structure. In fact, this kind of viscoelastic 
material can also be used in metal printing parts, which can reflect both the weight reduction performance of 3D 
printing and the vibration optimization performance of VMF method.

Additive manufacturing (AM) techniques enable to build complex lattice components at the micrometer 
length scale with high accuracy at acceptable costs. However, a reduction in mass may lead to new vibration prob-
lems. Filling the lattice with viscoelastic material can effectively improve the vibration characteristics of the parts. 
Based on the results from the experiments, a CAD model of the wing was established. The design was modified 
with a groove at the open end of the wing to allow the attachment of the wing unto the fuselage. The proposed 
CAD model is as shown in Fig. 12. The wing should be light and strong since the small Unmanned Aerial Vehicles 
(UAVs) has limited power. Meanwhile, effective reduction of unwanted vibrations is critical for stability control 
of aircraft. The VMF Kagome can provide large stiffness at low mass and reduce the vibration so it fits the UAVs 
perfectly. The VMF method can be very helpful in spacecraft design such as UVAs, satellites and rockets.

Conclusions
In this study, modal test is carried out to investigate the vibration damping and Eigenfrequency of hybrid com-
posite Kagome truss sandwich panels with viscoelastic material filling. Thermosetting polyurethane viscoelastic 
solid is chosen as the viscoelastic filling material. Material properties of polyurethane are obtained by the stress 
relaxation test. FEM model is established for theoretical analysis and the result of calculated eigenfrequency 
fit well with the experimental eigenfrequency value. Dynamic analysis experiment results show that the VMF 
method is found to be effective in reducing the amplitude without significantly shifting the natural frequency. 
Compared with the traditional Kagome lattice plate, the acceleration amplitude of VMF Kagome lattice plate at 
natural frequency is reduced by 18.19 dB, and the acceleration amplitude at natural frequency is decreased by 
6.03 dB, compared with solid plate in fixed modal test.

This paper also find that the VMF method has the potential for band-gap design. It is found that the VMF 
method has the ability to obtain a band gap at a relatively low frequency in both the free and constrained modal 
analysis. However, the specific reasons for the frequency band gap and how can the designers get the band gap 
at desired frequency through choosing corresponding kind of viscoelastic material and lattice structure is still 
unknown. So additional work is currently undertaken to solve this problem.

The insertion of the viscoelastic material inside the face sheets and core of the sandwich panel increases the 
extra mass. Another work is currently undertaken to put viscoelastic material in 3D printed metal lattice to illus-
trate that the VMF method can play a better role in light weight design.

Methods
Materials.  Commercially available nylon PA6 (FarsoonTech) was used in this study. The raw materials for 
preparation of polyurethane were Castor oil (molecular weight 933, average functional degree 27, equivalent 
molecular weight 345, analytically pure, crosslinking agent, Kemiou Chemical Reagent Co. China), polymer 8617 
(MDI, molecular weight 1000, NCO content 23%), polymer 8618 (MDI, molecular weight 4000, content of NCO 
17%), polymer 8608 (MDI, molecular weight 1000, NCO content 20%) produced by WanHua Chemical Co. 
China and DMTDA (curing agent, YaRui Chemical Co. China).

Figure 12.  The proposed CAD model of wing with VMF Kagome structure. Image acquisition tool: SolidWorks 
software (Dassault Systèmes SolidWorks Corp., USA).
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3D printer.  Farsoon 403 P produced by FarsoonTech, China, was used for printing Kagome lattice.

Dynamic tests.  The vibration modal analysis equipment used in this paper was DEWETRON dynamic 
signal analyzer (DEWE2) produced by DEWETRON GmbH, Austria. Hammer with force sensor was Dytran 
5800B4 produced by Dytran Instruments, Inc. USA and the sensitivity is 42.35 mV/N. Acceleration sensor was 
Dytran 3035B produced by Dytran Instruments, Inc. USA and the sensitivity is 92.85 mV/g.
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