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Drug-resistant tuberculosis poses a persistent public health threat. The ReSeqTB platformis a
collaborative, curated knowledgebase, designed to standardize and aggregate global Mycobacterium
tuberculosis complex (MTBC) variant data from whole genome sequencing (WGS) with phenotypic drug
susceptibility testing (DST) and clinical data. We developed a unified analysis variant pipeline (UVP)
(https://github.com/CPTR-ReSeqTB/UVP) to identify variants and assign lineage from MTBC sequence
data. Stringent thresholds and quality control measures were incorporated in this open source tool. The
pipeline was validated using a well-characterized dataset of 90 diverse MTBC isolates with conventional
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DST and DNA Sanger sequencing data. The UVP exhibited 98.9% agreement with the variants identified
using Sanger sequencing and was 100% concordant with conventional methods of assigning lineage.
We analyzed 4636 publicly available MTBC isolates in the ReSeqTB platform representing all seven
major MTBC lineages. The variants detected have an above 94% accuracy of predicting drug based on
the accompanying DST results in the platform. The aggregation of variants over time in the platform will
establish confidence-graded mutations statistically associated with phenotypic drug resistance. These
tools serve as critical reference standards for future molecular diagnostic assay developers, researchers,
public health agencies and clinicians working towards the control of drug-resistant tuberculosis.

Tuberculosis (TB), caused by Mycobacterium tuberculosis complex (MTBC), was declared a global public health
emergency in 1993!. However, TB remains a global public health threat and recently became the world’s number
one cause of mortality from an infectious disease?. While there has been a gradual decline of TB incidence world-
wide, the trend is not sufficient to end TB by 2035, a standing goal of the World Health Organization (WHO). The
challenge is compounded by the worldwide spread of drug-resistant TB>.

Effective control of TB and a reduction in transmission of drug-resistant strains globally is dependent on
the rapid detection and timely availability of drug susceptibility information for MTBC isolated from patients.
These data are critical for effective antibiotic drug regimen selection and treatment monitoring which helps
prevent transmission of drug resistant disease and achieve treatment success*. Culture-based, phenotypic drug
susceptibility testing (DST), while considered the reference standard, requires specialized laboratory infrastruc-
ture, sophisticated biohazard sample transportation networks, and is technically difficult and time consuming.
Additionally, established standards for current reference DST methods can be inconsistently implemented
between laboratories and amongst assay methods for the drugs that are tested. The combination of slow MTBC
replication and the challenges of growth-based phenotypic testing, results in delays of up to several weeks before
clinicians receive laboratory results and can introduce a new drug combination for patients with increasingly
complex resistance profiles>S.

Detection of resistance-conferring genetic polymorphisms using molecular approaches such as polymerase
chain reaction (PCR), DNA hybridization, targeted sequencing of specific genes, and whole genome sequencing
(WGS) are promising rapid alternatives to phenotypic methods. Researchers initially focused their efforts on
sequencing individual genomic loci known to confer antibiotic resistance in MTBC. Similarly, molecular typing
methods such as IS6110-Restriction Fragment Length Polymorphism (RFLP), spoligotyping, and Mycobacteria
interspersed repetitive units-Variable Number Tandem Repeat (MIRU-VNTR)’~ have helped improve our
understanding of MTBC epidemiology in terms of its genetic diversity, population structure and low-resolution
transmission patterns. However, these approaches are relatively limited in their power to describe the full extent
of natural variation in the MTBC population and cannot be used to develop a comprehensive picture of drug
susceptibility determinants!®. Sequencing of the first complete MTBC genome (H37Rv) in 1998!! empowered
researchers to glean detailed information from whole genome sequences and address questions about how the
genetic diversity within MTBC contributes to disease and drug resistance.

The advent of high-throughput next-generation sequencing (NGS) technologies have simplified and decreased
the turn-around time for generating WGS data from MTBC clinical isolates. Researchers have used WGS analysis
extensively to understand the molecular basis and host-ecosystem relationships in infectious diseases and micro-
biology. This has allowed advances in our understanding of epidemiology, pathogen evolution and virulence
determinants to better conduct TB disease outbreak investigation and assess disease transmission networks'>!>,
With accessible benchtop sequencers and commercially available library preparation protocols, large quantities of
data have been generated, resulting in a rapidly increasing number of publicly available raw genome sequences'.

NGS technologies appear poised to replace cumbersome culture-based DST for MTBC surveillance and, in
some cases, patient management. However, several limitations prevent widespread implementation of WGS for
clinical and public health uses. One key step in overcoming these hurdles is the adoption of user-friendly, val-
idated bioinformatic tools to facilitate the use of WGS data by non-bioinformaticians. Additionally, we need
a global collaborative effort to build and deploy a centralized knowledgebase for identifying the correlations
between MTBC genotypes and phenotypic drug resistance to predict drug resistance to the arsenal of TB drugs
available. Validated genomic variants curated in clinical knowledgebases will fill gaps in knowledge and eventu-
ally enable WGS-based methods to not only complement but also ultimately replace culture-based DST.

While the generation of DNA sequences is becoming simpler and less expensive, extracting, interpreting
and communicating useful information in an easily understood format for clinical and public health audiences
remains a significant challenge? and few such bioinformatics resources exist'*!*. Furthermore, a dearth of highly
curated sequencing data and easy to use interpretation tools has slowed the progress of efforts for associating
high-confidence mutations with resistance phenotypes or lineage groupings, which has negatively affected global
confidence in the clinical relevance of some polymorphisms, discovered in NGS data.

There have been a number of TB-specific genome browsers and WGS analysis tools such as TGS-TB,
TBProfiler, KvarQ, Mykrobe Predictor TB and PhyResSE developed within the past few years that are utilized
for genotyping and drug resistance information!®-18. Many of these tools have been helpful for correlating DST
results with genotypic information from sequencing analysis®!*. However, to date, a comprehensive TB knowl-
edgebase guided by a team of experts that presents standardized genomic data together with culture-based DST
and clinical outcome metadata with linkages of observed polymorphisms to particular MTBC lineage groupings
does not exist in the public domain.

ReSeqTB (https://platform.reseqtb.org) offers such a knowledgebase. Here, we describe a bioinformatics
tool —the unified variant analysis pipeline (UVP) -, which is a suite of NGS analysis tools with defined quality
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metrics and a validated set of thresholds for standardizing the analysis of raw MTBC sequence data from Illumina
sequencing platforms. As a result, raw sequencing files can be analyzed with an easy-to-use bioinformatics
pipeline to provide standardized and reproducible high confidence genomic variant data. We also describe the
ReSeqTB knowledgebase and its aggregation of variant reports from the UVP and accompanying metadata to
produce a validated list of confidence-graded mutations associated with MTBC drug resistance phenotypes.

Results

UVP functionality. The UVP was developed through adoption of best practices and consensus thresholds
and parameters for implementing NGS analysis tools agreed upon by the ReSeqTB panel of experts assembled
globally from different fields relevant to the genomics approach of studying MTBC. The open source bioinfor-
matics tools were implemented in the UVP to achieve two broad goals: identify high quality variants and assign
MTBC lineage classification to each isolate analyzed.

The UVP consists of four broad sequential steps: 1) QC of the input sequence file, 2) mapping to the reference
genome, 3) variant calling and annotation, and 4) MTBC lineage classification. The analysis pipeline accepts as
input, WGS data in the form of Illumina short reads, which can be either paired-end or single-end reads. Prior to
analyzing each sequence file, we checked the format of the file with FastQValidator® to ensure adherence to the
fastq format. As a pre-requisite for the analysis, the minimum acceptable average genome depth of coverage was
10x. Briefly, each isolate WGS reads is assessed for MTBC species specificity using Kraken?!, and 90% of the reads
had to map to MTBC for acceptance. The accepted fastq files were assessed for quality and trimmed using FastQC
and Prinseq®”. ensuring an average read quality of Q20, and then mapped against the Mycobacterium tuberculo-
sis reference genome H37Rv, GenBank accession no. NC_000962.3 using BWA-MEM?. To reduce the number
of false positive variants, duplicates were removed from the BAM files using PICARD tools?*. We performed
base call re-calibration and re-alignment around small Indels in the genome with the Genome Analysis Toolkit
(GATK)*. GATK and Samtools? are used to call both Single Nucleotide Polymorphisms (SNPs) and Indels, and
the functional annotation tool SnpEff*’ is used to annotate the output variant file. We inferred lineage classifica-
tion for each isolate by cross-referencing to a set of 62 informative SNPs outlined by Coll et al.?®. The criteria set
for identifying SNPs and small Indels includes: Q20 minimum base call quality score, a minimum Q20 mapping
quality score, presence of variants on both strands for paired reads, maximum of 3 SNPs within a span 10 bp and
a minimum coverage depth of 10X for each identified variant. The UVP also checks for multiple mutations in the
ribosomal genes of MTBC (rrs and rrl). These regions are normally conserved® and samples with more than five
mutations within these regions are flagged as mixtures or contamination.

We implemented the UVP with custom Python programing scripts at different points of the analysis to facil-
itate processing and data flow. The primary scripts included lineage_parser.py that parses the variation file to
infer MTBC lineage assignment, parse_annotation.py that formats the SnpEff annotated variation file into a more
user-friendly text format and a suite of custom scripts that generate coverage information for all genomic loci
(coverage_estimator.py, resis_parser.py and del_parser.py). This last set of scripts — unique to the UVP — dynam-
ically queried the genome coverage reports generated across the entire genome to infer loci that have complete
or partial deletions.

The UVP analysis generated three key result files in addition to a number of reports from each of the QC steps.
The first is an annotation file that lists the variant positions across the isolate genome including the quality scores,
coverage and annotation details for each position. The variants in this annotation file feeds the ReSeqTB platform,
and is aggregated with phenotypic DST data from same isolates to make predictions on antibiotic resistance. Next
is the lineage report file that infers the MTBC lineage assignment for the isolate out of the possible seven major
MTBC lineages defined in the work by Coll et al.?®. Finally, the genome coverage report lists the average depth and
width of coverage across all the loci in the isolate genome.

The UVP source code and details on the pipeline tools and thresholds set for these tools are available at https://
github.com/CPTR-ReSeqTB/UVP.

UVP Validation Results. MTBC lineage assignment validation. Our analyses demonstrated 100% con-
cordance in the assignment of lineages between the conventional genotyping methods and the UVP for the 79
strains where conventional methods could infer a specific lineage. Both the UVP and the PhyResSE analysis
tool (used as a comparator) inferred all the 11 strains that had no lineage classification using conventional gen-
otyping methods to belong to the Euro-American lineage. The rest of the lineage classification analysis showed
100% concordance between PhyResSE and the UVP on the assignment of lineages for all 90 strains analyzed (see
Supplementary Data 1).

SNPs and Indels detection validation. In the test for concordance of variant calls between Sanger sequencing
analysis and the UVP there was 100% concordance in resistance associated SNPs detected across two resistance
loci (rpsL and katG) for all 90 strains. For the remaining loci of interest, there was 98.9% agreement. The UVP
identified the discordant resistance associated SNPs in each case. This instance, also observed in PhyResSE anal-
ysis of the same data, suggests hetero-resistant samples, which are a mixture of wild type and variant alleles that
Sanger sequencing was not able to detect® (Table 1). We also observed 100% concordance in the SNP calling
results between PhyResSE and the UVP (Table 1).The evaluation work on the same dataset, which showed that
PhyResSE compares favorably to other NGS data analysis tools'® offers confidence against possible systematic
errors in variant detection by both the UVP and PhyResSE. For validation of detection of short Indels, we used
additional isolates drawn from previously analyzed WGS analyses to assess genomic heterogeneity in clinical
MTBC isolates®! to establish the utility of the UVP. We compared the results of the UVP analysis of these isolates
to that of the analysis of the validated data, and for each deletion there was a 100% agreement on the genomic
location and size of the deletions (Table 2).
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rpsL 19 19 0 100 19 100
gidB 66 67 1 98.9 67 100
katG 25 25 0 100 25 100
rpoB 19 20 1 98.9 20 100
embB 16 17 1 98.9 17 100
pncA 11 12 1 98.9 12 100

Table 1. Evaluation of Unified variant pipeline SNP calling versus SNP detection using Sanger sequencing and
PhyResSE analysis pipeline.

ERR502929 | 27021327 | dfrA,thyA | 3073130-3074471 | complete deletion | complete deletion | 2.2.1 present
ERR751361 | 27021327 | Wt 3073130-3074471 | no deletion no deletion 221 present
ERR751453 | 27021327 | dfrA, thyA | 3073130-3074471 | complete deletion | complete deletion | 2.2.1 present
ERR751483 | 27021327 | Wt 3073130-3074471 | no deletion no deletion 221 present
ERR775373 | 27021327 | dfrA, thyA | 3073130-3074471 | complete deletion | complete deletion | 2.2.1 present
ERR779910 | 27021327 | dfrA,thyA |3073130-3074471 | complete deletion | complete deletion | 2.2.1 present
SRR2333215 | 27021327 | dfrA,thyA |3073130-3074471 | complete deletion | complete deletion | 2.2.2 absent

SRR1952721 | 25977398 | pncA 2288681-2289241 | complete deletion | complete deletion | 2.2.1 present
SRR1948177 | 25977398 | pncA 2288681-2289241 | complete deletion | complete deletion | 2.2.1 present
R721_C13 26496891 | atsD 756970 C>CG C>CG 2.2.1.1 present
R721_C13 26496891 | regX3 581317 G>GCG G>GCG 2.2.1.1 present
R966_C5 26496891 | Rv3861 4338065 AC>A AC>A 2.2.1 present
R160_C13 26496891 | adhD 3452173 CG>CGCCAT CG>CGCCATG |4.1.1.3 absent

R376_C11 26496891 | Rv3256¢ 3636924 ACC>AC ACC>AC 4121 absent

R912_C11 26496891 | yrbE4A 3920814 GA>G GAA>GA 122 absent

R965_C1 26496891 | adhA 2110232 A>AG AG>AGG 2.2.1 present
R458_C3 26496891 | espR 4323810 GC>G GC>G 4.12 absent

R641_C1 26496891 | Rv2375 2655550 A>AT AT >ATT 2.2.1.1 present

Table 2. Comparisons of Indels calls by UVP and validated variants previously shown to be present in given
isolates.

Large structural variations and gene deletion validation. ~ Analysis of the simulated WGS data with varying length
Indels in the third dataset demonstrated the pipeline’s variant calling tool could identify long Indels (up to 50 bp)
at their accurate genomic positions (Supplementary Table S1). From our simulations, we deduced that neither
the GATK variant caller nor Samtools detect Indels greater than about 50 bp long for the simulated sequences,
using the thresholds and settings implemented in the pipeline. This result expands on previous findings that most
NGS data analysis tools accurately identify short (<10bp) insertions and deletions®, suggesting that biologically
relevant structural variations of only up to half of the average read lengths in MTBC genomes can be accurately
inferred by UVP just using the GATK or Samtools variant callers. We therefore implemented a custom script
within the UVP to capture such large deletions that are more than half the length of the average sequencing read
for each isolate. To test this, we reanalyzed MTBC isolates (ERR502929, ERR751361, ERR751453, ERR751483,
ERR775373, ERR779910, SRR2333215, SRR1952721 and SRR1948177) previously shown to have complete gene
deletions across several loci of interest (i.e. pncA, dfrA, and thyA)****. In addition, we searched for the tap gene
deletion previously shown to be present in most MTBC strains classified into the Beijing lineage® in the output
of UVP analysis of the isolates. The results from the analysis using our custom script that infers large deletions
across the genome, showed that the respective pncA, thyA, and dfrA loci were absent in all the strains except for
the wild type isolates (Table 2). The tap gene deletion that leads to a frameshift mutation was present in all the
strains of East Asian lineage (Lineage 2) analyzed except for SRR2333215, which belongs to a different East Asian
sub-lineage (2.2.2). For isolates belonging to other MTBC lineages, this variant was absent as expected based on
previous studies (Table 2).

Antibiotic resistance prediction. The ReSeqTB platform independently calculates the Likelihood ratio test statis-
tic (LR+) as previously described* for all variants found in loci of interest (see Supplementary Data 1) thought
to be associated with resistance to corresponding antibiotics. The LR+ test offers a robust approach to assigning
the strength of association between variants and their corresponding drug resistance phenotypes. Mutations
that have high LR+ (>10) values for the test of association to drug resistance in this context would offer strong
confidence of association to drug resistance. Currently, applying the LR+ test, there are 53 such mutations on the
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Animal Strains Lineage 1(Indo Oceanic)
Lineage 7 (Ethiopian) /

\
Lineage 2(East Asian)

Lineage 3(East African Indian)

Lineage 6(West African 2)
Lineage 5(West African 1)

Lineage 4(Euro American)

[ Lineage 1(Indo Oceanic) M Lineage 2(East Asian) [l Lineage 3(East African Indian)
M Lineage 4(Euro American) [l Lineage 5(West African 1) [l Lineage 6(West African 2)
Lineage 7(Ethiopian) [l Animal Strains

Figure 1. Distribution of isolates on ReSeqTB platform among the seven major lineages of the Mycobacterium
tuberculosis complex (MTBC). This schematic shows the proportional representation of the major MTBC
lineages in our dataset. The Euro American lineage has the most representation, but every other major lineage
including Lineage 7 and animal strains are represented in the dataset.

Isoniazid 321 1 463 41 |0.887 0.848 0.917 0.997 0.986 0.999 94.9
Levofloxacin 23 10 | 313 2 0.92 0.725 0.986 0.969 0.942 0.984 96.6
Ofloxacin 35 1 312 2 0.946 0.805 0.991 0.997 0.978 0.999 99.1
Rifampicin 275 2 533 19 10.935 0.899 0.96 0.996 0.985 0.999 97.5

Table 3. Sensitivity, specificity and accuracy values of drug resistance prediction by high confidence mutations
inferred to be associated with antibiotic resistance in isolates within the data set with DST results from the
BACTEC MGIT 960 Mycobacteria liquid culture method.

platform (platform.reseqtb.org) with a value >10 and classed as high confidence mutations. There is corrobora-
tion that these 53 mutations are associated with antibiotic resistance in MTBC through work done over the years
by different researchers in this field*’-*°, but the numbers of such mutations is limited by the underlying dataset
from data currently in the ReSeqTB platform. To address this limitation for the purposes of our analysis, we cre-
ated a comprehensive list of high confidence mutations, by adding the 53 mutations to the list of high confidence
mutations described in the systematic review analysis work done by Miotto et al.*® (Supplementary Data 2). Most
of the initial 53 mutations (except the fabG1 synonymous mutation) with LR+ values >10 from the platform
are also present in the list. The comprehensive list was then used to test for the accuracy of predicting antibiotic
resistance reported in the phenotypic data housed in the platform and captured in our dataset.

Our analysis to test for the predictive value of variants in the comprehensive list was specifically targeted on
829/4636 isolates in the dataset (see Supplementary Data 3) with known phenotypic test results for multiple drugs
using MGIT 960 and drawn from all major MTBC lineages (see Fig. 1). The analysis, using phenotypic DST as the
standard, showed that high confidence mutations in loci associated with resistance to the first line drugs isoniazid
and rifampicin had 94.9% and 97.5% accuracy (measured in each instance as the ratio of true calls to the total
number of calls for each drug), respectively, for predicting resistance to these drugs. High confidence mutations
associated with resistance to fluoroquinolones in the dataset, had 99.1% and 97.5% accuracy for predicting resist-
ance for levofloxacin and ofloxacin, respectively. For the first line drugs, we found several variants present in iso-
lates that are phenotypically resistant but lack any of the high confidence mutations from our list (Supplementary
Data 2). Table 3 provides details on the accuracy, sensitivity and specificity (including their associated binomial
95% confidence intervals) results for the MGIT method. Further details on the distribution of high confidence
mutations for the first line antibiotic drugs in our dataset is provided in Supplementary data 2. The accuracy val-
ues for associating drug resistance to high confidence mutations with results from DST on solid media and those
without a specified method (this affects 3807/4636 isolates in the dataset which make up 82% of the phenotypic
testing results), were not included in our major analysis. In the former case, we lacked sufficient sample size for
DST in solid media for our analysis, and in the latter case, the lack of specific DST methods introduced some
level of ambiguity to the results when pooled. Separately, we performed the resistance prediction analysis on
these excluded 82% of the dataset, in Supplementary Data 4, and showed sensitivity values as much as 10% lower
(0.81-0.85 for solid media testing; 0.85-0.88 for DST with no stated method) when compared to results using
MGIT DST results alone. In addition, we listed putative drug resistance mutations within the loci of interest that
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could explain this relative drop in sensitivity for these excluded data. We did not include test results for ethambu-
tol, pyrazinamide, moxifloxacin and the second-line injectable agents because they lack sufficient sample size to
make clear inferences on the accuracy measure although they suggest the same trends.

Discussion

The UVP described herein, which processes raw NGS data for submission to the ReSeqTB knowledgebase, was
developed by applying best practices and quality checks. These protocols were put in place by a global consortium
of experts within the TB and genomics research fields that work to interpret data driven results from bioinfor-
matic tools and computational databases analytics, drawing from a consensus on prior knowledge and experience
in the field. This collaboration, which is a unique feature of the UVP and the ReSeqTB, could serve as a tem-
plate for future collaborations around scientific endeavors that are of public health relevance. The UVP currently
accepts WGS data from Illumina platforms and future advancements will include added capacity to process WGS
from a variety of other NGS platforms to add to the knowledge base. In addition, future efforts will include the
capacity to analyze sequence data from targeted sequencing approaches, which will enable capture of sequenc-
ing data from clinical samples. This is critical to ensure inclusion of data from settings where a culture-based
approach is not routinely used. An online user- interactive version of this publicly available tool is under develop-
ment and information on this will be made available on the public GitHub site once it is accessible.

In addition and unique to the UVP, algorithms implemented in the pipeline enable easy accounting for loci in
the MTBC genome where there are large deletions. Typically, Indels longer than the sequence read length from
NGS platforms are not accounted for using regular bioinformatics analysis tools. The UVP analysis captures such
records and is important for loci where large deletions could underlie antibiotic resistance phenotypes. If not
properly identified, these deletions could confound attempts to establish novel and comprehensive associations
with resistance phenotypes. There are two limitations for the UVP using this approach. First, the pipeline does
not account for large insertions beyond those detected by the variant calling tools in the pipeline. Additionally,
the UVP cannot yet reliably identify heterogeneous Indels (mixture of wild type and Indels at same location) in
clinical isolates that have minor sub-populations. This ties to the broader challenge of developing algorithms with
robust hetero-resistance detection in general. Such algorithms should apply rigorous thresholds on allele frequen-
cies and coverage depth at loci of interest in order to produce accurate predictions of phenotype from sequence
information. These improvements will also help refine all antibiotic resistance prediction and phylogenetic lin-
eage classification for isolates with and without sub-populations. Moreover, the clinical relevance of such minor
populations will need to be evaluated for each drug taking into account the totality of resistance information
available and the treatment regimen employed.

The UVP compared to other NGS analysis tools, uniquely applies a rigorous approach to identify mixed or
contaminated samples, going beyond just the species specificity checks implemented in the Kraken tool, but also
looking for patterns of variations within conserved ribosomal genes of MTBC strains that will suggest presence
of multiple species within a given sample. The consensus approach described here of first establishing thresholds
and criteria for the various NGS analytical tools implemented in a given analysis pipeline, and then validating
against well-curated data, could point the way towards standardizing bioinformatics tools and approaches for
analyzing NGS data in the future. However, there is still the need for an expanded validation dataset drawn
from primary samples to answer specific questions on the presence and impact of closely related species such as
non-tuberculosis mycobacteria (NTMs) on the analyses.

While there are a number of other MTBC WGS analysis pipelines or tools such as TB-Profiler, GenTB,
CASTB, KvarQ that employ a number of approaches to infer variants and predict drug resistance in isolates. Our
intent on settling on PhyResSE as the tool to perform our validation analysis comparisons is because of the fact
that this tool applies a similar reference genome guided approach of identifying genetic variants like the UVP,
and has also been compared with a number of other WGS analysis tool in a recent publication'®, making it a good
candidate for our validation comparisons.

The ReSeqTB knowledgebase includes an investigational database that standardizes and aggregates quality
validated data submitted to the platform by contributors. This contributed data includes genomic sequence data,
phenotypic DST results and clinical outcome data when available. In the long term, other potentially useful data
types including surveillance data and clinical trial data should be included on the platform to provide broader
context and information to different categories of users. The combination of the UVP and the ReSeqTB data plat-
form uniquely enhances the capability to both confirm underlying antibiotic resistance phenotypes and poten-
tially predict novel resistance variants. The antibiotic resistance prediction analysis we conducted on a set of 829
isolates serves to point to this capability, but it also demonstrated some inherent limitations in our approach. One
such limitation is the number of publicly available data on the platform. We performed the resistance prediction
accuracy analysis on only a subset of the over 7800 contributed datasets currently aggregated on the platform.
This issue will be assuaged as more curated genetically and phenotypically diverse and publicly available isolate
data populate the ReSeqTB database. Another limitation tied to the dataset on the platform is the limited number
of isolates whose DST results specifies the actual method used for the testing. We settled on isolates with com-
plete information on the DST methods for this proof of concept analysis, which lead to the exclusion of more
than 80% of the publicly available dataset on the platform at the time of the analysis, from our major analysis. As
more data accumulate on the platform, we will perform validation-type analysis on the subset of data without
test methods attached to their DST results, to assess the accuracy values from those. The goal will be to integrate
the entire dataset pool for future resistance-prediction analysis. In our current resistance prediction analysis
on isolates tested with the MGIT DST method, we detected several variants that could account for the drop in
accuracy for the association of drug resistance to the first line drugs. For isoniazid, of the 44 false negatives in the
test for sensitivity, we highlighted 38 mutations, but also identified frameshift mutations and Indels within the
inhA, fabG1, katG and ahpC upstream loci such as the Leu203Leu fabG1 mutation, the —17G > T fabG1 upstream
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mutation and katG Ser315 mutations (other than Ser315Thr) in those isolates, which could explain this discrep-
ancy. These mutations are known to confer resistance to isoniazid but are not yet considered as high confidence
in our dataset because they are not yet at an appreciable frequency in the database. Similarly for rifampin resist-
ance we highlighted an additional 12 mutations within the rpoB loci which could explain some of the 19 false
negatives observed in the sensitivity calculations. A number of these mutations are codon 445 rpoB mutations
previously described in the literature to be associated with rifampin resistance**!. Some of the other mutations
are novel and would be candidates for functional genomic studies to assess their association with drug resistance.
The details on the frequency and distribution of these mutations are in Supplementary Data 2. In addition, it has
been well documented that liquid media DST methods often fail to identify some resistance to rifampicin® and
could account for some of the drop in our accuracy measure for rifampicin resistance prediction. For the supple-
mentary work we did on isolates with DST results that either have no stated methods or were performed on solid
media, the results point to similar explanation for the drop in sensitivity overall, and compared to the MGIT DST
results. For isoniazid resistance, the false negatives in the sensitivity calculations for the solid media method and
the no stated DST method were 33 and 147 respectively, and there were 31 and 66 mutations respectively in the
isolates tested that could explain some of the drop insensitivity, given they are known to underlie resistance. For
rifampin, there were 65 mutations which could explain part of the 128 false negatives observed for isolates where
there is no stated method for the DST results, and a combination of 33 mutations which have been shown to
confer resistance to rifampicin that could explain the 30 false negatives observed for the subset tested using solid
media. Details of the results on this supplementary work can be found in Supplementary Data 4. These mutations,
although previously shown to be associated to the respective drug resistance phenotypes, were not classed as high
confidence in the ReSeqTB database due to the size limitations of our dataset. But as more data are aggregated in
the platform, the frequencies of such mutations will increase, which will upgrade them to high confidence status
and help refine the accuracy and sensitivity of our approach.

Similarly, the approach of using the LR+ test statistic to infer associations between mutations and resistance
phenotypes for any dataset serves to give a broad picture of mutations or variants associated with antibiotic
resistance. The statistic by itself is limited in explaining instances where mutations could be of low frequency
within the sampled population and may not rise to appreciable frequency for the LR+ calculations (e.g. pncA loci
of interest for pyrazinamide). The panel of experts from the TB research community were consulted to consider
these limitations in assessing the ability of mutations to predict resistance to anti-TB medicines and as a future
step will be working to develop a holistic grading system for mutations. In addition to the LR+ test statistic of
association to phenotypic resistance, this grading system will also take into consideration many other factors
including homoplasy to exclude lineage markers coincidentally found in drug-resistant strains. Metadata in the
ReSeqTB platform including MICs, clinical outcomes, and functional analysis on the mutation in question could
also be considered in assessing the role that a polymorphism has in drug resistance. This will ultimately result in
a dynamic knowledgebase and consensus driven approach to assess the impact of resistance variants as suggested
by the prediction analysis as data aggregates in the platform.

There is an increasing need to improve the process of routine identification and DST for TB and other micro-
bial pathogens in the clinical setting. The adoption of bacterial WGS by clinicians and public health officials
could open that door, if best practices are implemented in both identifying variants within isolate genomes and
rendering confidence grading on the interpretation of such variants to drug resistance or other phenotypes of
interest. The suite of bioinformatics and statistical analysis tools offered by ReSeqTB could prove invaluable to
laboratories that can generate NGS data but lack the expertise and resources to analyze the increasing amount
of high- throughput data coming from their laboratories. The approach of the UVP integrated into the ReSeqTB
platform could indeed serve as a model in the future, where developers and researchers would increasingly rely
on high confidence mutations, identified from high quality curated data to systematically show association with
phenotypes of interests via a robust and knowledge-driven process.

Methods

Validation of UVP.  We evaluated the UVP for accuracy of variant calling and lineage assignment by evaluat-
ing UVP performance on a highly curated data set with well-established genotypes. This analysis included three
different sample sets:

(i) 90 MTBC strains drawn from a well-characterized strain collection from Sierra Leone in West Africa
This data set consisted of 43 strains that were phenotypically resistant to all antibiotics tested, and 47 strains
that were resistant to either one or a combination of the antibiotic drugs used for the DST testing (details in
Supplementary Data 1). We inferred antibiotic resistance phenotypes to five anti-tuberculosis drugs: rifampicin
(RIF), isoniazid (INH), streptomycin (SM), ethambutol (EMB), and pyrazinamide (PZA). Additionally, the
results of the analysis were compared to results from a similar analysis performed using the well-documented
NGS analysis pipeline PhyResSE*. PhyResSE has also independently been compared to four other MTBC WGS
analysis software and shown to be optimal in terms of functionality, lineage assignment and variant calling
amongst the compared tools'®. The data set included previously described DST results, conventional sequencing
data for six TB drug resistance-associated loci (rpsL, gidB, katG, rpoB, embB, and pncA) and WGS reads of all the
strains in the data set®. We retrieved the WGS data from the EMBL-EBI-ENA sequence read archive with the
project ID: PRJEB7727. The data also contained phylogenetic strain classifications obtained through conventional
genotyping methods as well as from PhyResSE web tool analysis. For this first sample set, we performed two
sets of validation analyses. The first analysis established the level of agreement on the classification of the strains
using conventional genotyping methods (spoligotyping, 24-locus MIRU-VNTR, and IS6110 DNA fingerprint-
ing) versus the UVP analysis. We performed similar lineage classification analyses based on results from both the
UVP and the PhyResSE application. For the second analysis, we checked and confirmed the agreement on the

30,42,43
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variants identified in the regions of interest within all 90 strains using the UVP against Sanger sequencing variant
detection.

(ii) We utilized a second sample set that comprised a number of WGS data sets previously described in the
MTBC literature®*3 to evaluate how the pipeline handles both small insertions and deletions (Indels). These
curated data had deletions within loci of interest mapped against the H37Rv reference genome that were validated
using Sanger sequencing. WGS in this data set are available in the EMBL-EBI-ENA sequence read archive with
the project ID: PRJEB7727°1.

(iii) A data set comprised of simulated WGS reads generated using the ART tool* was used to establish the
sensitivity of the analysis suite for calling Indels in MTBC WGS data sets. Indels are problematic features when
analyzing NGS data and long Indels that span the length of sequencing reads could prove particularly difficult to
identify using current bioinformatics analysis tools**. We described the simulated sequences in Supplementary
Table 1, demonstrating deletions with sizes ranging from one base pair (bp) to 100 bp in length. Also additional
WGS available in the NCBI sequence read archive accession numbers ERR502929, ERR751361, ERR751453,
ERR751483, ERR775373, ERR779910, SRR233215, SRR1952721 and SRR1948177, were used to assess how UVP
handles large deletions or complete deletions of genes within loci of interest.

Simulation of llluminaWGS reads.  Synthetic fastq files were generated using a custom Perl script, fasta_
insert_deletions.pl (https://gitlab.com/tbgenomicsunit/Publications_resources) and the ART tool* to simulate
insertions and deletions (Indels) of varying lengths. The Perl script accepts as input, a reference genome, an
annotation file and a target gene. The reference genomes are complete fasta format genome files downloaded from
NCBI repositories. The Perl script creates a set of new genomes based on the reference. Each simulated genome
has randomly assigned insertions and deletions ranging from one to 100 bp within the target gene supplied to
the script. These simulated genomes are used as an input by the ART tool to generate the fastq files. We created
paired-end fastq files, simulating the Illumina HiSeq2500 technology, with a read coverage of 50x and read length
of 150 bp. We used the available MTBC genome in the tool Mycobacterium africanum genome (GM041182,
NC_015758.1) as the reference, and a number of MTBC genes of interest as target loci.

Antibiotic resistance prediction using aggregated data in the ReSeqTB platform. The panel
of drugs and corresponding loci of interest used in the analysis included isoniazid (inhA, fabG1 and katG),
rifampicin (rpoB), levofloxacin, ofloxacin, moxifloxacin (gyrA and gyrB), kanamycin (rs, eis and whiB7), capre-
omycin (rrs and tlyA) and amikacin (rrs).

Phenotypic testing was performed on the 4636 isolates in the dataset submitted to the ReSeqTB platform
through December 2017, and provided either a categorical result or Minimum Inhibitory concentration (MIC)
using a variety of DST methods by the data contributors to the ReSeqTB knowledgebase. About 80% of the
phenotypic test results were categorical DST without details on the specific methods used. Of the remain-
ing DST results where a method was provided, 67% had DST performed using the liquid medium BACTEC
Mycobacterial Growth Indicator Tube 960 (MGIT). Details of the phenotypic testing methods results are shown
in Supplementary Data 2 and Supplementary Data 3.

Likelihood Ratio (LR+) is calculated using the formulas below:

Sensitivity = TP/(TP + FN)
Specificity = TN/(TN + FP)

PPV = TP/(TP + FP)

NPV = TN/(TN + EN)

LR+ = Sensitivity/1 — Specificity

o0 oo

where TP means true positive, FN means false negative, PPV means positive predictive value and NPV means
negative predictive value.

Data Availability

Sequence reads for isolates used in this analysis are available publicly in the NCBI sequence read archives under
project ids: PRINA282721, PRJNA200335, PRINA244659, PRJNA240330 and PRJEB7798 and deposited as pub-
licly available data on the ReSeqTB data platform (platform.reseqtb.org).

References

1. WHO. Global tuberculosis control (2011).

2. WHO. Global tuberculosis report (2015).

3. Dye, C,, Glaziou, P, Floyd, K. & Raviglione, M. Prospects for tuberculosis elimination. Annu Rev Public Health 34, 271-286, https://
doi.org/10.1146/annurev-publhealth-031912-114431 (2013).

4. Wells, W. A. et al. Alignment of new tuberculosis drug regimens and drug susceptibility testing: a framework for action. Lancet Infect
Dis 13, 449-458, https://doi.org/10.1016/s1473-3099(13)70025-2 (2013).

5. Angra, P. K. et al. Performance of tuberculosis drug susceptibility testing in U.S. laboratories from 1994 to 2008. J Clin Microbiol 50,
1233-1239, https://doi.org/10.1128/jcm.06479-11 (2012).

6. Salamon, H. et al. Integration of published information into a resistance-associated mutation database for Mycobacterium
tuberculosis. ] Infect Dis 211(Suppl 2), S50-57, https://doi.org/10.1093/infdis/jiu816 (2015).

7. Yuen, K. Y. et al. IS6110 based amplityping assay and RFLP fingerprinting of clinical isolates of Mycobacterium tuberculosis. J Clin
Pathol 48, 924-928 (1995).

8. Kamerbeek, J. et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and
epidemiology. ] Clin Microbiol 35, 907-914 (1997).

SCIENTIFICREPORTS | (2018) 8:15382| DOI:10.1038/s41598-018-33731-1 8


https://gitlab.com/tbgenomicsunit/Publications_resources
http://dx.doi.org/10.1146/annurev-publhealth-031912-114431
http://dx.doi.org/10.1146/annurev-publhealth-031912-114431
http://dx.doi.org/10.1016/s1473-3099(13)70025-2
http://dx.doi.org/10.1128/jcm.06479-11
http://dx.doi.org/10.1093/infdis/jiu816

www.nature.com/scientificreports/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.
23.
24.
25.
26.
27.
28.

29.
30.

3

—

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

. Supply, P. et al. Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on

mycobacterial interspersed repetitive units. J Clin Microbiol 39, 3563-3571, https://doi.org/10.1128/jcm.39.10.3563-3571.2001
(2001).

Coll, E. et al. PolyTB: a genomic variation map for Mycobacterium tuberculosis. Tuberculosis (Edinb) 94, 346-354, https://doi.
org/10.1016/j.tube.2014.02.005 (2014).

Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537-544,
https://doi.org/10.1038/31159 (1998).

Shak, E. B, France, A. M., Cowan, L., Starks, A. M. & Grant, ]. Representativeness of Tuberculosis Genotyping Surveillance in the United
States, 2009-2010. Public health reports (Washington, D.C.: 1974) 130, 596-601, https://doi.org/10.1177/003335491513000607 (2015).
Bamrah, S. et al. Molecular epidemiology of Mycobacterium tuberculosis in the United States-Affiliated Pacific Islands. Asia-Pacific
journal of public health 26, 77-84, https://doi.org/10.1177/1010539512469249 (2014).

Stucki, D. & Gagneusx, S. Single nucleotide polymorphisms in Mycobacterium tuberculosis and the need for a curated database.
Tuberculosis (Edinb) 93, 30-39, https://doi.org/10.1016/j.tube.2012.11.002 (2013).

Schito, M. & Dolinger, D. L. A Collaborative Approach for “ReSeq-ing” Mycobacterium tuberculosis Drug Resistance: Convergence
for Drug and Diagnostic Developers. EBioMedicine 2, 1262-1265, https://doi.org/10.1016/j.ebiom.2015.10.008 (2015).

Sekizuka, T. et al. TGS-TB: Total Genotyping Solution for Mycobacterium tuberculosis Using Short-Read Whole-Genome
Sequencing. PloS one 10, €0142951, https://doi.org/10.1371/journal.pone.0142951 (2015).

Sharma, D. & Surolia, A. Computational tools to study and understand the intricate biology of mycobacteria. Tuberculosis (Edinb)
91, 273-276, https://doi.org/10.1016/j.tube.2011.02.005 (2011).

Schleusener, V., Koser, C. U., Beckert, P., Niemann, S. & Feuerriegel, S. Mycobacterium tuberculosis resistance prediction and
lineage classification from genome sequencing: comparison of automated analysis tools. Scientific reports 7, 46327, https://doi.
org/10.1038/srep46327 (2017).

Chernyaeva, E. N. et al. Genome-wide Mycobacterium tuberculosis variation (GMTV) database: a new tool for integrating sequence
variations and epidemiology. BMC Genomics 15, 308, https://doi.org/10.1186/1471-2164-15-308 (2014).

Abecasis_Lab. fastQValidator. http://genome.sph.umich.edu/wiki/FastQValidator (2012).

Wood, D. E. & Salzberg, S. L. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15, R46,
https://doi.org/10.1186/gb-2014-15-3-r46 (2014).

Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863-864, https://doi.
org/10.1093/bioinformatics/btr026 (2011).

Li, H. Aligning Sequence Reads, Clone Sequences and Assembly Contigs with BWA-MEM. arXiv (2013).

Broad_Institute. Picard tools. http://broadinstitute.github.io/picard (2015).

DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet
43, 491-498, https://doi.org/10.1038/ng.806 (2011).

Li, H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter
estimation from sequencing data. Bioinformatics 27, 2987-2993, https://doi.org/10.1093/bioinformatics/btr509 (2011).

Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the
genome of Drosophila melanogaster strainw1118; iso-2; iso-3. Fly (Austin) 6, 80-92, https://doi.org/10.4161/fly.19695 (2012).

Coll, E et al. A robust SNP barcode for typing Mycobacterium tuberculosis complex strains. Nat Commun 5, 4812, https://doi.
org/10.1038/ncomms5812 (2014).

Woese, C. R. Bacterial evolution. Microbiological reviews 51, 221-271 (1987).

Feuerriegel, S. et al. PhyResSE: a Web Tool Delineating Mycobacterium tuberculosis Antibiotic Resistance and Lineage from Whole-
Genome Sequencing Data. ] Clin Microbiol 53, 1908-1914, https://doi.org/10.1128/jcm.00025-15 (2015).

. Black, P. A. et al. Whole genome sequencing reveals genomic heterogeneity and antibiotic purification in Mycobacterium

tuberculosis isolates. BMC Genomics 16, 857, https://doi.org/10.1186/s12864-015-2067-2 (2015).

Hasan, M. S., Wu, X. & Zhang, L. Performance evaluation of indel calling tools using real short-read data. Hum Genomics 9, 20,
https://doi.org/10.1186/s40246-015-0042-2 (2015).

Moradigaravand, D. et al. DfrA-thyA double deletion in para-aminosalicylic acid resistant Mycobacterium tuberculosis Beijing
strains. Antimicrob Agents Chemother, https://doi.org/10.1128/aac.00253-16 (2016).

Martinez, E., Holmes, N., Jelfs, P. & Sintchenko, V. Genome sequencing reveals novel deletions associated with secondary resistance
to pyrazinamide in MDR Mycobacterium tuberculosis. ] Antimicrob Chemother 70, 2511-2514, https://doi.org/10.1093/jac/dkv128
(2015).

Koser, C. U, Bryant, J. M., Parkhill, ]. & Peacock, S. J. Consequences of whiB7 (Rv3197A) mutations in Beijing genotype isolates of
the Mycobacterium tuberculosis complex. Antimicrob Agents Chemother 57, 3461, https://doi.org/10.1128/aac.00626-13 (2013).
Miotto, P. et al. A standardised method for interpreting the association between mutations and phenotypic drug resistance in
Mycobacterium tuberculosis. The European respiratory journal 50, https://doi.org/10.1183/13993003.01354-2017 (2017).
Palomino, J. C. & Martin, A. Drug Resistance Mechanisms in Mycobacterium tuberculosis. Antibiotics (Basel, Switzerland) 3,
317-340, https://doi.org/10.3390/antibiotics3030317 (2014).

Campbell, P. J. et al. Molecular detection of mutations associated with first- and second-line drug resistance compared with
conventional drug susceptibility testing of Mycobacterium tuberculosis. Antimicrob Agents Chemother 55, 2032-2041, https://doi.
org/10.1128/aac.01550-10 (2011).

Shea, J. et al. Comprehensive Whole-Genome Sequencing and Reporting of Drug Resistance Profiles on Clinical Cases of
Mycobacterium tuberculosis in New York State. J Clin Microbiol 55, 1871-1882, https://doi.org/10.1128/jcm.00298-17 (2017).
Torres, J. N. et al. Novel katG mutations causing isoniazid resistance in clinical M. tuberculosis isolates. Emerging microbes &
infections 4, e42, https://doi.org/10.1038/emi.2015.42 (2015).

Almeida Da Silva, P. E. & Palomino, J. C. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis:
classical and new drugs. ] Antimicrob Chemother 66, 1417-1430, https://doi.org/10.1093/jac/dkr173 (2011).

Feuerriegel, S. et al. Sequence analysis for detection of first-line drug resistance in Mycobacterium tuberculosis strains from a high-
incidence setting. BMC Microbiol 12, 90, https://doi.org/10.1186/1471-2180-12-90 (2012).

Homolka, S. et al. High genetic diversity among Mycobacterium tuberculosis complex strains from Sierra Leone. BMC Microbiol 8,
103, https://doi.org/10.1186/1471-2180-8-103 (2008).

Huang, W, Li, L., Myers, J. R. & Marth, G. T. ART: a next-generation sequencing read simulator. Bioinformatics 28, 593-594, https://
doi.org/10.1093/bioinformatics/btr708 (2012).

Albers, C. A. et al. Dindel: accurate indel calls from short-read data. Genome Res 21, 961-973, https://doi.org/10.1101/gr.112326.110
(2011).

Acknowledgements

This study was supported by the Bill & Melinda Gates Foundation under grant agreement OPP1115887 to C-Path
for developing the ReSeqTB drug resistance data sharing platform and under grant agreement FIND OPP1115209
to address how to score mutations in the ReSeqTB data sharing platform initiative. The South African MRC and
the EDCTP support K. Dheda. I. Comas is supported by the Ministerio de Economia y Competitividad (Spanish

SCIENTIFICREPORTS | (2018) 8:15382| DOI:10.1038/s41598-018-33731-1 9


http://dx.doi.org/10.1128/jcm.39.10.3563-3571.2001
http://dx.doi.org/10.1016/j.tube.2014.02.005
http://dx.doi.org/10.1016/j.tube.2014.02.005
http://dx.doi.org/10.1038/31159
http://dx.doi.org/10.1177/003335491513000607
http://dx.doi.org/10.1177/1010539512469249
http://dx.doi.org/10.1016/j.tube.2012.11.002
http://dx.doi.org/10.1016/j.ebiom.2015.10.008
http://dx.doi.org/10.1371/journal.pone.0142951
http://dx.doi.org/10.1016/j.tube.2011.02.005
http://dx.doi.org/10.1038/srep46327
http://dx.doi.org/10.1038/srep46327
http://dx.doi.org/10.1186/1471-2164-15-308
http://genome.sph.umich.edu/wiki/FastQValidator
http://dx.doi.org/10.1186/gb-2014-15-3-r46
http://dx.doi.org/10.1093/bioinformatics/btr026
http://dx.doi.org/10.1093/bioinformatics/btr026
http://broadinstitute.github.io/picard
http://dx.doi.org/10.1038/ng.806
http://dx.doi.org/10.1093/bioinformatics/btr509
http://dx.doi.org/10.4161/fly.19695
http://dx.doi.org/10.1038/ncomms5812
http://dx.doi.org/10.1038/ncomms5812
http://dx.doi.org/10.1128/jcm.00025-15
http://dx.doi.org/10.1186/s12864-015-2067-2
http://dx.doi.org/10.1186/s40246-015-0042-2
http://dx.doi.org/10.1128/aac.00253-16
http://dx.doi.org/10.1093/jac/dkv128
http://dx.doi.org/10.1128/aac.00626-13
http://dx.doi.org/10.1183/13993003.01354-2017
http://dx.doi.org/10.3390/antibiotics3030317
http://dx.doi.org/10.1128/aac.01550-10
http://dx.doi.org/10.1128/aac.01550-10
http://dx.doi.org/10.1128/jcm.00298-17
http://dx.doi.org/10.1038/emi.2015.42
http://dx.doi.org/10.1093/jac/dkr173
http://dx.doi.org/10.1186/1471-2180-12-90
http://dx.doi.org/10.1186/1471-2180-8-103
http://dx.doi.org/10.1093/bioinformatics/btr708
http://dx.doi.org/10.1093/bioinformatics/btr708
http://dx.doi.org/10.1101/gr.112326.110

www.nature.com/scientificreports/

Government) research grant SAF2016-77346-R and the European Research Council (ERC) (638553-TB-
ACCELERATE). L. Chindelevitch acknowledges support by NSERC, Genome Canada, and the Sloan Foundation.
Use of trade names is for identification only and does not constitute endorsement by the US Department of
Health and Human Services, the US Public Health Service, or the Centers for Disease Control and Prevention.
The findings and conclusions in this report are those of the authors and do not necessarily represent the views of
the funding agency.

Author Contributions

M. Ezewudo, J. Posey: literature search, study design, data analysis, data interpretation, manuscript writing. M.
Schito, A. Borens, A. Chiner-Oms: study design, data analysis, manuscript writing. P. Miotto, L. Chindelevitch,
I. Comas, T.C. Rodwell, A.M. Starks, C.D. Hanna, R. Liwski, M. Zignol, C. Gilpin, S. Niemann, T. Kohl, R.M.
Warren, D. Crook, S. Gagneux, S. Hoffner, C. Rodrigues, D.M. Engelthaler, D. Alland, L. Rigouts, C. Lange, R.
Hasan, R. McNerney, D.M. Cirillo, K. Dheda,: study design, critical revision of manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-33731-1.

Competing Interests: M. Schito, R. Liwski, A. Borens and M. Ezewudo reports grants from Bill & Melinda
Gates Foundation, during the conduct of the study. Dr. D. Hanna reports grants from Bill & Melinda Gates
Foundation, outside the submitted work. C. Lange reports personal fees from Chiesi, personal fees from Gilead,
personal fees from Becton Dickinson, personal fees from Janssen, personal fees from Astra Zeneca, personal
fees from Thermo Fisher Scientific, outside the submitted work. I. Comas reports personal fees from FIND
Foundation for Innovative Diagnostics, within the scope of relevance to submitted work. D. Alland reports
grants from Cepheid, other from Rutgers University Patent Pool, during the conduct of the study; In addition,
D. Alland has a patent for primers and probes to detect drug resistance mutations issued. L. Rigouts reports
other from FIND, during the conduct of the study. K. Dheda reports grants from FIND, grants and personal
fees from ALERE, grants and personal fees from Oxford Immunotec, grants and personal fees from Cellestis
(now Qiagen), grants from eNose Company, grants from Statens Serum Institut, grants and personal fees from
bioMeriux, grants and personal fees from Cepheid, grants from Antrum Biotec, grants from Hain Lifescience,
outside the submitted work; In addition, Dr. Dheda has a patent Characterization of novel TB-specific urinary
biomarkers pending, a patent A smart mask for monitoring cough-related infectious diseases pending, and

a patent device for diagnosing extrapulmonary tuberculosis (EPTB) issued. S. Niemann reports grants from
German Center for Infection Research, during the conduct of the study and worked as consultant for FIND.
T.C. Rodwell reports funding from NIH (NIAID) and FIND during the conduct of the study. A. Chiner-Oms,
P. Miotto, A.M. Starks, J. Posey, D. Crook, R.M. Warren, R. Hasan, M. Zignol, C. Gilpin, L. Chindelevitch, R.
McNerney, D. Engelthaler, C. Rodrigues, S. Gagneux, D.M. Cirillo, S. Hoffner and T. A. Kohl have nothing to
disclose.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
CEE | jcense, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018

SCIENTIFICREPORTS | (2018) 8:15382| DOI:10.1038/s41598-018-33731-1 10


http://dx.doi.org/10.1038/s41598-018-33731-1
http://creativecommons.org/licenses/by/4.0/

	Integrating standardized whole genome sequence analysis with a global Mycobacterium tuberculosis antibiotic resistance know ...
	Results

	UVP functionality. 
	UVP Validation Results. 
	MTBC lineage assignment validation. 
	SNPs and Indels detection validation. 
	Large structural variations and gene deletion validation. 
	Antibiotic resistance prediction. 


	Discussion

	Methods

	Validation of UVP. 
	Simulation of Illumina WGS reads. 
	Antibiotic resistance prediction using aggregated data in the ReSeqTB platform. 

	Acknowledgements

	Figure 1 Distribution of isolates on ReSeqTB platform among the seven major lineages of the Mycobacterium tuberculosis complex (MTBC).
	Table 1 Evaluation of Unified variant pipeline SNP calling versus SNP detection using Sanger sequencing and PhyResSE analysis pipeline.
	Table 2 Comparisons of Indels calls by UVP and validated variants previously shown to be present in given isolates.
	Table 3 Sensitivity, specificity and accuracy values of drug resistance prediction by high confidence mutations inferred to be associated with antibiotic resistance in isolates within the data set with DST results from the BACTEC MGIT 960 Mycobacteria liq




