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Drug-resistant tuberculosis poses a persistent public health threat. The ReSeqTB platform is a 
collaborative, curated knowledgebase, designed to standardize and aggregate global Mycobacterium 
tuberculosis complex (MTBC) variant data from whole genome sequencing (WGS) with phenotypic drug 
susceptibility testing (DST) and clinical data. We developed a unified analysis variant pipeline (UVP) 
(https://github.com/CPTR-ReSeqTB/UVP) to identify variants and assign lineage from MTBC sequence 
data. Stringent thresholds and quality control measures were incorporated in this open source tool. The 
pipeline was validated using a well-characterized dataset of 90 diverse MTBC isolates with conventional 
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DST and DNA Sanger sequencing data. The UVP exhibited 98.9% agreement with the variants identified 
using Sanger sequencing and was 100% concordant with conventional methods of assigning lineage. 
We analyzed 4636 publicly available MTBC isolates in the ReSeqTB platform representing all seven 
major MTBC lineages. The variants detected have an above 94% accuracy of predicting drug based on 
the accompanying DST results in the platform. The aggregation of variants over time in the platform will 
establish confidence-graded mutations statistically associated with phenotypic drug resistance. These 
tools serve as critical reference standards for future molecular diagnostic assay developers, researchers, 
public health agencies and clinicians working towards the control of drug-resistant tuberculosis.

Tuberculosis (TB), caused by Mycobacterium tuberculosis complex (MTBC), was declared a global public health 
emergency in 19931. However, TB remains a global public health threat and recently became the world’s number 
one cause of mortality from an infectious disease2. While there has been a gradual decline of TB incidence world-
wide, the trend is not sufficient to end TB by 2035, a standing goal of the World Health Organization (WHO). The 
challenge is compounded by the worldwide spread of drug-resistant TB3.

Effective control of TB and a reduction in transmission of drug-resistant strains globally is dependent on 
the rapid detection and timely availability of drug susceptibility information for MTBC isolated from patients. 
These data are critical for effective antibiotic drug regimen selection and treatment monitoring which helps 
prevent transmission of drug resistant disease and achieve treatment success4. Culture-based, phenotypic drug 
susceptibility testing (DST), while considered the reference standard, requires specialized laboratory infrastruc-
ture, sophisticated biohazard sample transportation networks, and is technically difficult and time consuming. 
Additionally, established standards for current reference DST methods can be inconsistently implemented 
between laboratories and amongst assay methods for the drugs that are tested. The combination of slow MTBC 
replication and the challenges of growth-based phenotypic testing, results in delays of up to several weeks before 
clinicians receive laboratory results and can introduce a new drug combination for patients with increasingly 
complex resistance profiles5,6.

Detection of resistance–conferring genetic polymorphisms using molecular approaches such as polymerase 
chain reaction (PCR), DNA hybridization, targeted sequencing of specific genes, and whole genome sequencing 
(WGS) are promising rapid alternatives to phenotypic methods. Researchers initially focused their efforts on 
sequencing individual genomic loci known to confer antibiotic resistance in MTBC. Similarly, molecular typing 
methods such as IS6110-Restriction Fragment Length Polymorphism (RFLP), spoligotyping, and Mycobacteria 
interspersed repetitive units-Variable Number Tandem Repeat (MIRU-VNTR)7–9 have helped improve our 
understanding of MTBC epidemiology in terms of its genetic diversity, population structure and low-resolution 
transmission patterns. However, these approaches are relatively limited in their power to describe the full extent 
of natural variation in the MTBC population and cannot be used to develop a comprehensive picture of drug 
susceptibility determinants10. Sequencing of the first complete MTBC genome (H37Rv) in 199811 empowered 
researchers to glean detailed information from whole genome sequences and address questions about how the 
genetic diversity within MTBC contributes to disease and drug resistance.

The advent of high-throughput next-generation sequencing (NGS) technologies have simplified and decreased 
the turn-around time for generating WGS data from MTBC clinical isolates. Researchers have used WGS analysis 
extensively to understand the molecular basis and host-ecosystem relationships in infectious diseases and micro-
biology. This has allowed advances in our understanding of epidemiology, pathogen evolution and virulence 
determinants to better conduct TB disease outbreak investigation and assess disease transmission networks12,13. 
With accessible benchtop sequencers and commercially available library preparation protocols, large quantities of 
data have been generated, resulting in a rapidly increasing number of publicly available raw genome sequences14.

NGS technologies appear poised to replace cumbersome culture-based DST for MTBC surveillance and, in 
some cases, patient management. However, several limitations prevent widespread implementation of WGS for 
clinical and public health uses. One key step in overcoming these hurdles is the adoption of user-friendly, val-
idated bioinformatic tools to facilitate the use of WGS data by non-bioinformaticians. Additionally, we need 
a global collaborative effort to build and deploy a centralized knowledgebase for identifying the correlations 
between MTBC genotypes and phenotypic drug resistance to predict drug resistance to the arsenal of TB drugs 
available. Validated genomic variants curated in clinical knowledgebases will fill gaps in knowledge and eventu-
ally enable WGS-based methods to not only complement but also ultimately replace culture-based DST.

While the generation of DNA sequences is becoming simpler and less expensive, extracting, interpreting 
and communicating useful information in an easily understood format for clinical and public health audiences 
remains a significant challenge2 and few such bioinformatics resources exist14,15. Furthermore, a dearth of highly 
curated sequencing data and easy to use interpretation tools has slowed the progress of efforts for associating 
high-confidence mutations with resistance phenotypes or lineage groupings, which has negatively affected global 
confidence in the clinical relevance of some polymorphisms, discovered in NGS data.

There have been a number of TB-specific genome browsers and WGS analysis tools such as TGS-TB, 
TBProfiler, KvarQ, Mykrobe Predictor TB and PhyResSE developed within the past few years that are utilized 
for genotyping and drug resistance information16–18. Many of these tools have been helpful for correlating DST 
results with genotypic information from sequencing analysis6,19. However, to date, a comprehensive TB knowl-
edgebase guided by a team of experts that presents standardized genomic data together with culture-based DST 
and clinical outcome metadata with linkages of observed polymorphisms to particular MTBC lineage groupings 
does not exist in the public domain.

ReSeqTB (https://platform.reseqtb.org) offers such a knowledgebase. Here, we describe a bioinformatics 
tool –the unified variant analysis pipeline (UVP) –, which is a suite of NGS analysis tools with defined quality 
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metrics and a validated set of thresholds for standardizing the analysis of raw MTBC sequence data from Illumina 
sequencing platforms. As a result, raw sequencing files can be analyzed with an easy-to-use bioinformatics 
pipeline to provide standardized and reproducible high confidence genomic variant data. We also describe the 
ReSeqTB knowledgebase and its aggregation of variant reports from the UVP and accompanying metadata to 
produce a validated list of confidence-graded mutations associated with MTBC drug resistance phenotypes.

Results
UVP functionality.  The UVP was developed through adoption of best practices and consensus thresholds 
and parameters for implementing NGS analysis tools agreed upon by the ReSeqTB panel of experts assembled 
globally from different fields relevant to the genomics approach of studying MTBC. The open source bioinfor-
matics tools were implemented in the UVP to achieve two broad goals: identify high quality variants and assign 
MTBC lineage classification to each isolate analyzed.

The UVP consists of four broad sequential steps: 1) QC of the input sequence file, 2) mapping to the reference 
genome, 3) variant calling and annotation, and 4) MTBC lineage classification. The analysis pipeline accepts as 
input, WGS data in the form of Illumina short reads, which can be either paired-end or single-end reads. Prior to 
analyzing each sequence file, we checked the format of the file with FastQValidator20 to ensure adherence to the 
fastq format. As a pre-requisite for the analysis, the minimum acceptable average genome depth of coverage was 
10×. Briefly, each isolate WGS reads is assessed for MTBC species specificity using Kraken21, and 90% of the reads 
had to map to MTBC for acceptance. The accepted fastq files were assessed for quality and trimmed using FastQC 
and Prinseq22. ensuring an average read quality of Q20, and then mapped against the Mycobacterium tuberculo-
sis reference genome H37Rv, GenBank accession no. NC_000962.3 using BWA-MEM23. To reduce the number 
of false positive variants, duplicates were removed from the BAM files using PICARD tools24. We performed 
base call re-calibration and re-alignment around small Indels in the genome with the Genome Analysis Toolkit 
(GATK)25. GATK and Samtools26 are used to call both Single Nucleotide Polymorphisms (SNPs) and Indels, and 
the functional annotation tool SnpEff27 is used to annotate the output variant file. We inferred lineage classifica-
tion for each isolate by cross-referencing to a set of 62 informative SNPs outlined by Coll et al.28. The criteria set 
for identifying SNPs and small Indels includes: Q20 minimum base call quality score, a minimum Q20 mapping 
quality score, presence of variants on both strands for paired reads, maximum of 3 SNPs within a span 10 bp and 
a minimum coverage depth of 10X for each identified variant. The UVP also checks for multiple mutations in the 
ribosomal genes of MTBC (rrs and rrl). These regions are normally conserved29 and samples with more than five 
mutations within these regions are flagged as mixtures or contamination.

We implemented the UVP with custom Python programing scripts at different points of the analysis to facil-
itate processing and data flow. The primary scripts included lineage_parser.py that parses the variation file to 
infer MTBC lineage assignment, parse_annotation.py that formats the SnpEff annotated variation file into a more 
user-friendly text format and a suite of custom scripts that generate coverage information for all genomic loci 
(coverage_estimator.py, resis_parser.py and del_parser.py). This last set of scripts — unique to the UVP — dynam-
ically queried the genome coverage reports generated across the entire genome to infer loci that have complete 
or partial deletions.

The UVP analysis generated three key result files in addition to a number of reports from each of the QC steps. 
The first is an annotation file that lists the variant positions across the isolate genome including the quality scores, 
coverage and annotation details for each position. The variants in this annotation file feeds the ReSeqTB platform, 
and is aggregated with phenotypic DST data from same isolates to make predictions on antibiotic resistance. Next 
is the lineage report file that infers the MTBC lineage assignment for the isolate out of the possible seven major 
MTBC lineages defined in the work by Coll et al.28. Finally, the genome coverage report lists the average depth and 
width of coverage across all the loci in the isolate genome.

The UVP source code and details on the pipeline tools and thresholds set for these tools are available at https://
github.com/CPTR-ReSeqTB/UVP.

UVP Validation Results.  MTBC lineage assignment validation.  Our analyses demonstrated 100% con-
cordance in the assignment of lineages between the conventional genotyping methods and the UVP for the 79 
strains where conventional methods could infer a specific lineage. Both the UVP and the PhyResSE analysis 
tool (used as a comparator) inferred all the 11 strains that had no lineage classification using conventional gen-
otyping methods to belong to the Euro-American lineage. The rest of the lineage classification analysis showed 
100% concordance between PhyResSE and the UVP on the assignment of lineages for all 90 strains analyzed (see 
Supplementary Data 1).

SNPs and Indels detection validation.  In the test for concordance of variant calls between Sanger sequencing 
analysis and the UVP there was 100% concordance in resistance associated SNPs detected across two resistance 
loci (rpsL and katG) for all 90 strains. For the remaining loci of interest, there was 98.9% agreement. The UVP 
identified the discordant resistance associated SNPs in each case. This instance, also observed in PhyResSE anal-
ysis of the same data, suggests hetero-resistant samples, which are a mixture of wild type and variant alleles that 
Sanger sequencing was not able to detect30 (Table 1). We also observed 100% concordance in the SNP calling 
results between PhyResSE and the UVP (Table 1).The evaluation work on the same dataset, which showed that 
PhyResSE compares favorably to other NGS data analysis tools18 offers confidence against possible systematic 
errors in variant detection by both the UVP and PhyResSE. For validation of detection of short Indels, we used 
additional isolates drawn from previously analyzed WGS analyses to assess genomic heterogeneity in clinical 
MTBC isolates31 to establish the utility of the UVP. We compared the results of the UVP analysis of these isolates 
to that of the analysis of the validated data, and for each deletion there was a 100% agreement on the genomic 
location and size of the deletions (Table 2).

https://github.com/CPTR-ReSeqTB/UVP
https://github.com/CPTR-ReSeqTB/UVP
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Large structural variations and gene deletion validation.  Analysis of the simulated WGS data with varying length 
Indels in the third dataset demonstrated the pipeline’s variant calling tool could identify long Indels (up to 50 bp) 
at their accurate genomic positions (Supplementary Table S1). From our simulations, we deduced that neither 
the GATK variant caller nor Samtools detect Indels greater than about 50 bp long for the simulated sequences, 
using the thresholds and settings implemented in the pipeline. This result expands on previous findings that most 
NGS data analysis tools accurately identify short (<10 bp) insertions and deletions32, suggesting that biologically 
relevant structural variations of only up to half of the average read lengths in MTBC genomes can be accurately 
inferred by UVP just using the GATK or Samtools variant callers. We therefore implemented a custom script 
within the UVP to capture such large deletions that are more than half the length of the average sequencing read 
for each isolate. To test this, we reanalyzed MTBC isolates (ERR502929, ERR751361, ERR751453, ERR751483, 
ERR775373, ERR779910, SRR2333215, SRR1952721 and SRR1948177) previously shown to have complete gene 
deletions across several loci of interest (i.e. pncA, dfrA, and thyA)33,34. In addition, we searched for the tap gene 
deletion previously shown to be present in most MTBC strains classified into the Beijing lineage35 in the output 
of UVP analysis of the isolates. The results from the analysis using our custom script that infers large deletions 
across the genome, showed that the respective pncA, thyA, and dfrA loci were absent in all the strains except for 
the wild type isolates (Table 2). The tap gene deletion that leads to a frameshift mutation was present in all the 
strains of East Asian lineage (Lineage 2) analyzed except for SRR2333215, which belongs to a different East Asian 
sub-lineage (2.2.2). For isolates belonging to other MTBC lineages, this variant was absent as expected based on 
previous studies (Table 2).

Antibiotic resistance prediction.  The ReSeqTB platform independently calculates the Likelihood ratio test statis-
tic (LR+) as previously described36 for all variants found in loci of interest (see Supplementary Data 1) thought 
to be associated with resistance to corresponding antibiotics. The LR+ test offers a robust approach to assigning 
the strength of association between variants and their corresponding drug resistance phenotypes. Mutations 
that have high LR+ (>10) values for the test of association to drug resistance in this context would offer strong 
confidence of association to drug resistance. Currently, applying the LR+ test, there are 53 such mutations on the 

Resistance 
gene

# of SNPs detected by 
Sanger sequencing

# of SNPs 
detected by UVP

# of discordant SNPs between 
UVP and Sanger sequencing

% Concordance between 
UVP and Sanger sequencing

# of SNPs detected 
by PhyResSE

% Concordance between 
UVP and PhyResSE

rpsL 19 19 0 100 19 100

gidB 66 67 1 98.9 67 100

katG 25 25 0 100 25 100

rpoB 19 20 1 98.9 20 100

embB 16 17 1 98.9 17 100

pncA 11 12 1 98.9 12 100

Table 1.  Evaluation of Unified variant pipeline SNP calling versus SNP detection using Sanger sequencing and 
PhyResSE analysis pipeline.

Sample ID
PubMed 
ID

Affected 
gene

H37Rv reference 
genomic position Indel

UVP inferred 
Indel

Lineage 
information

tap gene(Rv1258c) 
frameshift mutation

ERR502929 27021327 dfrA, thyA 3073130–3074471 complete deletion complete deletion 2.2.1 present

ERR751361 27021327 Wt 3073130–3074471 no deletion no deletion 2.2.1 present

ERR751453 27021327 dfrA, thyA 3073130–3074471 complete deletion complete deletion 2.2.1 present

ERR751483 27021327 Wt 3073130–3074471 no deletion no deletion 2.2.1 present

ERR775373 27021327 dfrA, thyA 3073130–3074471 complete deletion complete deletion 2.2.1 present

ERR779910 27021327 dfrA, thyA 3073130–3074471 complete deletion complete deletion 2.2.1 present

SRR2333215 27021327 dfrA, thyA 3073130–3074471 complete deletion complete deletion 2.2.2 absent

SRR1952721 25977398 pncA 2288681–2289241 complete deletion complete deletion 2.2.1 present

SRR1948177 25977398 pncA 2288681–2289241 complete deletion complete deletion 2.2.1 present

R721_C13 26496891 atsD 756970 C > CG C > CG 2.2.1.1 present

R721_C13 26496891 regX3 581317 G > GCG G > GCG 2.2.1.1 present

R966_C5 26496891 Rv3861 4338065 AC > A AC > A 2.2.1 present

R160_C13 26496891 adhD 3452173 CG > CGCCAT CG > CGCCATG 4.1.1.3 absent

R376_C11 26496891 Rv3256c 3636924 ACC > AC ACC > AC 4.1.2.1 absent

R912_C11 26496891 yrbE4A 3920814 GA > G GAA > GA 1.2.2 absent

R965_C1 26496891 adhA 2110232 A > AG AG > AGG 2.2.1 present

R458_C3 26496891 espR 4323810 GC > G GC > G 4.1.2 absent

R641_C1 26496891 Rv2375 2655550 A > AT AT > ATT 2.2.1.1 present

Table 2.  Comparisons of Indels calls by UVP and validated variants previously shown to be present in given 
isolates.
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platform (platform.reseqtb.org) with a value >10 and classed as high confidence mutations. There is corrobora-
tion that these 53 mutations are associated with antibiotic resistance in MTBC through work done over the years 
by different researchers in this field37–39, but the numbers of such mutations is limited by the underlying dataset 
from data currently in the ReSeqTB platform. To address this limitation for the purposes of our analysis, we cre-
ated a comprehensive list of high confidence mutations, by adding the 53 mutations to the list of high confidence 
mutations described in the systematic review analysis work done by Miotto et al.36 (Supplementary Data 2). Most 
of the initial 53 mutations (except the fabG1 synonymous mutation) with LR+ values >10 from the platform 
are also present in the list. The comprehensive list was then used to test for the accuracy of predicting antibiotic 
resistance reported in the phenotypic data housed in the platform and captured in our dataset.

Our analysis to test for the predictive value of variants in the comprehensive list was specifically targeted on 
829/4636 isolates in the dataset (see Supplementary Data 3) with known phenotypic test results for multiple drugs 
using MGIT 960 and drawn from all major MTBC lineages (see Fig. 1). The analysis, using phenotypic DST as the 
standard, showed that high confidence mutations in loci associated with resistance to the first line drugs isoniazid 
and rifampicin had 94.9% and 97.5% accuracy (measured in each instance as the ratio of true calls to the total 
number of calls for each drug), respectively, for predicting resistance to these drugs. High confidence mutations 
associated with resistance to fluoroquinolones in the dataset, had 99.1% and 97.5% accuracy for predicting resist-
ance for levofloxacin and ofloxacin, respectively. For the first line drugs, we found several variants present in iso-
lates that are phenotypically resistant but lack any of the high confidence mutations from our list (Supplementary 
Data 2). Table 3 provides details on the accuracy, sensitivity and specificity (including their associated binomial 
95% confidence intervals) results for the MGIT method. Further details on the distribution of high confidence 
mutations for the first line antibiotic drugs in our dataset is provided in Supplementary data 2. The accuracy val-
ues for associating drug resistance to high confidence mutations with results from DST on solid media and those 
without a specified method (this affects 3807/4636 isolates in the dataset which make up 82% of the phenotypic 
testing results), were not included in our major analysis. In the former case, we lacked sufficient sample size for 
DST in solid media for our analysis, and in the latter case, the lack of specific DST methods introduced some 
level of ambiguity to the results when pooled. Separately, we performed the resistance prediction analysis on 
these excluded 82% of the dataset, in Supplementary Data 4, and showed sensitivity values as much as 10% lower 
(0.81–0.85 for solid media testing; 0.85–0.88 for DST with no stated method) when compared to results using 
MGIT DST results alone. In addition, we listed putative drug resistance mutations within the loci of interest that 

Figure 1.  Distribution of isolates on ReSeqTB platform among the seven major lineages of the Mycobacterium 
tuberculosis complex (MTBC). This schematic shows the proportional representation of the major MTBC 
lineages in our dataset. The Euro American lineage has the most representation, but every other major lineage 
including Lineage 7 and animal strains are represented in the dataset.

Drug TP FP TN FN Sensitivity
95%CI 
Low

95% CI 
High Specificity

95%CI 
Low

95%CI 
High

Accuracy 
(%)

Isoniazid 321 1 463 41 0.887 0.848 0.917 0.997 0.986 0.999 94.9

Levofloxacin 23 10 313 2 0.92 0.725 0.986 0.969 0.942 0.984 96.6

Ofloxacin 35 1 312 2 0.946 0.805 0.991 0.997 0.978 0.999 99.1

Rifampicin 275 2 533 19 0.935 0.899 0.96 0.996 0.985 0.999 97.5

Table 3.  Sensitivity, specificity and accuracy values of drug resistance prediction by high confidence mutations 
inferred to be associated with antibiotic resistance in isolates within the data set with DST results from the 
BACTEC MGIT 960 Mycobacteria liquid culture method.
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could explain this relative drop in sensitivity for these excluded data. We did not include test results for ethambu-
tol, pyrazinamide, moxifloxacin and the second-line injectable agents because they lack sufficient sample size to 
make clear inferences on the accuracy measure although they suggest the same trends.

Discussion
The UVP described herein, which processes raw NGS data for submission to the ReSeqTB knowledgebase, was 
developed by applying best practices and quality checks. These protocols were put in place by a global consortium 
of experts within the TB and genomics research fields that work to interpret data driven results from bioinfor-
matic tools and computational databases analytics, drawing from a consensus on prior knowledge and experience 
in the field. This collaboration, which is a unique feature of the UVP and the ReSeqTB, could serve as a tem-
plate for future collaborations around scientific endeavors that are of public health relevance. The UVP currently 
accepts WGS data from Illumina platforms and future advancements will include added capacity to process WGS 
from a variety of other NGS platforms to add to the knowledge base. In addition, future efforts will include the 
capacity to analyze sequence data from targeted sequencing approaches, which will enable capture of sequenc-
ing data from clinical samples. This is critical to ensure inclusion of data from settings where a culture-based 
approach is not routinely used. An online user- interactive version of this publicly available tool is under develop-
ment and information on this will be made available on the public GitHub site once it is accessible.

In addition and unique to the UVP, algorithms implemented in the pipeline enable easy accounting for loci in 
the MTBC genome where there are large deletions. Typically, Indels longer than the sequence read length from 
NGS platforms are not accounted for using regular bioinformatics analysis tools. The UVP analysis captures such 
records and is important for loci where large deletions could underlie antibiotic resistance phenotypes. If not 
properly identified, these deletions could confound attempts to establish novel and comprehensive associations 
with resistance phenotypes. There are two limitations for the UVP using this approach. First, the pipeline does 
not account for large insertions beyond those detected by the variant calling tools in the pipeline. Additionally, 
the UVP cannot yet reliably identify heterogeneous Indels (mixture of wild type and Indels at same location) in 
clinical isolates that have minor sub-populations. This ties to the broader challenge of developing algorithms with 
robust hetero-resistance detection in general. Such algorithms should apply rigorous thresholds on allele frequen-
cies and coverage depth at loci of interest in order to produce accurate predictions of phenotype from sequence 
information. These improvements will also help refine all antibiotic resistance prediction and phylogenetic lin-
eage classification for isolates with and without sub-populations. Moreover, the clinical relevance of such minor 
populations will need to be evaluated for each drug taking into account the totality of resistance information 
available and the treatment regimen employed.

The UVP compared to other NGS analysis tools, uniquely applies a rigorous approach to identify mixed or 
contaminated samples, going beyond just the species specificity checks implemented in the Kraken tool, but also 
looking for patterns of variations within conserved ribosomal genes of MTBC strains that will suggest presence 
of multiple species within a given sample. The consensus approach described here of first establishing thresholds 
and criteria for the various NGS analytical tools implemented in a given analysis pipeline, and then validating 
against well-curated data, could point the way towards standardizing bioinformatics tools and approaches for 
analyzing NGS data in the future. However, there is still the need for an expanded validation dataset drawn 
from primary samples to answer specific questions on the presence and impact of closely related species such as 
non-tuberculosis mycobacteria (NTMs) on the analyses.

While there are a number of other MTBC WGS analysis pipelines or tools such as TB-Profiler, GenTB, 
CASTB, KvarQ that employ a number of approaches to infer variants and predict drug resistance in isolates. Our 
intent on settling on PhyResSE as the tool to perform our validation analysis comparisons is because of the fact 
that this tool applies a similar reference genome guided approach of identifying genetic variants like the UVP, 
and has also been compared with a number of other WGS analysis tool in a recent publication18, making it a good 
candidate for our validation comparisons.

The ReSeqTB knowledgebase includes an investigational database that standardizes and aggregates quality 
validated data submitted to the platform by contributors. This contributed data includes genomic sequence data, 
phenotypic DST results and clinical outcome data when available. In the long term, other potentially useful data 
types including surveillance data and clinical trial data should be included on the platform to provide broader 
context and information to different categories of users. The combination of the UVP and the ReSeqTB data plat-
form uniquely enhances the capability to both confirm underlying antibiotic resistance phenotypes and poten-
tially predict novel resistance variants. The antibiotic resistance prediction analysis we conducted on a set of 829 
isolates serves to point to this capability, but it also demonstrated some inherent limitations in our approach. One 
such limitation is the number of publicly available data on the platform. We performed the resistance prediction 
accuracy analysis on only a subset of the over 7800 contributed datasets currently aggregated on the platform. 
This issue will be assuaged as more curated genetically and phenotypically diverse and publicly available isolate 
data populate the ReSeqTB database. Another limitation tied to the dataset on the platform is the limited number 
of isolates whose DST results specifies the actual method used for the testing. We settled on isolates with com-
plete information on the DST methods for this proof of concept analysis, which lead to the exclusion of more 
than 80% of the publicly available dataset on the platform at the time of the analysis, from our major analysis. As 
more data accumulate on the platform, we will perform validation-type analysis on the subset of data without 
test methods attached to their DST results, to assess the accuracy values from those. The goal will be to integrate 
the entire dataset pool for future resistance-prediction analysis. In our current resistance prediction analysis 
on isolates tested with the MGIT DST method, we detected several variants that could account for the drop in 
accuracy for the association of drug resistance to the first line drugs. For isoniazid, of the 44 false negatives in the 
test for sensitivity, we highlighted 38 mutations, but also identified frameshift mutations and Indels within the 
inhA, fabG1, katG and ahpC upstream loci such as the Leu203Leu fabG1 mutation, the −17G > T fabG1 upstream 
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mutation and katG Ser315 mutations (other than Ser315Thr) in those isolates, which could explain this discrep-
ancy. These mutations are known to confer resistance to isoniazid but are not yet considered as high confidence 
in our dataset because they are not yet at an appreciable frequency in the database. Similarly for rifampin resist-
ance we highlighted an additional 12 mutations within the rpoB loci which could explain some of the 19 false 
negatives observed in the sensitivity calculations. A number of these mutations are codon 445 rpoB mutations 
previously described in the literature to be associated with rifampin resistance40,41. Some of the other mutations 
are novel and would be candidates for functional genomic studies to assess their association with drug resistance. 
The details on the frequency and distribution of these mutations are in Supplementary Data 2. In addition, it has 
been well documented that liquid media DST methods often fail to identify some resistance to rifampicin36 and 
could account for some of the drop in our accuracy measure for rifampicin resistance prediction. For the supple-
mentary work we did on isolates with DST results that either have no stated methods or were performed on solid 
media, the results point to similar explanation for the drop in sensitivity overall, and compared to the MGIT DST 
results. For isoniazid resistance, the false negatives in the sensitivity calculations for the solid media method and 
the no stated DST method were 33 and 147 respectively, and there were 31 and 66 mutations respectively in the 
isolates tested that could explain some of the drop insensitivity, given they are known to underlie resistance. For 
rifampin, there were 65 mutations which could explain part of the 128 false negatives observed for isolates where 
there is no stated method for the DST results, and a combination of 33 mutations which have been shown to 
confer resistance to rifampicin that could explain the 30 false negatives observed for the subset tested using solid 
media. Details of the results on this supplementary work can be found in Supplementary Data 4. These mutations, 
although previously shown to be associated to the respective drug resistance phenotypes, were not classed as high 
confidence in the ReSeqTB database due to the size limitations of our dataset. But as more data are aggregated in 
the platform, the frequencies of such mutations will increase, which will upgrade them to high confidence status 
and help refine the accuracy and sensitivity of our approach.

Similarly, the approach of using the LR+ test statistic to infer associations between mutations and resistance 
phenotypes for any dataset serves to give a broad picture of mutations or variants associated with antibiotic 
resistance. The statistic by itself is limited in explaining instances where mutations could be of low frequency 
within the sampled population and may not rise to appreciable frequency for the LR+ calculations (e.g. pncA loci 
of interest for pyrazinamide). The panel of experts from the TB research community were consulted to consider 
these limitations in assessing the ability of mutations to predict resistance to anti-TB medicines and as a future 
step will be working to develop a holistic grading system for mutations. In addition to the LR+ test statistic of 
association to phenotypic resistance, this grading system will also take into consideration many other factors 
including homoplasy to exclude lineage markers coincidentally found in drug-resistant strains. Metadata in the 
ReSeqTB platform including MICs, clinical outcomes, and functional analysis on the mutation in question could 
also be considered in assessing the role that a polymorphism has in drug resistance. This will ultimately result in 
a dynamic knowledgebase and consensus driven approach to assess the impact of resistance variants as suggested 
by the prediction analysis as data aggregates in the platform.

There is an increasing need to improve the process of routine identification and DST for TB and other micro-
bial pathogens in the clinical setting. The adoption of bacterial WGS by clinicians and public health officials 
could open that door, if best practices are implemented in both identifying variants within isolate genomes and 
rendering confidence grading on the interpretation of such variants to drug resistance or other phenotypes of 
interest. The suite of bioinformatics and statistical analysis tools offered by ReSeqTB could prove invaluable to 
laboratories that can generate NGS data but lack the expertise and resources to analyze the increasing amount 
of high- throughput data coming from their laboratories. The approach of the UVP integrated into the ReSeqTB 
platform could indeed serve as a model in the future, where developers and researchers would increasingly rely 
on high confidence mutations, identified from high quality curated data to systematically show association with 
phenotypes of interests via a robust and knowledge-driven process.

Methods
Validation of UVP.  We evaluated the UVP for accuracy of variant calling and lineage assignment by evaluat-
ing UVP performance on a highly curated data set with well-established genotypes. This analysis included three 
different sample sets:

(i) 90 MTBC strains drawn from a well-characterized strain collection from Sierra Leone in West Africa30,42,43. 
This data set consisted of 43 strains that were phenotypically resistant to all antibiotics tested, and 47 strains 
that were resistant to either one or a combination of the antibiotic drugs used for the DST testing (details in 
Supplementary Data 1). We inferred antibiotic resistance phenotypes to five anti-tuberculosis drugs: rifampicin 
(RIF), isoniazid (INH), streptomycin (SM), ethambutol (EMB), and pyrazinamide (PZA). Additionally, the 
results of the analysis were compared to results from a similar analysis performed using the well-documented 
NGS analysis pipeline PhyResSE30. PhyResSE has also independently been compared to four other MTBC WGS 
analysis software and shown to be optimal in terms of functionality, lineage assignment and variant calling 
amongst the compared tools18. The data set included previously described DST results, conventional sequencing 
data for six TB drug resistance-associated loci (rpsL, gidB, katG, rpoB, embB, and pncA) and WGS reads of all the 
strains in the data set30. We retrieved the WGS data from the EMBL-EBI-ENA sequence read archive with the 
project ID: PRJEB7727. The data also contained phylogenetic strain classifications obtained through conventional 
genotyping methods as well as from PhyResSE web tool analysis. For this first sample set, we performed two 
sets of validation analyses. The first analysis established the level of agreement on the classification of the strains 
using conventional genotyping methods (spoligotyping, 24-locus MIRU-VNTR, and IS6110 DNA fingerprint-
ing) versus the UVP analysis. We performed similar lineage classification analyses based on results from both the 
UVP and the PhyResSE application. For the second analysis, we checked and confirmed the agreement on the 
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variants identified in the regions of interest within all 90 strains using the UVP against Sanger sequencing variant 
detection.

(ii) We utilized a second sample set that comprised a number of WGS data sets previously described in the 
MTBC literature31,33,34 to evaluate how the pipeline handles both small insertions and deletions (Indels). These 
curated data had deletions within loci of interest mapped against the H37Rv reference genome that were validated 
using Sanger sequencing. WGS in this data set are available in the EMBL-EBI-ENA sequence read archive with 
the project ID: PRJEB772731.

(iii) A data set comprised of simulated WGS reads generated using the ART tool44 was used to establish the 
sensitivity of the analysis suite for calling Indels in MTBC WGS data sets. Indels are problematic features when 
analyzing NGS data and long Indels that span the length of sequencing reads could prove particularly difficult to 
identify using current bioinformatics analysis tools45. We described the simulated sequences in Supplementary 
Table 1, demonstrating deletions with sizes ranging from one base pair (bp) to 100 bp in length. Also additional 
WGS available in the NCBI sequence read archive accession numbers ERR502929, ERR751361, ERR751453, 
ERR751483, ERR775373, ERR779910, SRR233215, SRR1952721 and SRR1948177, were used to assess how UVP 
handles large deletions or complete deletions of genes within loci of interest.

Simulation of Illumina WGS reads.  Synthetic fastq files were generated using a custom Perl script, fasta_
insert_deletions.pl (https://gitlab.com/tbgenomicsunit/Publications_resources) and the ART tool44 to simulate 
insertions and deletions (Indels) of varying lengths. The Perl script accepts as input, a reference genome, an 
annotation file and a target gene. The reference genomes are complete fasta format genome files downloaded from 
NCBI repositories. The Perl script creates a set of new genomes based on the reference. Each simulated genome 
has randomly assigned insertions and deletions ranging from one to 100 bp within the target gene supplied to 
the script. These simulated genomes are used as an input by the ART tool to generate the fastq files. We created 
paired-end fastq files, simulating the Illumina HiSeq2500 technology, with a read coverage of 50x and read length 
of 150 bp. We used the available MTBC genome in the tool Mycobacterium africanum genome (GM041182, 
NC_015758.1) as the reference, and a number of MTBC genes of interest as target loci.

Antibiotic resistance prediction using aggregated data in the ReSeqTB platform.  The panel 
of drugs and corresponding loci of interest used in the analysis included isoniazid (inhA, fabG1 and katG), 
rifampicin (rpoB), levofloxacin, ofloxacin, moxifloxacin (gyrA and gyrB), kanamycin (rrs, eis and whiB7), capre-
omycin (rrs and tlyA) and amikacin (rrs).

Phenotypic testing was performed on the 4636 isolates in the dataset submitted to the ReSeqTB platform 
through December 2017, and provided either a categorical result or Minimum Inhibitory concentration (MIC) 
using a variety of DST methods by the data contributors to the ReSeqTB knowledgebase. About 80% of the 
phenotypic test results were categorical DST without details on the specific methods used. Of the remain-
ing DST results where a method was provided, 67% had DST performed using the liquid medium BACTEC 
Mycobacterial Growth Indicator Tube 960 (MGIT). Details of the phenotypic testing methods results are shown 
in Supplementary Data 2 and Supplementary Data 3.

Likelihood Ratio (LR+) is calculated using the formulas below:

. = +
. = +
. = +
. = +
. + = −

a Sensitivity TP/(TP FN)
b Specificity TN/(TN FP)
c PPV TP/(TP FP)
d NPV TN/(TN FN)
e LR Sensitivity/1 Specificity

where TP means true positive, FN means false negative, PPV means positive predictive value and NPV means 
negative predictive value.

Data Availability
Sequence reads for isolates used in this analysis are available publicly in the NCBI sequence read archives under 
project ids: PRJNA282721, PRJNA200335, PRJNA244659, PRJNA240330 and PRJEB7798 and deposited as pub-
licly available data on the ReSeqTB data platform (platform.reseqtb.org).
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