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Influence of Cr Substitution and 
Temperature on Hierarchical Phase 
Decomposition in the AlCoFeNi 
High Entropy Alloy
V. Chaudhary1, B. Gwalani2, V. Soni2, R. V. Ramanujan1,3 & R. Banerjee1,2

While the AlCoFeNi high entropy alloy exhibits a single ordered B2 phase at high temperature, both the 
substitution of ferromagnetic Co with antiferromagnetic Cr, and lower annealing temperatures lead to 
a tendency for this system to decompose into a two-phase mixture of ordered B2 and disordered BCC 
solid solution. The length scale of this decomposition is determined by the combination of composition 
and annealing temperature, as demonstrated in this investigation by comparing and contrasting 
AlCoFeNi with the AlCo0.5Cr0.5FeNi alloy. The resulting phase stability has been rationalized based 
on solution thermodynamic predictions. Additionally, it is shown that replacement of Co by Cr in the 
AlCoFeNi alloy resulted in a substantial reduction in saturation magnetization and increase in coercivity. 
The microhardness is also strongly influenced by the composition and the length scale of B2 + BCC 
decomposition in these high entropy alloys.

High-entropy alloys (HEAs) have attracted a lot of attention in recent years, due to the unique combina-
tions of structural, physical and chemical properties of these alloys1–3. HEAs usually form simple structures 
such as body-centered cubic (BCC) (e.g. TaNbHfZrTi4, NbTaVWZr5 etc.) or face-centered cubic (FCC) (e.g., 
CoCrCuFeNi6, CoCrFeMnNi7 etc.) solid solutions. The large number of the alloying elements in near-equiatomic 
proportions result in high configurational entropy in these solid solutions. However, these alloys can decompose 
to multiple phases upon changing the composition or annealing at different temperatures or a combination of 
both8–10. Such a phase decomposition is often the result of the complex interplay of configurational entropy of 
mixing with the enthalpies of mixing of the constituent elements. Additionally, such multiphase microstructures 
are more likely to exhibit the desired properties for real engineering applications. Hence, tuning the composition 
and fractions of phases is critical for achieving the desired properties10,11.

Recently, it has been reported that AlCoCrFeNi based HEAs exhibit high hardness, good corrosion resist-
ance, high yield strength and promising magnetic properties1,11–15. A systematic investigation on a compositionally 
graded AlCoxCr1−xFeNi sample, processed by laser engineered net shape (LENS) technology13, revealed that all the 
compositions within this graded sample exhibited either a single B2 phase or a two-phase BCC + B2 microstruc-
ture. A separate study reported that annealing the AlCoCrFeNi HEA at 600 °C, exhibited a near single B2 phase 
microstructure, while the same alloy annealed in the temperature range of 800 to 1200 °C exhibited FCC precip-
itates in a B2 matrix15. While the influence of Al content on the phases and microstructures, in the AlxCoCrFeNi 
class of HEAs has been extensively investigated10,16,17, there is rather limited knowledge regarding the composition 
and temperature dependent microstructure and properties in the AlCoxCr1−xFeNi system13. Therefore, the role of 
Cr, an anti-ferromagnetic element, on the microstructural evolution and properties (magnetic and mechanical) 
of AlCoxCr1−xFeNi type HEAs, needs further investigation and forms the basis of the present study. This study 
focuses on two representative compositions, i.e., AlCoFeNi and AlCo0.5Cr0.5FeNi processed by conventional melt 
technology and subsequently annealed at specific temperatures/times to determine the phase stability as a function 
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of composition and temperature. The complex phase decomposition in these alloys, over multiple length scales, 
has been analyzed in detail by coupling multiple microscopy techniques, including scanning electron microscopy 
(SEM) (including electron backscatter diffraction (EBSD)), transmission electron microscopy (TEM) and atom 
probe tomography (APT). The experimentally observed phase decomposition has been rationalized using solution 
thermodynamic models (CALPHAD approach). The resultant mechanical (microhardness) and magnetic proper-
ties of these alloys have also been characterized as a function of composition and annealing temperature.

Experimental Details
AlCoxCr1−xFeNi (x = 0.5 and 1) HEAs were prepared by arc melting of elemental Al, Co, Cr, Fe and Ni pellets 
(99.9% purity) under argon atmosphere. Alloys were repeatedly melted to achieve good chemical homogene-
ity. The resulting ingots were annealed at 600 °C and 1000 °C for 15 h under argon and subsequently quenched 
in water. The composition and microstructures were characterized by a scanning electron microscope (SEM), 
using a FEI Nova-NanoSEM 230™ coupled with an energy dispersive x-ray spectrum analyzer (SEM–EDS). 
Site-specific TEM samples were prepared using a FEI Nova 200 dual beam focused ion beam (FIB), and these 
samples were characterized in a FEI Tecnai F20™ FEG TEM operating at 200 kV. Standard lift-out technique was 
used for for Atom Probe Tomography (APT) sample preparation using a FIB. APT experiments were conducted 
on a CAMECA local electrode atom probe 3000X HR instrument under voltage mode. The target pulse fraction 
was 0.2 and the temperature of 40–50 K was maintained while the experiments. APT data reconstruction and 
analysis was carried out using CAMECA IVAS® 3.6.8 software. The Kf and ICF (image compression factor) used 
for the reconstruction of the tips were 3.3 and 1.650, respectively. The tips are reconstructed using initial radius of 
30 nm and shank half angle of 20°, which is based on the SEM examination of the tips taken after the final milling.

Results and Discussion
Microstructure of AlCoFeNi after isothermal annealing at 600 °C and 1000 °C.  Samples of the 
AlCoFeNi alloy were isothermally annealed at either 600 °C or 1000 °C for 15 h. Figure 1 shows the back-scatter 
SEM images of these annealed samples. The samples exhibited a polycrystalline microstructure consisting of large 
grains. Based on these images the microstructure for both samples appears to be a single phase since no phase 
separation or second phase precipitation is evident from these SEM images. However, it should be recognized that 
finer scale second phase precipitates or phase separation may be present in these samples but not revealed at this 
coarse length scale of imaging. Hence, more detailed investigations have been carried out using TEM and APT.

TEM and APT investigation of AlCoFeNi (1000 °C/15 h).  Figure 2(a) shows the selected area diffraction pattern 
(SADP) from the [001]BCC zone axis from the AlCoFeNi alloy annealed at 1000 °C for 15 h. The superlattice spots 
at {100} positions (one such spot is highlighted by a white circle and labeled as <010> in Fig. 2(a)) clearly proves 
the presence of an ordered BCC (B2) phase. A dark field TEM (DFTEM) image recorded using the <010> spot 
labeled in Fig. 2(a) is shown in Fig. 2(b). While this DFTEM image does exhibit some contrast with particle-like 
features, it is not possible to definitively attribute the contrast to precipitates, rather than simply strain contrast 
within the continuous B2 matrix. Therefore, atom probe tomography (APT) was performed to investigate the 
possibility of phase separation within the B2 matrix. Individual ionic/elemental reconstructions of Ni, Fe, Co and 
Al atoms (Fig. 2(c)) reveal a homogenous elemental distribution. The atomic fraction of Ni, Fe, Co and Al are 
tabulated in Fig. 2(c). Thus, these AlCoFeNi samples consist of a single phase with a B2 crystal structure.

TEM and APT investigation of AlCoFeNi (600 °C/15 h).  The TEM results after annealing the AlCoFeNi alloy 
at 600 °C for 15 h are shown in Fig. 3. Figure 3(a) shows the SADP from the [001] zone axis of the BCC lattice. 
Similar to the previous condition, superlattice spots corresponding to the B2phase are evident. Figure 3(b) shows 
the DFTEM generated from a <010> superlattice spot. This DFTEM image appears to be nearly identical to 
the one observed in case of the 1000 °C/15 h annealed sample, shown in Fig. 2(b). Therefore, it is not possible to 
establish phase separation within the B2 matrix based on this dark-field image. Figure 3(c) and (d) show APT 
results from the 600 °C/15 h annealed AlCoFeNi alloy. 3D reconstructions of ions corresponding to all the ele-
ments, Ni, Fe, Co and Al have been plotted in Fig. 3(c). Fine scale precipitate-like regions rich in Fe and Co were 
observed, the matrix is rich in Al and Ni. The compositional partitioning observed in the APT reconstruction 
was analyzed by constructing iso-concentration surfaces (isosurfaces) along 24.5 at% Al. Interfaces between the 
two regions were constructed (Fig. 3(d)) and a proximity histogram, delineating the two phases,and showing 
elemental partitioning is also shown in Fig. 3(d) (right side). From the APT and TEM results, the two phases can 
be characterized as the Al-Ni rich B2 matrix interspersed with fine scale precipitates of a Fe-Co rich BCC phase. 
The APT results revealed that the average compositions of the BCC phase is 6Al-40Co-49Fe-5Ni (at%), while that 
of the B2 phase was determined to be 32Al-18Co-17Fe-33Ni (at%).

Effect of partial Co replacement by Cr: Microstructure of AlCo0.5Cr0.5FeNi alloy after isothermal 
annealing at 1000 °C and 600 °C.  SEM and EDS-EBSD investigation of AlCo0.5Cr0.5FeNi.  Co was par-
tially replaced by Cr in the case of the AlCo0.5Cr0.5FeNi alloy to investigate the influence of Cr addition on the 
microstructure. Figure 4(a) and (b) show back-scatter SEM images of the AlCo0.5Cr0.5FeNi specimens annealed 
for 15 h at 1000 °C, while Fig. 4(c) and (d) show SEM images from the 600 °C/15 h annealed sample. Both the heat 
treatment conditions resulted in the formation of a bright contrast faceted phase within a grey contrast matrix. 
Comparing the high magnification images from the two conditions, the 600 °C annealed sample (Fig. 4(d)) shows 
nano-scale precipitation in addition to the coarser micron-scale decomposition seen in both 600 °C and 1000 °C 
annealed samples. Note that the coarser precipitation of the bright phase is limited to the near-grain boundary 
region in the 600 °C sample (marked as BCC gen-1 in Fig. 4(d)) while it extended throughout the grains in the 
1000 °C condition. Finer scale phase decomposition within the matrix is not visible in the case of the 1000 °C 
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annealed sample. Based on these SEM observations it is apparent that phase separation occurred for both the 
annealing conditions in this alloy, unlike the AlCoFeNi alloy, which does not contain Cr. Hence, addition of Cr to 
AlCoFeNi substantially changes the microstructure by introducing a strong tendency of phase separation in the 
B2 phase to form a two-phase mixture. Apart from the intragranular precipitation/phase separation, there is clear 
evidence of a grain boundary phase forming in the case of the 1000 °C/15 h annealed sample, exhibiting a bright 
contrast (refer Fig. 4(a)). Therefore, orientation image microscopy (OIM) using an EBSD detector in the SEM, 
was performed to further examine the grain boundary regions in the two heat treated conditions of this alloy 
(Fig. 5). The inverse pole figure (IPF) maps, with the image quality map overlayed on top, from a representative 
region of the AlCo0.5Cr0.5FeNi alloy annealed for 15 h at 1000 °C and 600 °C are shown in Fig. 5(a) and (c), respec-
tively. The corresponding phase maps with the FCC phase (in red) and the BCC phase (in green) are shown in 
Fig. 5(b) and (d) respectively. The coarse layer of the grain boundary phase was identified to be FCC in the case of 
the 1000 °C/15 h annealed sample, however within the grains, FCC was not observed. While intragranular decom-
position is visible in this same sample, these regions were all indexed as a BCC phase in EBSD-OIM, indicating 
the absence of the FCC phase in these intragranular regions. This also indirectly indicates that the intragranular 
decomposition is a B2 + BCC, since both these phases are indistinguishable by EBSD-OIM.

Note that in the case of the 600 °C/15 h annealed AlCo0.5Cr0.5FeNi sample, there are a few small grain bound-
ary FCC precipitates indexed in the phase map (right hand side of Fig. 5(b)), and these FCC precipitates do 
not form a continuous grain boundary layer, as observed in the case of the 1000 °C/15 h annealed sample. The 
composition of the different phases has also been analyzed using SEM-EDS. Supplementary Figure 1 shows the 
SEM-EDS maps of AlCo0.5Cr0.5FeNi specimens annealed at 1000 °C/15 h. The continuous matrix is rich in Al and 
Ni, while the discontinuous precipitates are enriched in Cr and Fe. SEM-EDS analysis shows minimal partitioning 
of Co between the B2 and BCC phases within the matrix grains. The grain boundary FCC phase is enriched in Cr, 
Fe, and Co while being depleted in Al and Ni.

Figure 1.  Back-scattered SEM image of AlCoFeNi specimens annealed for 15 h at (a) 1000 °C and (b) 600 °C.
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TEM investigation of AlCo0.5Cr0.5FeNi (600 °C/15 h).  Since the B2 + BCC decomposed microstructure after 
annealing the AlCo0.5Cr0.5FeNi alloy at 1000 °C/15 h was quite coarse (Fig. 4(a,b)), there was no requirement 
for a more detailed TEM investigation of this condition. In contrast, due to the highly refined scale of decom-
position within the matrix grains in case of 600 °C/15 h annealed sample (as revealed by the SEM images shown 
in Fig. 4(d)), TEM investigations were carried out. Figure 6(a) shows a scanning TEM (STEM) image revealing 
phases exhibiting two different contrasts. Figure 6(b and c) show SADPs from a [001]B2 zone axis, captured from 
the phase exhibiting darker contrast (matrix) in Fig. 6(a), and from a [001]BCC zone axis, captured from the phase 
exhibiting lighter contrast (precipitates) in Fig. 6(a), respectively. The {100} type superlattice spots in the [001] 
zone axis pattern shown in Fig. 6(b) confirms the B2 phase while the absence of these spots in Fig. 6(c) confirms 
the precipitates to be BCC. This proves that the microstructure is composed of a B2 matrix and BCC precipitates. 
Additionally, a dark-field image recorded from a {100} type B2 superlattice spot, clearly delineates the two phases 
with the dark disordered BCC regions (refer Fig. 6(d)). Additionally, the two different scales of the BCC phase 
have been marked as BCC gen-1 and BCC gen-2 in Fig. 6(a) and BCC gen-2 in Fig. 6(d). The high-resolution 
TEM image shown in Fig. 6(e) clearly reveals the continuity of the BCC lattice between the ordered B2 and 
disordered BCC phases. The yellow arrow in the fig points to {002} planes in the BCC and B2 phases, with the 
chemical ordering of atoms clearly visible in the region marked as B2. The high resolution TEM results clearly 
show the coherency between the B2 and BCC phases. Such coherency has been observed in other alloys, e.g., 
the Fe55(CrNiAl)45 alloys have two coherent phases, including the Ni-Al-rich B2 phase and the Fe-Cr-rich BCC 
phase18. Compositional analysis using TEM revealed more information about the composition of the phases. 
The HAADF-STEM EDS results (Fig. 6(f)) shows the elemental map of Ni atoms from a region containing both 
B2 and BCC phases. This map shows cubical/spherical precipitates of the BCC phase within the B2 matrix. The 
precipitation of B2 also occurs within the BCC lamella, as highlighted by the white arrow in the figure.

A region with high Cr concentration was also detected near the grain boundaries (refer Supplementary 
Figure 2). The SADP from this grain boundary phase can be consistently indexed as the [001] zone axis of the 
σ phase (Supplementary Figure 2(a)). The compositional analysis (Supplementary Figure 2(b)) showed that this 
grain boundary phase is the intermetallic sigma phase, which is often reported in Cr rich steels and HEAs19. 
The compositions of the phases B2, BCC (coarser gen-1 and finer scale gen-2) and sigma phases, based on the 
STEM-EDS measurements, are tabulated in Supplementary Table 1.

Figure 2.  TEM and APT results of AlCoFeNi alloy annealed for 15 h at 1000 °C. (a) Selected area diffraction 
(SAD) pattern from [001]B2 ZA (b) corresponding dark-field TEM image taken using the encircled superlattice 
spot (c) ionic 3D reconstructions of Ni, Fe, Co and Al atoms, respectively.
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Atom Probe Tomography of AlCo0.5Cr0.5FeNi (600 °C/15 h).  APT results from the AlCr0.5Co0.5FeNi alloy are 
shown in Fig. 7. The reconstruction in Fig. 7(a) shows the Ni ions in blue and Cr ions in red. The large Cr rich 
BCC region on the left of the reconstruction is marked as BCC gen-2 BCC and the fine (nanometre) scale Cr rich 
regions are marked as BCC gen-3 regions. This nomenclature is based on the precipitation sequence. The large 
micron-scale BCC lamellae, Figs 4(d) and 6(a), are the generation-1 BCC phase, precipitated in the early stages 
and consequently grown to a larger extent. Since, the APT samples were prepared in a site-specific manner from 
grain interiors, substantially away from the grain boundaries, the gen-1 BCC phase precipitates were not captured 
within the APT reconstructions, including the one shown in Fig. 7. A section of a gen-2 BCC precipitate has been 
captured within the 3D APT reconstruction shown in Fig. 7(a). A Cr-rich (Cr ~40 at%) iso-concentration surface 
(also referred to as isosurface in an abbreviated form) clearly delineates this gen-2 BCC precipitate, as shown in 
the inset in Fig. 7(c). Additionally, an even finer scale of Cr-rich precipitates is visible within the remaining B2 
matrix in Fig. 7(c). These nanometer scale precipitates are not visible in the TEM images shown in Fig. 6, and 
are only visible in the APT reconstructions, revealing a new length scale of decomposition within this hierar-
chically decomposed microstructure. The compositional profile (using proxigram analysis) across generation-2 
and generation-3 BCC precipitates are shown in Fig. 7(b) and (d), respectively. The finer scale generation-3 BCC 
phase contains ~30%Fe + 60%Cr, compared to the generation-2 BCC which contains ~45%Fe + 40%Cr.

Figure 3.  TEM and APT results of AlCoFeNi alloy annealed for 15 h at 600 °C. (a) Selected area diffraction 
(SAD) pattern from [001]B2 ZA (b) dark-field TEM image from the encircled super-lattice spot (c) ionic 3D 
reconstructions of all ions, Ni, Al, Fe and Co atoms, respectively (d) Iso-concentration surfaces are used to 
create interfaces between the BCC and B2 regions as shown in left side. A proximity histogram is created to 
show the compositional partitioning across the interfaces (right side).
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Furthermore, the phase separation tendency into solute lean and solute rich regions can be captured using 
cluster analysis tools applied to the APT data. The data-mining technique of cluster finding was employed; 
the step-by-step procedure is described in the IVAS™ 3.6.8 manual. Cluster analysis, in essence, identifies for 

Figure 4.  Back-scattered SEM image of AlCo0.5Cr0.5FeNi specimens annealed for 15 h at (a) 1000 °C and (c) 600 °C, 
corresponding high magnification images are shown in (b) and (d), respectively.

Figure 5.  EBSD results: IPF maps of AlCo0.5Cr0.5FeNi annealed for 15 h at (a) 1000 °C, and (c) 600 °C. 
Corresponding phase maps are shown in (b) and (d), respectively.
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a chosen atomic species, where the distance (dmax) between two atoms is smaller compared to the rest of the 
dataset. The values of dmax and Nmin (minimum number of atoms in a cluster) were optimized to maximize the 
probability to detect any compositional clustering. With further data analysis the three-dimensional region with 
interatomic distances equal to or smaller than optimized valued of dmax and Nmin (that yielded the biggest count 
of non-random clusters) were extracted from the data set. Using dmax = 1 (optimized using cluster counter distri-
bution analysis on the APT data, refer Supplementary Figure 3) and Nmin = 100 ions, 14 clusters, with an average 
total atom/ion count of ~16000 ions and Cr concentration ~26%, were detected (shown in Fig. 7(e)). The Cr 
concentration ranges from 16%-42%. With dmax = 0.3 and Nmin = 100 ions (in a region marked by the square in 
Fig. 7(e)), 25 clusters with average total ion count of 332 ions and Cr concertation of 71% were detected. The Cr 
concentration ranges from 62–74% in these clusters (shown in Fig. 7(f)), corresponding to the BCC-gen3 precip-
itates in this microstructure. Therefore, this cluster analysis further supports the presence of different generations 
of Cr rich BCC precipitates within the B2 phase.

Thermodynamic Modeling of AlCoxCr1−xFeNi.  The experimentally observed microstructures and the implied 
phase stability were validated by thermodynamic calculations using the CALPHAD approach within the frame-
work of the PANDAT software20. Figure 8(a) shows a computed isopleth of the change in phase stability as a 

Figure 6.  TEM results from AlCo0.5Cr0.5FeNi alloy annealed at 600 °C/15 h: (a) STEM image (b) SADP [001]B2 
(c) SADP [001]BCC (d) DFTEM image from a B2 spot (e) HRTEM image showing B2 and BCC phases and (f) 
STEM-EDS map showing Ni partitioning in between these phases.
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function of Cr content and temperature in these alloys. The predicted equilibrium phases for the AlCoFeNi alloy, 
on the extreme left of this isopleth, at 1000 °C consists of the B2 and FCC phases while at 600 °C consists of the B2 
and BCC phases. On the other hand, in the case of the AlCr0.5Co0.5FeNi alloy, which lies at the center of the iso-
pleth, the equilibrium phases at 1000 °C are the B2, BCC and FCC phases while at 600 °C the equilibrium phases 
are the B2, BCC and sigma phases. Our experimental investigations match very well with the thermodynamic 
predictions, except for the FCC phase predicted in AlCoFeNi alloy at 1000 °C. Note that there is likely to be a high 

Figure 7.  APT results from of AlCo0.5Cr0.5FeNi alloy annealed at 600 °C for 15 h. (a) APT reconstruction 
showing all ions (b) proximity histograms showing the compositional partitioning across the BCC generation-2 
(the interphase is shown as the inset). (c) Reconstruction showing Ni (blue) ion and iso-surface is used to 
highlight the Cr rich regions. 10 random Cr rich region (small-generation 3) are used to generate a proximity 
histogram of the compositional partitioning across the interfaces is shown in (d). (e) Cluster analysis (dmax = 1, 
Nmin = 100) shows Cr rich regions with avg. 26% Cr (different colors are used to highlight different clusters) 
(f) Cluster analysis (dmax = 0.3, Nmin = 100, in a region marked by the square in (e) highlights Cr rich regions 
with avg. 71% Cr.
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thermodynamic nucleation barrier for the precipitation of the FCC phase within the B2 matrix owing to the high 
interfacial energy between these two phases19. Consequently, the kinetics of precipitation could be extremely 
sluggish, and FCC precipitation could be limited solely to high angle grain boundaries which are high energy 
sites. However, in the experimental observations, there was no conclusive FCC formation observed in case of the 
AlCoFeNi 1000 °C/15 h annealed sample.

Microhardness and Magnetic Properties.  The Vickers microhardness of both the AlCoFeNi and 
AlCo0.5Cr0.5FeNi alloy for both heat-treated conditions (600 °C and 1000 °C annealing) have been shown in the 
bar chart in Supplementary Figure 3 and the values have also been listed in Table 1. The lowest microhardness 
value of 406 VHN was observed for the AlCoFeNi alloy annealed at 1000 °C, while the highest microhardness 
value of 475 VHN was observed in case of the AlCo0.5Cr0.5FeNi alloy annealed at 600 °C. These observations 
can be qualitatively rationalized based on the fact that in case of the former, a single B2 phase is present in the 
1000 °C annealed condition of the AlCoFeNi alloy, while in case of the latter a multi-scale hierarchical B2 + BCC 

Figure 8.  (a) Isopleth of AlCo1−xCrxFeNi system computed using PANDAT using the PanHEA database.  
(b) A schematic diagram showing the phase transformations based on effect of annealing and effect compositional 
change (Cr addition).

Alloy Heat treatment Ms (emu/g) Hc (Oe)

AlCoFeNi 600 °C/15 h 99.8 14.5

AlCoFeNi 1000 °C/15 h 111.6 4.3

AlCo0.5Cr0.5FeNi 600 °C/15 h 46.2 95.6

AlCo0.5Cr0.5FeNi 1000 °C/15 h 42.2 39.4

Table 1.  Saturation magnetization and coercivity values for the AlCoFeNi and AlCo0.5Cr0.5FeNi alloys for the 
different heat-treated conditions.
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decomposed microstructure was observed in case of the 600 °C annealed condition of the AlCo0.5Cr0.5FeNi alloy. 
Consequently, the single phase B2 microstructure has a lower hardness as compared to the hierarchically decom-
posed B2 + BCC microstructure. Interestingly, the 600 °C annealed condition of the AlCoFeNi alloy also exhibits 
a very high microhardness of 474 VHN, despite the fact that only an early stage of phase decomposition into 
B2 + BCC was exhibited by this sample.

The saturation magnetization (MS) and coercivity (Hc) for the four different samples analyzed in the pres-
ent study have been listed in Table 1. The MS of AlCoFeNi is substantially higher compared to that of the 
AlCo0.5Cr0.5FeNi alloy for both heat-treated conditions. While the magnetization is primarily determined by 
composition and the crystal structure, the coercivity can be affected by impurities, deformation, grain size and 
phase decomposition21. The coercivity (Hc) decreased with increasing annealing temperature from 15 Oe for sam-
ple aged at 600 °C/15 h, exhibiting nanoscale phase separation, to 4 Oe for samples aged at 1000 °C/15 h, exhibiting 
a homogeneous undecomposed B2 matrix. A similar observation has been reported in the literature, where the 
coercivity of the AlCoCrCuFeNi HEA annealed at 1000 °C/2 h decreases by 30 Oe (from 45 Oe to 15 Oe) com-
pared to as-cast alloys22. The AlCoFeNi HEA investigated in the present study exhibits higher saturation magnet-
ization and lower coercivity than other soft ferrite magnetic materials, e.g., MnZn ferrite, Cu-Zn-Ti ferrite23,24, as 
revealed in Supplementary Table 2.

The saturation magnetization of the AlCo0.5Cr0.5FeNi HEA reduces by more than 50% compared to samples 
with no Cr (AlCoFeNi). It has been previously reported earlier that MS falls linearly with increasing Cr con-
tent13,25,26. This is mainly due to the antiferromagnetic nature of Cr. Additionally, the coercivity of the Cr con-
taining alloy was higher than the alloy with no Cr. The MS and HC of AlCo0.5Cr0.5FeNi decreases with increasing 
annealing temperature. It has been previously reported that magnetic hardening of Fe–Co–Cr alloys is associated 
with the formation of a two-phase microstructure at the nanometer scale; firstly, the Fe–Co rich ferromagnetic 
phase, and secondly, the Cr rich antiferromagnetic phase. The relationship between the decomposition of the B2 
phase into a two-phase B2 + BCC microstructure and the resulting coercivity is not well understood in these alloy 
systems and requires further detailed investigation.

Supplementary Table 2 shows a comparison of the magnetic properties (MS and HC) of our current work 
with previous reports21,22,27–34 in the literature on HEAs. It can be concluded from Supplementary Table 2 that 
the current HEAs, especially AlCoFeNi, exhibit more favorable magnetic properties with the best combina-
tion of saturation magnetization (112 emu/g) and coercivity (4 Oe), compared to all the other recently reported 
HEAs. AlCo0.5Cr0.5FeNi showed relatively low value of MS and reasonably low coercivity due to the addition of 
anti-ferromagnetic Cr to this alloy. However, though Cr is detrimental to the soft magnetic properties, this alloy-
ing addition has beneficial effects in terms of other properties such as corrosion resistance2,35,36.

Effect of Cr substitution on hierarchical phase decomposition in AlCoxCr1−xFeNi alloys.  The sub-
stitution of Co by Cr in these AlCoxCr1−xFeNi alloys has rather interesting consequences on the phase stability. 
Without Cr addition, AlFeCoNi exhibits a single homogeneous B2 phase at higher temperatures (annealed at 
1000 °C) and exhibits a weak tendency for phase separation into B2 + BCC phases on annealing at lower temper-
atures, such as at 600 °C for 15 h. The observed experimental results are consistent with the predictions of solution 
thermodynamic models, such as PANDAT using the PanHEA database20 in this case. Addition of Cr strongly 
enhances the tendency of the B2 phase to decompose into a B2 + BCC mixture, as observed from the experimental 
results from the AlCo0.5Cr0.5FeNi alloy. Even at higher temperatures, such as 1000 °C, the B2 + BCC phase sepa-
ration is evident (refer to Fig. 4(a,b)). The PANDAT computations also indicate that the B2 + BCC + FCC phase 
field, for this composition, extends to a very high temperature of ~1400 °C (refer to isopleth shown in Fig. 8). 
The strong tendency of Cr to introduce phase separation in the B2 phase can possibly be attributed to a positive 
enthalpy of mixing of Fe-Cr, Co-Cr and Ni-Cr systems37, leading to miscibility gaps observed in these binary sys-
tems and a tendency for phase separation. However, it should be noted that Al-Cr binary system has a propensity 
for compound formation due to negative enthalpy of mixing37. In all, it appears that the phase separation tendency 
in the current HEA is introduced by Cr. The details of the thermodynamic basis underlying the influence of Cr 
on phase separation in these complex concentrated multi-component alloys requires further analysis beyond the 
scope of the present paper. Nevertheless, the importance of Cr in promoting phase separation in these HEAs needs 
to be recognized. The length scale of this phase separation appears to be dependent on the annealing temperature. 
A coarse length scale of decomposition is observed in the case of the AlCo0.5Cr0.5FeNi alloy after 1000 °C/15 hrs 
annealing (decomposition in the micron length scale), while a substantially refined length scale of decomposition 
is observed in the case of the same alloy after annealing at 600 °C/15 h. Additionally, the 600 °C/15 h annealed 
AlCo0.5Cr0.5FeNi alloy exhibited multiple length scales of B2 + BCC decomposition, ranging from the majority of 
the matrix exhibiting a decomposition length scale of ~50–100 nm (refer to Fig. 6(a) and (d)) to a decomposition 
length scale ~3–5 nm revealed by atom probe tomography (APT) within the B2 matrix (refer to Fig. 7).

The influence of Cr substitution for Co, and temperature, on phase decomposition is these alloys has been 
schematically described in Fig. 8(b). While the AlCoFeNi alloy exhibits a polycrystalline single phase B2 micro-
structure at 1000 °C, represented by the top left schematic in Fig. 8(b), reducing the temperature to 600 °C induces 
the early stages of phase separation into B2 + BCC, as represented by the schematic on the bottom left. A much 
stronger influence on the phase separation is induced by the addition of Cr to AlCoFeNi. Thus, in case of the 
AlCo0.5Cr0.5FeNi alloy, at 1000 °C there is a coarse decomposition into B2 + BCC phases. Reducing the tempera-
ture to 600 °C, results in a very complex microstructure exhibiting phase separation over multiple length scales, 
as depicted in the schematic on the bottom right in Fig. 8(b). There is a coarse phase separation into B2 + BCC, 
with coarse BCC lamellae along the grain boundaries. A finer scale phase separation is observed within the 
grains, with near-cuboidal BCC precipitates homogeneously distributed within the B2 matrix. The inset in this 
schematic shows that there is an even finer scale of phase separation within the B2 matrix, resulting in nanometer 
scale BCC clusters.



www.nature.com/scientificreports/

1 1Scientific Reports |  (2018) 8:15578  | DOI:10.1038/s41598-018-33922-w

Conclusions
The microstructure and magnetic properties of AlCoFeNi and AlCo0.5Cr0.5FeNi HEAs for two different annealing 
conditions were investigated. The focus was on probing the influence of changing the Co/Cr ratio (replacing Co by 
Cr) and temperature, on the phase decomposition and its consequent impact on magnetic properties and micro-
hardness, in these HEAs. While the AlCoFeNi alloy exhibits a compositionally homogeneous single B2 phase 
on annealing at higher temperatures (1000 °C), it tends to decompose into a two-phase mixture of B2 + BCC 
on annealing at lower temperatures (600 °C). Substituting half of the Co by Cr, resulting in the AlCo0.5Cr0.5FeNi 
HEA, strongly enhances the tendency of phase separation in these alloys to form a two-phase B2 + BCC mixture 
for all annealing temperatures. Furthermore, annealing at 600 °C, leads to a hierarchical microstructure with 
multiple length scales of decomposition ranging from few nanometers to microns. This decomposition leads to 
a substantially higher microhardness coupled with a decrease in saturation magnetization (MS) and increase in 
coercivity (HC). Overall, the AlFeCoNi alloy exhibited the best combination of soft magnetic properties, with 
saturation magnetization (MS) and coercivity (HC) values of 112 emu/g and 4 Oe, after annealing at 1000 °C for 
15 h, respectively.
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