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. Single cell RNA-sequencing (scRNA-seq) precisely characterizes gene expression levels and dissects

: variation in expression associated with the state (technical or biological) and the type of the cell, which

. is averaged out in bulk measurements. Multiple and correlated sources contribute to gene expression

: variation in single cells, which makes their estimation difficult with the existing methods developed

. for batch correction (e.g., surrogate variable analysis (SVA)) that estimate orthogonal transformations

. ofthese sources. We developed iteratively adjusted surrogate variable analysis (IA-SVA) that can
estimate hidden factors even when they are correlated with other sources of variation by identifying

. aset of genes associated with each hidden factor in an iterative manner. Analysis of scRNA-seq data

. from human cells showed that IA-SVA could accurately capture hidden variation arising from technical
(e.g., stacked doublet cells) or biological sources (e.g., cell type or cell-cycle stage). Furthermore, 1A-

© SVAdelivers a set of genes associated with the detected hidden source to be used in downstream data

. analyses. As a proof of concept, IA-SVA recapitulated known marker genes for islet cell subsets (e.g.,
alpha, beta), which improved the grouping of subsets into distinct clusters. Taken together, IA-SVA is an
effective and novel method to dissect multiple and correlated sources of variation in scRNA-seq data.

. Single-cell RNA-Sequencing (scRNA-seq) enables precise characterization of gene expression levels, which har-
. bour variation in expression associated with both technical (e.g., biases in capturing transcripts from single cells,
PCR amplifications or cell contamination) and biological sources (e.g., differences in cell cycle stage or cell types).
If these sources are not accurately identified and properly accounted for, they might confound the downstream
* analyses and hence the biological conclusions'~. In bulk measurements, hidden sources of variation are typically
. ‘unwanted’ (e.g., batch effects) and are computationally eliminated from the data. However, in single cell RNA-seq
. data, variation/heterogeneity stemming from hidden biological sources can be the primary interest of the study;
. which necessitate their accurate detection (i.e., testing the existence of unknown heterogeneity in a cell popula-
© tion) and estimation (i.e., estimating a factor(s) representing the unknown heterogeneity (e.g., known cell subsets
. vs. unknown subset)) for downstream data analyses and interpretation. How hidden heterogeneity in single cell
: datasets can teach us novel biology was exemplified in a recent study that uncovered a rare subset of dendritic
cells (DC), which only constitute 2-3% of the DC population®. Few genes were specifically expressed in this DC
subset (e.g., AXL, SIGLEC1), which was captured by studying heterogeneity in single cell expression profiles that
. only affect a subset of genes and cells. This study exploited the variation in single cell expression profiles from
. blood samples to improve our knowledge of DC subsets. However, one challenge in detecting hidden sources
of variation in scRNA-seq data lies in the existence of multiple and highly correlated hidden sources, including
geometric library size (i.e., the total log-transformed read counts), number of expressed/detected genes in a cell,
experimental batch effects, cell cycle stage and cell type>=®. The correlated nature of hidden sources limits the
efficacy of existing algorithms to accurately detect and estimate the source.
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Figure 1. TA-SVA is a robust statistical framework to detect and estimate multiple and correlated hidden
sources of variation. (A) Six-step IA-SVA procedure. IA-SVA computes the first principal component (PC1)
from read counts adjusted for all known factors and tests its significance [Steps 1-3]. If significant, IA-SVA uses
this PCI1 to infer a set of genes associated with the hidden factor [Steps 4-5] and obtain a surrogate variable
(SV) to represent the hidden factor using these genes [Step 6]. (B) IA-SVA uses single-cell gene expression

data matrix and known factors to detect hidden sources of variation (e.g., cell contamination, cell-cycle status,
and cell type). If these factors match to a biological variable of interest (e.g., cell type assignment), genes highly
correlated with the factor can be detected and used in downstream analyses (e.g., data visualization).

‘Surrogate variable analysis’ (SVA)®~'! is a family of algorithms that are developed to detect and remove hid-
den “unwanted” variation (e.g., batch effect) in gene expression data by accurately parsing the data into sig-
nal and noise. A number of SVA-based methods have been developed and used for the analyses of microarray,
bulk, and single-cell RNA-seq data including SSVA!! (supervised surrogate variable analysis), USVA'? (unsu-
pervised SVA), ISVA!? (Independent SVA), RUV (removing unwanted variation)'*!*, and most recently scLVM®
(single-cell latent variable model). These methods primarily aim to remove ‘unwanted’ variation (e.g., batch or
cell-cycle effect) in data while preserving the biological signal of interest typically to improve downstream differ-
ential expression analyses between cases and controls. For this purpose, they utilize PCA (principal component
analysis), SVD (singular value decomposition) or ICA (independent component analysis) to infer orthogonal
transformations of hidden factors that can be used as covariates in downstream analysis. This paradigm by defini-
tion results in orthogonality between multiple estimated (and known) factors, which is a desired feature of batch
correction methods in order to protect the signal of interest in downstream differential analysis'. However, this
orthogonality assumption limits the efficacy of existing SVA-based methods to precisely estimate the sources of
‘wanted’ variation in single cell RNA-seq data.

To fill this gap, we developed Iteratively Adjusted Surrogate Variable Analysis (IA-SVA) (Fig. 1A and Methods
for details) to estimate hidden factors even if these factors are correlated with known factors. IA-SVA provides
three major advantages in single cell data analyses. First, it accurately estimates multiple hidden sources of var-
iation even if the sources are correlated with each other and with known sources, which is not possible with
existing SVA-based methods. Second, it enables assessing the significance of each detected factor for explaining
the unmodeled variation in the data. Third, it identifies a set of genes that are significantly associated with the
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USVA [ SSVA [1A-SVA [USVA [ SSVA |1A-SVA
|r|=0.3~0.6 |r|<0.3
Power* (F1#%) |1 1 1 1 1 1
Power (F2) 1 1 1 1 1 1
Power (F3) 078 078 |0.87 1 1 1
Cor*** (F1) (093 [095 [0.95 098 (098 |1
Cor (F2) 072 075 |0.94 0.94 094 |0.99
Cor (F3) 075 [078 [0.95 093 093 |0.98
USVA | SSVA | IA-SVA
Type I error* 0.09 0.09 0.04

Table 1. TA-SVA accurately captures unknown sources of variation while controlling Type I error rate at a
nominal level. Empirical power, Type I error rate, and the accuracy of estimates for [A-SVA, SSVA, and USVA
assessed using simulated single-cell gene expression data. Alternative scenarios are simulated in which hidden
factors are moderately (|r| =~0.3-0.6, first three columns) or weakly (|| < 0.3, last three columns) correlated
with the group variable. IA-SVA outperforms alternative methods especially while detecting variation stemming
from a smaller fraction of genes (10%) and especially when factors are correlated. *Nominal Type I error rate:
0.05. **F1, F2, F3 refers to Factorl, Factor2, and Factor3. ***Average of the absolute Pearson correlation
coeflicients between the true factor and the estimated factor is used as the accuracy measure.

detected hidden source. IA-SVA can be used to detect variation stemming from different sources in scRNA-seq
data including cell contamination, cell cycle differences, or differences in cell types (Fig. 1B). In simulation studies
we showed that TA-SVA (i) provides high statistical power in detecting hidden factors; (ii) controls Type I error
rate at the nominal level (av=0.05); (iii) delivers high accuracy in estimating hidden factors. We evaluated the
efficacy of IA-SVA on scRNA-seq data from human pancreatic islets and brain cells and showed that IA-SVA is
effective in capturing heterogeneity associated with both technical (e.g., doublet cells) and biological sources
(e.g., differences in cell types or cell-cycle stages). Furthermore, we showed that IA-SVA based gene selection
can be further utilized in downstream analyses such as data visualization using t-distributed stochastic neighbor
embedding (tSNE)'® and performs favourably compared to existing methods developed for gene selection and
visualization (e.g., Spectral tSNE!®).

Results

Benchmarking IA-SVA on simulated and real data. To assess and compare the detection power, Type
I error rate, and the accuracy of hidden source estimates using IA-SVA and existing state-of-the-art methods (i.e.,
USVA and SSVA), we performed simulation studies (see Methods for details) under the null hypothesis (i.e., a
group (e.g., males vs. females) variable affecting 10% of genes and no hidden factor) and under the alternative
hypothesis (i.e., a group variable and three hidden factors affecting 10%, 30%, 20% and 10% of genes, respec-
tively). Under the alternative hypothesis, we considered two correlation scenarios where the three hidden factors
are moderately (|r| =~0.3-0.6) or weakly (|r| < 0.3) correlated with the group variable (i.e., a known factor).
Under each simulation scenario, we generated 1,000 scRNA-seq data sets (10,000 genes and 50 cells) and applied
IA-SVA, USVA and SSVA (a=0.05, 50 permutations) on them to detect simulated hidden factors. Using these
simulation results, we assessed the empirical Type I error rate of each method (i.e., the number of times each
method detects a false positive factor under the null hypothesis at the nominal level of 0.05 divided by the num-
ber of simulations (n =1,000)). Similarly, we also quantified the empirical detection power rate of each method
under different alternative hypothesis scenarios as the number of times each method detects a simulated factor
under the alternative hypothesis (i.e., a factor actually exists and is detected as significant by the method) divided
by the number of simulations. We used the average of the absolute Pearson correlation coefficients between the
simulated and estimated hidden factors to quantify the accuracy of estimates.

Simulation studies showed that IA-SVA performs equally well or better than USVA and SSVA in terms of the
detection power and the accuracy of the estimate while controlling the Type I error rate (0.04 for IA-SVA versus
0.09 for USVA and SSVA) (Table 1). In particular, IA-SVA was more effective when a hidden factor affected a
small percentage of genes and when the factors were correlated (|r| = 0.3-0.6) with the known factor (i.e., group
variable). For example, IA-SVA detected Factor3, which affected only 10% genes, 87% of the time, whereas USVA
and SSVA detected this factor 78% of the simulations (first three columns in Table 1). More importantly, IA-SVA
correctly inferred the correlations among multiple hidden factors while USVA and SSVA delivered biased esti-
mates due to their orthogonality assumption (Supplementary Fig. S1).

We further compared IA-SVA against other existing algorithms including ZINB-WaVe!” - a method that is
developed for single-cell RNA-seq data analyses and uses a zero inflated negative binomial model. For bench-
marking purposes, we used scRNA-seq data from human cortex'® and used IA-SVA, PCA, SVA!!, RUV-g and
RUV-r?, and ZINB-WaVe to uncover the surrogate variable (SV) associated with the cell type assignment (neu-
ron vs. astrocyte). To make the task more challenging, we only utilized 1,000 randomly selected genes that are
adequately expressed (read count >3 for at least 3 cells) and repeated the analyses 100 times to eliminate the
sampling bias. For each method (except for PCA), patient identity and geometric library size were used as covar-
iates. Among the top 3 SVs identified for each method, the SV that correlates the best with the known cell type
assignments was used for evaluation purposes to eliminate any bias especially for PCA. These analyses showed
that IA-SVA outperforms other algorithms in terms of its ability to accurately identify the SV that is associated
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Figure 2. IA-SVA can detect heterogeneity originating from potentially contaminated alpha cells. (A)

Outlier alpha cells captured using IA-SVA and same cells marked in respective (C) PCA, (D) USVA, and (E)
tSNE analyses. Cells are clustered into two groups (red vs. gray dots) based on IA-SVA’s surrogate variable 2
(SV2>0.1). In PCA, PC1 was discarded since it explains the geometric library size. (B) Hierarchical clustering
of alpha cells using 27 genes significantly associated with SV2 (FDR < 0.05 and R*> 0.6) (ward.D2 and cutree_
cols =2). 6 cells clearly separated from the rest of the alpha cells based on the expression of these 27 genes. The
values in the heatmap and the color bar are log-transformed (base e) normalized counts, i.e., log, (1 + read
counts normalized using SCnorm).

with cell type assignment in human brain cells (see Supplementary Fig. S2A for a single run and S2B for the
average of 100 runs). The SV inferred by IA-SVA was highly correlated with the true cell assignments compared
to other methods (average correlation is 0.926 for 100 runs). SVA and PCA were the second-best performers for
this task (average correlations around 0.85). ZINB-WaVe (cor =0.81) was more effective than RUV-r, however,
was the slowest among all tested algorithms (average run time 162 seconds vs. 12 seconds for IA-SVA using the
permutation procedure with 20 repeats) (Supplementary Fig. S2). These results suggest that among the six tested
methods, TA-SVA is the most effective in inferring the SV associated with the cell type assignments in single
human brain cells.

IA-SVA captures variation stemming from a small number of alpha cells.  To test whether IA-SVA
is effective in capturing hidden variation within a homogenous cell population, we analysed scRNA-seq data
generated from human alpha cells (n =101, marked with glucagon (GCG) expression) obtained from three dia-
betic patients'® using the Fluidigm C1 platform®, for which the original study did not report any separation of
these alpha cells. Using geometric library size and patient ID as known factors, significant SVs were inferred
using IA-SVA (a=0.05, 50 permutations) on the data (14,416 genes and 101 cells). For comparison, we applied
PCA, USVA, and tSNE on this data. In USVA analysis, similarly geometric library size and patient ID were used
as known factors and significant SVs were obtained (o= 0.05, 50 permutations). In the PCA analysis, PC1 was
discarded since it is highly correlated (r=0.99) with the geometric library size.

The top two significant SV inferred by IA-SVA clearly separated alpha cells into two groups (six outlier cells
marked in red vs. the rest marked in grey at SV2 > 0.1) (Fig. 2A). 27 genes significantly associated with second
SV (SV2) (Benjamini-Hochberg q-value (FDR) < 0.05, coeficient of determination (R?) > 0.6), which included
genes expressed in fibroblasts such as COL4A1 and COL4A2. These genes were exclusively expressed in six outlier
cells and clearly separated alpha cells into two clusters (Fig. 2B). A larger set of SV2-associated genes (n =108,
FDR < 0.05, R*> 0.3) was used for pathway and GO enrichment analyses and uncovered that these genes are asso-
ciated with extracellular matrix receptors (Supplementary Table S1). Hence, these outlier cells likely arise from cell
contamination (e.g., fibroblasts contaminating islet cells) or cell doublets (e.g., two cells captured together) — a
known problem in early Fluidigm C1 experiments?>*%. Alternative methods (i.e., PCA, USVA, tSNE) failed to
clearly detect these outlier cells (Fig. 2C-E).

We next studied whether this source of heterogeneity can be recapitulated in an independent and bigger
human islet scRNA-seq dataset?, using gene expression profiles (17,168 genes) of 569 alpha cells from six dia-
betic patients. Using geometric library size and patient ID as known factors we identified top 2 significant SVs
using IA-SVA and USVA. For comparison, we also conducted PCA and tSNE analyses on this data. In PCA, PC1
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was discarded since it matched the geometric library size, which is adjusted for in IA-SVA and USVA analyses.
IA-SVA’s SV2 separated alpha cells into two groups (Supplementary Fig. S3A) and as in the previous case it was
associated with fibrotic response genes including SPARC, COL4A1, COL4A2 (n=81, FDR < 0.05 and R?>>0.3)
(Supplementary Fig. S3B, GO/pathway results in Supplementary Table S2). These results highlight IA-SVA’ ability
to detect variation among alpha cells potentially due to cell contamination or cell doublets. USVA and tSNE failed
to clearly separate these compromised alpha cells (Supplementary Fig. S3D,E) from the rest of the cells. PCA’s per-
formance in separating these cells was more comparable to that of IA-SVA (Supplementary Fig. S3C), however,
the clustering of cells was still confounded by known technical factors (i.e., Patient identity).

IA-SVA accurately detects variation arising from cell-cycle stage differences. Differences in
cell-cycle stages lead to variation in single cell gene expression data®. Supervised methods based on SVA have
been developed to detect and correct for cell cycle stage differences, most notably the scLVM algorithm. scLVM
implements a Bayesian latent variable model to infer hidden cell-cycle factors by using known cell cycle genes®.
IA-SVA can provide an unsupervised alternative by accurately capturing cell-cycle related variation in single cell
data. To show this, we analyzed scRNA-seq data (21,907 genes and 74 cells) obtained from human glioblastomas
that has an established cell-cycle signature?>. We conducted IA-SVA analyses by using geometric library size as a
known factor and extracted top 2 significant SVs (aw=0.05, 50 permutations).

IA-SVA’s SV1 clearly separated 13 cells from the rest (cells marked in red in Fig. 3A), which was associated
with 119 genes (FDR < 0.05 and R*>> 0.3). Pathway and GO enrichment analyses of these genes?*** revealed
significant enrichment for cell-cycle process related GO terms and pathways (Fig. 3B, Supplementary Table S3),
suggesting that this hidden variation is stemming from cell-cycle stage differences. Indeed, cell-cycle-stage pre-
dictions of cells using the SCRAN R package®® showed that cells in different cell-cycle stages have different SV1
values (Fig. 3C). We noted that SV1 is highly correlated (|r| =0.44) with the geometric library size (typically the
top contributor to the variation in single cell data). These results demonstrate that IA-SVA can effectively detect
variation stemming from cell-cycle differences in an unsupervised manner from single cell transcriptomes, even
if this factor is highly correlated with known factors.

IA-SVA based gene selection improves single cell data visualization. tSNE and other dimension
reduction algorithms (e.g., Spectral tSNE implemented in Seurat'®) are frequently used to visualize single cell data
since they group together cells with similar gene expression patterns. However, variation introduced by technical
or biological factors can confound the signal of interest and generate spurious clustering of data. IA-SVA can be
particularly effective in handling this problem by estimating hidden factors of interest accurately while adjusting
for all known factors of no interest. Moreover, IA-SVA identifies genes associated with each detected hidden
factor, which could be biologically relevant such as marker genes for different cell types. The genes inferred by
IA-SVA can significantly improve the performance of data visualization methods (e.g., tSNE'®). To illustrate this,
we studied single cell gene expression profiles (16,005 genes) of alpha (n =101, marked with glucagon (GCG)
expression), beta (n =96, marked with insulin (INS) expression), and ductal (n = 16, marked with KRT19
expression) cells obtained from three diabetic patients'. First, we applied tSNE on all genes (n=16,005) and
color-coded genes based on the reported cell type assignments'?, which failed to separate cells from different ori-
gins (Fig. 4A). Next, we applied IA-SVA on this data using patient ID, batch ID and the number of expressed genes
as known factors and obtained significant SVs. SV1 and SV2 separated cells into distinct clusters (Supplementary
Fig. $4), suggesting that these SVs might be associated with cell type differences. Indeed, genes associated with
SV1and SV2 (n=92, FDR < 0.05 and R?> 0.5) included known marker genes used in the original study (INS,
GCG, KRT19) and uncovered alternative marker genes associated with alpha, beta and ductal cells (Fig. 4B).
These genes were annotated with diabetes and insulin processing related GO terms and pathways (Supplementary
Table S4). As expected, tSNE analyses based on these 92 genes improved data visualization and clearly grouped
together cells with respect to their cell type assignments (Fig. 4C). Such improved analyses can be instrumental
in discovering cells that might be incorrectly labelled based on a single marker gene. For example, our analyses
revealed a beta cell that is labelled as a ductal cell in the original study (one green cell clustered with blue cells in
Fig. 4C). For comparison, we applied recently developed visualization methods, CellView?” and Spectral tSNE!®,
on the same data with their reccommended settings. CellView identified the 1000 most over-dispersed genes and
conducted tSNE on these genes. Spectral tSNE detected 2,933 most over-dispersed genes and performed tSNE on
significant principal components of these genes. On this small dataset, both methods managed to group cells of
different types into distinct groups (Supplementary Fig. S5), suggesting that existing methods for gene selection
and visualization are effective when datasets are small in size and are not confounded with multiple factors.

To test the efficacy of these methods on a bigger and more complex dataset, we conducted similar analyses
on scRNA-seq data (19,226 genes) of 1,600 islet cells including alpha (n =946), beta (n=503), delta (n =58),
and PP (n=93) cells from 6 diabetic and 12 non-diabetic individuals, where the study includes multiple con-
founding factors (e.g., ethnicity, disease state)?’. We noted that original cell type assignments significantly cor-
relate with patient identifications (C=0.48, C= Pearson’s contingency coefficient) and with ethnicity (C=0.25),
which would reduce the ability of existing methods to detect variation associated with cell types. In such complex
datasets, failing to properly adjust for potential confounding factors prior to data analyses can lead to spuri-
ous grouping of cells, which might mislead the biological conclusions. Indeed, when these cells were visualized
using tSNE using all genes (n=19,226) and were color-coded with respect to the original cell-type assignments®,
cell types did not separate from each other and spurious clusters were observed within each cell type (Fig. 4D).
As suspected, potential confounding factors (i.e., patient ID and ethnicity) explained this grouping of cells
(Supplementary Fig. S6), which might be misleading as researchers are looking for alpha and beta cell subtypes
that can be related to Type 2 Diabetes pathogenesis®. To eliminate spurious clusters stemming from known
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A Genes selected by IA-SVA B GO annotations for selected genes

#Genes  #Genes

GO ID Term logP ! o %Target
in term in list
G0:0022402 cell cycle process -171.95 1073 80 0.78
G0:0000280 nuclear division -163.02 509 64 0.62
G0:0048285 organelle fission -159.31 538 64 0.62
G0:0007049 cell cycle -159.13 1317 81 0.79
G0:0000278 mitotic cell cycle -153.29 781 69 0.67
G0:1903047 mitotic cell cycle process -152.04 753 68 0.66
G0:0007067 mitotic nuclear division -140.84 379 54 0.52
GO0:0007059 chromosome segregation -123.15 289 46 0.45
G0:0051301 cell division -121.70 466 52 0.50
GO0:0051276 chromosome organization -121.55 570 55 0.53
G0:0098813 nuclear chromosome segreg. -118.92 245 43 0.42
G0:0000819 sister chromatid segregation -112.24 178 38 0.37
G0:0006996 organelle organization -87.63 2799 77 0.75
G0:0000070 mitotic sister chromatid segreg.  -77.58 98 25 0.24
G0:0007062 sister chromatid cohesion -65.51 113 23 0.22
G0:1902589 single-organism organelle organ. -58.90 1380 49 0.47
G0:0016043 cellular component organization -57.15 5162 83 0.80
G0:0071840 cellular comp. org. or biogenesis -54.85 5323 83 0.80
GO0:0010564 regulation of cell cycle process  -50.61 559 32 031
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Figure 3. IA-SVA can detect heterogeneity stemming from differences in cell-cycle stage. (A) Hierarchical
clustering using 119 genes that are significantly associated (FDR < 0.05 and R? > 0.3) with IA-SVAs SV1.
Clustering analysis confirms the separation of cells into two groups based on these genes (ward.D2 and cutree_
cols =2). The values in the heatmap and the color bar are log-transformed (base e) normalized counts, i.e., log,
(14 read counts normalized using SCnorm). (B) Top GO annotations for 119 selected genes. Majority of these
genes were associated with cell-cycle related GO terms. (C) IA-SVAs SV1 can segregate cells based on their cell-
cycle-stage as predicted by SCRAN.

factors, existing methods (e.g., Seurat) simply regress out all known factors prior to visualization. However, this
might affect the signal of interest (i.e., cell type assignment), due to the high correlation between known factors
(i.e., patient ID) and the hidden factor (i.e., cell types).

We applied IA-SVA on this complex data, while accounting for known factors (i.e., the number of expressed
genes and patient ID) and extracted top four significant SVs (Supplementary Fig. S7A,B). We identified 57 genes
associated with the most significant SV (SV1) (FDR < 0.05 and R? > 0.5), which included known marker genes
(i.e., INS and GCG) (Supplementary Fig. S8, Table S5) and revealed novel marker genes for these cell types. tSNE
analyses using these 57 IA-SVA detected genes clearly separated different cell types into discrete groups and rein-
forced the importance of properly adjusting for known factors prior to data analyses (Fig. 4E). For comparison,
we applied CellView and Spectral tSNE on this data with recommended settings; however they failed to accurately
group cells into distinct cell types (Fig. 4EG). Similar analyses were conducted using PCA and USVA on the same
data, where top surrogate factors obtained with both methods failed to separate different cell types into distinct
groups (Supplementary Fig. S7C,D). Combined together these analyses suggest that IA-SVA is particularly effec-
tive in the analyses of complex datasets, which include the measurements of many cells that are affected by diverse
confounding factors.
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Figure 4. IA-SVA based gene selection enhances single cell data visualization. (A) tSNE analyses using all
expressed genes (n=19,226) in human islet data (tSNE). Cells are color-coded based on the original cell-

type assignments. Note that cells are not effectively clustered with respect to their assigned cell types. (B)
Hierarchical clustering using genes (n=92) selected by IA-SVA clearly separate cell types (ward. D2 and
cutree_cols = 3). Known marker genes (e.g., INS) are highlighted in red color. The values in the heatmap and the
color bar are log-transformed (base e) normalized counts (normalized by dividing each cell by its total counts
then multiplying median of library size). (C) tSNE analyses using the 92 IA-SVA genes (IA-SVA + tSNE). Note
the improved grouping of cell types into discrete clusters. (D) tSNE analyses using top variable genes in a second
and larger islet scRNA-seq dataset. Note that cells are not effectively clustered with respect to their assigned cell
types just using tSNE. (E) tSNE analyses repeated using genes (n =>57) obtained via [A-SVA (IA-SVA +tSNE).
Note the improved clustering of different cell types into discrete clusters. (F) tSNE analyses using 1000 most
over-dispersed genes (CellView). (G) tSNE analyses on significant PCs obtained from highly over-dispersed
genes (Spectral tSNE).

Testing the performance of IA-SVA and existing methods when known and hidden factors
affect overlapping sets of genes.  To study the impact of a significant overlap between hidden and known
factors on IA-SVA’s performance, we performed an analysis, where we simulated gene expression matrices with
10,000 genes and 50 cells using the Polyester R package in addition to a known factor affecting 2,000 genes and
a hidden factor affecting 1,000 genes, where these two factors are highly correlated (r=0.76). The effect size of
genes affected by each factor is randomly simulated from a standard normal distribution as in the previous sim-
ulations. Next, we studied IA-SVA’s performance for inferring the hidden factor when we change the percent of
genes affected by the hidden factor that are also affected by the known factor, (k%, k € {99, 90, 80, 70, 60, 50, 40,
30, 20, 10, 0}), where k=99% is the most extreme case where 99% of all genes affected by the hidden factor are
also affected by the known factor. Under each setting, we estimated the hidden factor using IA-SVA, PCA, USVA
and SSVA and computed the absolute correlation coefficients between the estimates and the true hidden factor.
As shown in the Fig. S9, IA-SVA accurately captures the simulated factor even under the extreme scenario where
99% of genes affected by the hidden factor are also affected by the known factor. The accuracy of USVA and SSVA
declines as the overlap percentage goes up. These analyses suggest that even in extreme scenarios where known
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and hidden factors affect overlapping gene sets IA-SVA can detect the hidden heterogeneity with high accuracy.
We further studied the data generated under the most extreme scenario (i.e., k=99%) to understand what leads
to IA-SVA’s increased performance and noted that even if the same set of genes are affected by both known and
hidden factors, the effect sizes can vary, where for some genes effect sizes are higher for the known factor and for
some others effect sizes are higher for hidden factors (Fig. S10). Among the genes affected by both factors, genes
strongly affected by the hidden factor yet weakly affected by the known factor tends to have higher R? values
(Fig. S10D,E). This heterogeneity in effect sizes enables IA-SVA to capture genes strongly associated with the
hidden factor and estimate it with high accuracy.

Time complexity analyses for alternative IA-SVA implementations. We measured the run time
of IA-SVA and its alternative implementations for increasing number of genes and cells in the input data using
both serial (“threads” parameter in the R package = 1) and parallel settings (threads > 1). We first run IA-SVA in
serial mode using 4 different IA-SVA modes: 1) Default (i.e., full SVD, number of permutations (num.p) = 100);
2) Partial-SVD (uses 10 (i.e., num.sv.permtest = 10) largest singular values/vectors obtained by using the aug-
mented implicitly restarted Lanczos bidiagonalization algorithm (IRLBA) (https://bwlewis.github.io/irlba/) in
permutation-based significance index (SI) calculations, num.p =100); 3) Fast (fast_iasva function), that keeps
hidden factors explaining at least k% of total variance (default k (pct.cutoff) = 1%) instead of the permutation
based significance test; and 4) No Permutation (permute = FALSE) for each dataset. Each run was repeated ten
times. As expected IA-SVA runs faster without the permutations (Supplementary Fig. S11A “Fast” and “No per-
mute” settings) and takes less than a few minutes to finish even for large datasets composed of thousands of cells
using these two settings. Furthermore, these results suggest that IA-SVA’s run time is approximately quadratic for
“full SVD” and “fast IA-SVA” modes in terms of cell numbers (O~m?, where m = the number of cells) and linear
for “No permutation” and “Partial SVD” modes (O~m) (Supplementary Fig. S11B). On the other hand, its run
time is linear for all four modes with increasing number of genes (O~n, where n = the number of genes) (plot
not shown).

We implemented the parallelization option in the IA-SVA function (“threads” parameter) for full and partial
SVD settings to reduce the run time for permutation based significance testing. Here we tested how paralleliza-
ble IA-SVA is by running full and partial SVD modes using different number of cores (1 to 16) on two different
datasets: a gene-dense dataset (16000 genes and 640 cells) and a cell-dense dataset (1000 genes and 5120 cells).
For each IA-SVA run, we used the geometric library size and patient identifier vector as known covariates in
the model. To be able to compare alternative implementations of IA-SVA, we only detected the first SV (num.
sv=1). To benchmark single-cell analysis in a high performance-computing environment, multiple IA-SVA runs
(parameter sweeps across the number of genes and cells) were submitted as a single job (i.e., analysis group). For
each JA-SVA implementation, each analysis group was repeated ten times by submitting to nodes with minor
variability in their cluster environments (HP Proliant SL/XL Series servers with 2.5-2.6 GHz processor clock
speed and 256GB RAM). To capture the variation stemming from the heterogeneous cluster environment, the
standard error of mean for each parameter (gene or cell) was reported. Our analyses showed that paralleliza-
tion significantly reduced IA-SVA’ run time (5 to 8-fold speed up with 16 cores), where Amdahl’s law suggests
that approximately 90-95% of runtime is parallelizable (Supplementary Fig. S11C). These analyses suggest that
the most time-consuming step in IA-SVA is the calculation of SI values. Therefore, for larger datasets (i.e., 10X
genomics), we recommend running the job on multiple cores or using the fast IA-SVA function (fast_iasva),
which selects important SVs based on the proportion of variation explained. Under these circumstances, the run
time of IA-SVA should not be a limiting factor in data analyses.

Discussion

Surrogate variable analyses (SVA) based methods are effective in detecting and eliminating hidden and unwanted
variation in bulk gene expression data (such as batch effects). These methods are not developed to accurately esti-
mate the hidden factors; instead they assume that hidden factors are typically unwanted (e.g., batch effects) and
they aim to effectively adjust for the unwanted variation without compromising the biological signal of interest
(e.g., group variable: case vs control) in downstream analyses (e.g., differential analyses)'*. Although these meth-
ods are very effective in batch correction; measurement of gene expression levels at single cell resolution pose
novel challenges in the detection and adjustment of hidden sources of data variation. First, single cell transcrip-
tomes harbour hidden variation that can be biologically interesting (hence ‘wanted’) and therefore, accurately
estimating hidden ‘wanted’ factor(s) can be the major goal of a study, for example detection of rare cells within a
tissue?® or detection of cell subtypes that can be linked to health or disease*®. Second, since single cell data do not
average out variation as in the case of bulk profiling, the data reflect variation arising from diverse biological and
technical sources some of which could be highly correlated. Existing SVA-based methods do not readily apply to
the unique needs of single cell data analyses.

To fill this gap, we developed IA-SVA, which is designed to accurately estimate hidden and biologically inter-
esting (i.e., ‘wanted’) factors even if these factors are correlated with each other and/or with the known factors.
Unlike other SVA-based methods, IA-SVA therefore focuses more on the accurate detection and estimation of
hidden factors rather than their elimination since these factors can be biologically interesting, e.g., identification
of a new cell type and its marker genes. Indeed, analyses on simulated scRNA-seq data showed that IA-SVA out-
performs existing supervised (i.e., SSVA) and unsupervised (i.e., USVA) state-of-the-art methods in the estima-
tion of hidden factors (not necessarily in their elimination). Furthermore, we noted that IA-SVA is particularly
effective (i.e., high detection power and accuracy, and Type I error rate controlled under the nominal level of
0.05) in detecting correlated factors that affect a small fraction of genes. Therefore IA-SVA is an effective unsu-
pervised alternative to existing SVA-based algorithms when the goal is to accurately estimate hidden factors (and
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their marker genes) rather than to eliminate these factors — if the goal of an analysis is to identify and strip the
data from any batch effects (hidden and unwanted variation) while preserving the variation associated with the
primary variable of interest, existing algorithms (e.g., SVA) can robustly and efficiently accomplish this task and
IA-SVA should not be the method of choice.

Through analyses of diverse human datasets from multiple studies, we established that IA-SVA can effec-
tively detect hidden heterogeneity in scRNA-seq data arising from a small number of cells either due to technical
(i.e., contamination or doublets) or biological (i.e., a rare cell type) sources. In two independently generated
islet sScCRNA-seq datasets, we showed that IA-SVA detects heterogeneity stemming from compromised alpha cells
(which may be explained by cell contamination), which should be excluded from the downstream analyses (Fig. 2
and Supplementary Fig. S3). Therefore, IA-SVA provides an easy-to-apply statistical framework to uncover vari-
ation in scRNA-seq data even if it is stemming from only a handful of cells. This ability of IA-SVA can be effective
in identifying rare cells within a population of cells, where genes associated with the detected factor can uncover
relevant marker genes for the rare population of cells. In addition, IA-SVA can be effective in detecting heteroge-
neity associated with cell-cycle stages without prior knowledge, therefore providing an unsupervised solution to
this common problem in single cell data analyses (Fig. 3).

An important feature of IA-SVA is its ability to uncover genes associated with detected hidden factors. This
feature can be used to detect marker genes associated with different cell types. As a proof-of-concept we demon-
strated this in pancreatic islet cells, where we captured known marker genes (e.g., INS, GCG) in an unsupervised
manner. Moreover, genes captured by IA-SVA can be used to improve the visualization of single cells into their
respective clusters, as demonstrated with the analyses of islet cells from two separate studies (Fig. 4). Spectral
tSNE'® is a commonly used method for scRNA-seq data visualization especially in the existence of confounding
factors. This method regresses out variation associated with known factors before data visualization. However,
when a hidden factor is ‘wanted’ (e.g., cell types) and is highly correlated with known factors, removing the
known factors will also diminish the ability to detect the wanted hidden factor and the genes associated with this
factor (e.g., marker genes for different cell types). Indeed, our analyses using islet cells emphasized the importance
of properly adjusting the data for known factors prior to further analyses, such as data visualization (e.g., tSNE)
to prevent spurious clustering of cells due to the confounding factors (Fig. 4E). IA-SVA is an alternative method
that can effectively handle data with multiple confounding factors.

One caveat of IA-SVA analyses arises from its permutation-based quasi-inferential procedure to determine
the number of hidden factors similar to the permutation-based parallel analysis®’. These measurements, referred
to as significance index (SI) rather than empirical p-values since the p-values obtained from the quasi-inferential
procedure are only meaningful for the largest eigenvalue and it is not straightforward to adjust them for multiple
hypothesis testing. We recommend users of IA-SVA to select a stringent cut-off for SI values especially if they
expect to detect many unknown factors from their data. Our simulation and real-world data analyses suggest
that despite its caveats SI is still useful in determining the number of hidden factors in single cell data analyses.

In summary, IA-SVA is an SVA-based unsupervised method designed to accurately estimate hidden factors
(sources of variation) in single cell gene expression data. The iterative and flexible framework of IA-SVA allows
the accurate estimation of multiple and potentially correlated factors along with their statistical significance,
which is the main advantage of IA-SVA over existing methods. This flexibility is more realistic given the con-
founded nature of known and unknown factors in single cell gene expression measurements. Therefore, IA-SVA
has an improved performance over existing SVA-based methods in terms of estimating hidden sources of varia-
tion when they are correlated with each other and with known variables. IA-SVA is also an effective alternative to
methods developed for single cell data analyses (e.g., CellView, ZINB-WaVe, and Seurat), especially for the anal-
yses of complex data (i.e., data with multiple confounding and correlated factors). With the increasing amount
of single cell studies and the increasing complexity of human cohorts, IA-SVA will serve as an effective statistical
framework specifically designed to handle unique challenges of scRNA-seq data analyses. Computational method
development for single cell datasets is a very active research area, where different methods have been developed
to extract and interpret heterogeneity from such data, e.g., methods based on non-negative matrix factoriza-
tion®"?2, Effectively comparing all of these methods will require building benchmark datasets and implementing
these methods using similar platforms. There is an ongoing consortium effort by the Human Cell Atlas project
(https://www.humancellatlas.org/) to systemically benchmark computational methods developed for single cell
data analyses, including IA-SVA.

Methods
IA-SVA framework. We model the log-transformed sequencing read counts for m cells and 7 genes (i.e.,
Y,.«n) s a combination of known and unknown variables as follows:

men = mepﬁpxn + mek(skxn + Emxn>

where X, , is a matrix for p known variable(s) (e.g., patient ID, sex or ethnicity), Z,,, is a matrix for k unknown
variables and ¢,,,,.,, is the error term. With this model, we can account for any clinical/experimental information
about samples (e.g., sex, ethnicity, age, BMI or batch) as known factors (X, p) and dissect unaccounted variation
in the read count data that is attributable to hidden factors (Z,, ;).

Existing unsupervised SVA-based methods (e.g., USVA'®, RUV"3, ISVA'?) obtain the residual matrix (Y/,,.,,)
by regressing log-transformed read counts (Y,,,,) on all known factors (X,,,,). Then, they infer the hidden factors
from this residual matrix (Y’,,,.,) using dimensionality reduction algorithms (e.g., PCA, SVD or ICA). Thus, by
definition, multiple hidden factors captured by these methods are orthogonal to each other and to known varia-
bles. Therefore, if hidden factors are correlated with each other and with known factors, the direct inference from
the residual matrix leads to biased estimates of hidden factors due to the orthogonality assumption.
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In contrast, IA-SVA does not impose orthogonality between factors (hidden or known) and estimates corre-
lated factors via a novel iterative framework (Fig. 1). At each iteration, IA-SVA first obtains residual matrix
(Y’ 15 n)> 1€, log-transformed read count matrix adjusted for all known factors (X,,,) including surrogate varia-
bles of unknown factors estimated from previous iterations and extracts the first principal component (PC1) from
the residuals (Y, ) using SVD. Next it tests the significance of PC1 in terms of its contribution to the unmod-
eled variation (i.e., residual variance). Using this PC1 as a surrogate variable (as in the case of existing methods)
implicitly imposes orthogonality between known and hidden factors. Instead, IA-SVA uses PC1 to infer gene
weights, which are also used to infer genes associated with the hidden factor. IA-SVA relies on the fact that the
first principal component (PC1) of the residual matrix is highly correlated with the hidden factor that contributes
the most to the unmodeled variation in the data, and thus, PC1 can be used to sort genes in terms of their relative
association strength with the hidden factor. To infer these genes, IA-SVA regresses the residual matrix Y’ on PC1
and calculates the coefficient of determination (R?) for each gene. Genes with high R* scores can be treated as
marker genes for the factor. These R? scores are further utilized for an unbiased inference of the hidden factor
while retaining the correlation structure between known and hidden factors. For this, IA-SVA first obtains a
weighted log-count matrix (Y”,,,.. ) by weighing all genes with respect to their R* scores (i.e.,Y”,, ., = Y, ., W, ,»
where Y is the original log-transformed read counts and W is a diagonal matrix of R? values). Then it conducts a
SVD on the weighted matrix Y”,, , and obtains the PCI to be used as a surrogate variable (SV) for the hidden
factor. In the next iteration, IA-SVA uses this SV as an additional known factor to identify further significant
hidden factors.

The rationale for using the coefficient of determination (R?) in our weighting scheme is two-folded. First, R?
indicates the proportion of the variance in gene read counts (dependent variable) that can be explained by the
PC1 obtained from the residual matrix in Step 2 (independent variable). Therefore, R? is useful to infer genes
whose gene expression variation is most strongly explained by PC1, hence by the hidden factor, based on the
assumption that PC1 strongly correlates with the hidden factor. Therefore, R? is an intuitive choice to rank genes
based on their relevance to the hidden factor. Second, R? ranges from 0 to 1, which would be appropriate to use
as weights, where higher values imply higher relevance to PC1, hence the hidden factor. Any other measure that
would meet these criteria would also work in our methodology. Instead of using the weighting approach, one
could also conduct association testing by regressing the residual matrix on PCI, identify significant genes (e.g.,
FDR < 0.05) with high effect sizes (e.g., R* > 0.3), conduct a SVD on the read counts of these significant genes to
obtain PC1 and finally use this PC1 as the hidden factor estimate. In our simulation studies, we experimented
with this alternative schema and observed that R*-based weighting provides more robust results across different
settings (data not shown). We further illustrate with more details how the R?-based weighting schema works in
Supplementary Text S1.

The iterative procedure of IA-SVA is composed of six major steps as summarized in Fig. 1A and below:

[Step 1] Regress Y, , on all known factors (X,,,,,) , including SVs obtained from previous iterations, to obtain
residuals (Y/,, . ).

[Step 2] Conduct SVD on the obtained residuals (Y’ ,) and obtain the first PC (PC1).

[Step 3] Test the significance of the contribution of PC1 to the variation in residuals (Y’
non-parametric permutation-based assessment®!**° as explained further in the next section.
[Step 4] If PC1 is significant, regress the residual matrixY’,,  , on PCI to compute the coeflicient of determi-
nation (R?) for every gene. If PC1 is not significant, stop the iteration and conduct subsequent downstream
analysis using previously obtained significant SVs.

[Step 5] Weigh each gene in Y,,,, with respect to its R? value by multiplying a gene’s log-transformed read
counts (Y,,.,) with its R? values (Y” ..., = Y,,..,W,«,,)- The highly weighted genes in this framework serve as
the genes affected by the hidden factor.

[Step 6] Conduct a second SVD on this weighted log-counts matrix (Y”,,
which will be used as the surrogate variable (SV) for the hidden factor.

mxn) USINg a

Y .. W )to obtain PCI,

n = TmxnVnxn

At the end of this six-step procedure, IA-SVA uses the detected SV (if significant) as an additional known
factor in the next iteration. The algorithm stops, when no more significant PC1s are detected in Step 3. Significant
SVs obtained via IA-SVA can be used in subsequent analyses. If an SV arises from an unwanted factor (e.g., cell
contamination), these SVs can be included as covariates in the model to remove the unwanted variation or to
filter out contaminated cells. In single cell data significant SV's could also explain ‘wanted’ biological factors (e.g.,
different cell types) and genes associated with such SVs can be further evaluated to discover novel biology from
these complex datasets.

Quasi-inferential procedure for determining the number of hidden factors. We implemented a
permutation based quasi-inferential procedure to determine the number of SV's to be considered in downstream
data analyses and interpretation. For this we implemented a permutation based method that empirically assess
the significance of the contribution of a hidden factor estimate (i.e., PC1 obtained in Step 2) to the residual varia-
tion — calculating the proportion of variation explained by the PCI and conducting a permutation based signif-
icance test similar to parallel analysis®® and surrogate variable analysis!. Unlike parallel analysis and SVA', which
tests all putative hidden factors at once, IA-SVA assesses the significance of hidden factors one at a time during the
corresponding iteration (always for the PC1 of the residual matrix Y’ , detected in that iteration). Briefly,
IA-SVA i) conducts SVD on the residual matrix obtained from Step 1, ii) computes the proportion of variation in
this matrix explained by the first singular vector (i.e., PC1) and iii) compares this proportion against the values
obtained from permuted residual matrices, as further explained below:
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[Step 1] Conduct SVD on the residual matrix (Y’ ).
[Step 2] Calculate the proportion of residual variance explained by the first singular vector (PC1) using the
2

test statistic: T/, - = A_lAZ,, where ) is the k-th singular value.

[Step 3] Generate a pérrknuted residual matrix by i) permuting each column of the log-transformed read count
matrix Y,,,, and regressing the permuted read count matrix on all known factors (X,,.,) to obtain fitted
residuals.

[Step 4] Repeat Step 3 M times and generate an empirical null distribution of the test statistic by calculating
(Tio, i=1, ..., M)for the M permuted residual matrices.

[Step 5] Compute a proportion (named as significance index) for the first singular vector (PC1) by counting
the number of times the null statistics (T 1_0) exceeds the observed one (T,;,) divided by the number of permu-
tations (M).

We prefer to call the proportion obtained in Step 5 “significance index”, not “empirical p-value” since the
quasi-inferential procedure does not perfectly meet the requirements of the classical hypothesis testing similar
to the permutation based parallel analysis® (e.g., the permutation p-value is only statistically meaningful for the
largest eigenvalue).

scRNA-seq data simulation. To eliminate the potential bias in data simulations and make simulation stud-
ies more objective®’, we used a third-party simulation software (i.e., Polyester R package®*) and study design
(http://jtleek.com/svaseq/simulateData.html) and simulated scRNA-seq data to test IA-SVA’s performance. The
original simulation design is slightly modified to reflect characteristics of scRNA-seq data for high dropout
rate (i.e., excessive number of zeros in the data), high variability (i.e., over-dispersed gene counts) and multiple
hidden factors highly correlated with known factors. First, to simulate high dropout rates (proportion of zero
counts = ~70%) and high variability, we estimated Polyester’s zero-inflated negative binomial model parameters
(i.e., po: probabilities that the count will be zero, mu: mean of the negative binomial, size: size of the negative
binomial) from human pancreatic islet data generated using the Fluidigm C1 platform'. Using these estimated
model parameters, we simulated expression data for m cells and n genes under two hypotheses: (1) the null
hypothesis: no hidden sources of variation, and (2) the alternative hypothesis: three hidden factors with two
levels (e.g., cell contamination factor: contaminated vs. normal cells). For both scenarios, baseline expression
levels were simulated using the Polyester R package by using the zero-inflated negative binomial distribution
parameters estimated from the islet scRNA-seq data. Under both scenarios, we simulated a known factor with two
levels (e.g., males vs. females) and simulated 10% of genes to be differentially expressed between the two levels.
Under the alternative hypothesis, we simulated three two-level hidden factors that affect 30%, 20% and 10% of
randomly chosen genes respectively and simulated two different scenarios where these factors are moderately
correlated (|r| =~0.3-0.6) or weakly correlated (|r| < 0.3) with the known variable. For genes affected by a factor
(both for known and hidden factors), effect sizes (regression coefficients, i.e., 3 or §) of the factor were randomly
simulated from a standard normal distribution and the effect sizes for un-affected genes were set to zero'!. The
R code for data simulations is publicly available for reproducibility at https://dleelab.github.io/iasvaExamples/
scRNAseq_simulation.html.

Data processing and normalization. In all analyses, we used genes with >5 reads in at least 3 cells (i.e.,
a gene has to be above five in at least three cells to be kept) and normalized the retained gene expression counts
using SCnorm* with default settings for further analyses. For single cell data visualization examples, we normal-
ized gene read counts by dividing each cell column by its total counts then multiplying median of library size,
which is similar to the default normalization method (“LogNormalize”) implemented in Seurat!.

Data simulations for time complexity analyses. Pancreatic islet data'® that is composed of 18,177
genes and 638 cells was replicated ten times to increase cell numbers and a fixed seed was used to randomly
down-sample this data into smaller matrix of n genes and m cells, where n € {1000, 2000, 4000, 8000} and m €
{20, 40, 80, 160, 320, 640, 1280, 2560, 5120}. For studying the parallelization of IA-SVA, pancreatic islet data was
down-sampled into a gene-dense (composed of 16,000 genes and 640 cells) and a cell-dense (composed of 1000
genes and 5120 cells) data.

Availability of Data and Methods

An R package for IA-SVA with example case scenarios is freely available from https://github.com/UcarLab/ias-
va. This R package has been accepted by Bioconductor and is currently available at https://www.bioconductor.
org/packages/devel/bioc/html/iasva.html. The published data sets analyzed in this study including single-cell
RNA sequencing read counts and annotations describing samples and experiment settings are included in an R
data package (iasvaExamples) deposited at https://github.com/dleelab/iasvaExamples. We also implemented an R
Shiny web application that conducts gene enrichment analyses using publicly available databases (e.g., GO terms,
KEGG pathways, immune modules, cell-type specific genes) on a set of genes significantly associated with each
SV (https://nlawlor.shinyapps.io/ITASVA_Shiny_08_13_2018/). This application also includes methods for con-
venient clustering and visualization of data. Our tool can also be used with other factor analyses to help interpret
their outputs.
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