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Vibration frequency analysis of 
three-layered cylinder shaped shell 
with effect of FGM central layer 
thickness
Madiha Ghamkhar1, Muhammad Nawaz Naeem1, Muhammad Imran   1, 
Muhammad Kamran2 & Constantinos Soutis   3

In this research, vibration frequency analysis of three layered functionally graded material (FGM) 
cylinder-shaped shell is studied with FGM central layer and the internal and external layers are of 
homogenous material. Strain and curvature-displacement relations are taken from Sander’s shell 
theory. The shell frequency equation is obtained by employing the Rayleigh Ritz method. Influence 
on natural frequencies (NFs) is observed for various thickness of the middle layer. The characteristics 
beam functions are used to estimate the dependence of axial modal. Results are obtained for thickness 
to radius ratios and length to radius ratios for different edge conditions. The validity of this method is 
checked for numerous results in the open literature.

Vibration of FGM cylindrical shell is a widely studied area of research in theoretical and applied mechanics. 
Among a large number of studies on vibrations of cylindrical shells (CS) we cite a few. Arnold and War-burton1,2 
is executed some influential work on shell frequency analysis. Shell vibration analysis carried out by employ-
ing different numerical techniques like Galerkin method, Rayleigh Ritz method, different quadrature method 
and finite difference method. These shells are fabricated by isotropic, laminated and multi-layered materials. 
Functionally graded materials have been developed by applying powder technology. Functionally graded mate-
rials are utilized for various objectives because of their proper material distribution in their fabrication. They are 
mostly used for high pressure and heat dominant surroundings. Sharma et al.3 scrutinized behaviour of vibrations 
for cylinder-shaped shells by employing the Rayleigh Ritz technique for clamped-free boundary conditions. Loy 
et al.4 analysed the fundamental frequencies of circular shaped shells by a generalized differential quadrature 
method (DQM). Further Loy et al.5 investigated the vibrations of functionally graded (FG) cylindrical shells 
fabricated by stainless steel and nickel. They showed the effects of formations of essential constituents on the fre-
quencies. Moreover, Pardhan et al.6 explored vibration behaviour of FG cylindrical shells fabricated by stainless 
steel and zirconia for different edge conditions. Zhang et al.7 scrutinized free vibrations of cylindrical shells for 
different edge conditions by employing a local adaptive DQM. Naeem et al.8 employed a generalized DQM for the 
functionally graded material cylindrical shells to investigate vibration behaviour. Pellicano9 showed the response 
of an isotropic cylindrical shell for linear and non-linear vibrations by employing analytical experiment method. 
Vibration study of FG cylindrical shells has been done by Iqbal et al.10 and the shell governing motion equations 
were solved by using wave propagation technique. This technique was exceptionally helpful for vibration analysis. 
Axial modal dependence was estimated with help of beam functions in exponential form. Li et al.11 determined 
free vibration analysis of three layered cylindrical shells with FG material central layer. Flugge’s shell theory was 
used by them. Vel12 observed free and forced vibration of cylinder-shaped shell by using the elasticity solution 
technique for simply - supported conditions at both ends. Lam et al.13 showed the frequency vibration behaviour 
of multi layered FGM cylindrical shells for different edge conditions. Arshad et al.14,15 studied the FGM cylindri-
cal shell for vibration frequency analysis with simply - supported end point conditions under different volume 
fraction laws. They used Love’s shell theory. Rayleigh Ritz technique was employed by them to solve the problem. 
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Further he investigated vibration characteristics of FGM cylindrical shell with the effect of different edge condi-
tions for exponential volume fraction law. Shah et al.16 analysed vibrations of NFs for fluid filled and empty CS 
constructed by elastic foundation. Naeem et al.17 explored the vibration behaviour of three layered functionally 
graded material cylindrical shell for different edge conditions. The internal and external layers were fabricated by 
FG materials whereas the central layer was of isotropic material. They used the Love’s thin shell theory. Arshad et 
al.18 examined the vibrations of natural frequencies of bi-layered cylinder-shaped shell. One layer was fabricated 
by isotropic material and the other was of functionally graded material. Rayleigh Ritz technique was utilized. 
Shah et al.19 scrutinized the vibration behaviour of three layered FGM CS constructed by Winkler and Pasternak 
basis. They used wave propagation approach for the solution of the model.

Ahmad and Naeem20 investigated vibrations of rotating cylindrical shells composed of FG materials. Natural 
frequencies of cylindrical shell were studied with effects of volume fraction law and different ratios.

Theoretical Consideration
Consider a cylinder-shaped shell of radius R, thickness h and length L as shown in Fig. 1. An orthogonal coordi-
nate system (x, θ, z) is fixed at the middle surface of the cylindrical shell, where x, θ and z lie in the axial, circum-
ferential and radial directions of the shell, and (u, v, w) are the displacements of the shell in x, θ and z directions 
respectively.

The strain energy for a CS is represented by I and is written as

∫ ∫ θ= ′
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where ε1, ε2, γ and K1, K2, τ represent the strains and curvatures reference surface relations respectively. Prime (′) 
denotes the transpose of a matrix. These relations are taken from Sanders’ shell theory and written as:
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Figure 1.  Geometry of three layered FGM CS.

Figure 2.  Vibrations of natural frequencies (Hz) for case-I Type I cylindrical shell against (n).
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where aij denote the extensional stiffness, bij the coupling stiffness and dij the bending stiffness. (i, j = 1, 2 and 6). 
They are defined as:
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For isotropic materials O̧ij
 is the reduced stiffness stated as Loy et al.5
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Here Young’s modulus represented by E and  denotes the Poisson ratio. The bij coupling stiffness turn to zero 
for homogenous CS and ≠0 for FGM cylindrical shells and values of bij depend on the material distribution. Also 
bij become negative and positive due to irregularity of material properties at the mid plan. O̧ij

 depend on physical 
properties of FG materials.

With the help of expression (2) and (5), I is written as:

Figure 3.  Vibrations of natural frequencies (Hz) for case-II Type I cylindrical shell against (n).

Figure 4.  Vibrations of natural frequencies (Hz) for case-III Type I cylindrical shell against (n).
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By putting these expressions (3) and (4) in the expression (8) then I attains the following form:
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Shell kinetic energy is symbolized by Ì and is stated as:
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Here variable t designates the time. Mass density is represented by ρ and ρt denotes the mass density for each 
unit length and it is expressed as:
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Figure 5.  Vibrations of natural frequencies (Hz) for case-I Type II cylindrical shell against (n).

Figure 6.  Vibrations of natural frequencies (Hz) for case-II Type II cylindrical shell against (n).
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The Lagrange energy functional denoted by  for a cylinder-shaped shell is formulated by the difference of 
kinetic and strain energies as:

= − .II (12)

Numerical Procedure
The Rayleigh-Ritz procedure is used to achieve the natural frequencies of cylindrical shell. Now the displacement 
fields are presummed by the following relations:

ω
ω
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where xm, ym and zm represent the amplitudes of vibration in the x, θ and z direction respectively, the axial and 
circumferential wave numbers of mode shapes are denoted by m and n respectively, ω signifies the angular vibra-
tion frequency of the shell wave. U(x), V(x), and W(x), denotes the axial model dependence in the longitudinal, 
circumferential and transverse directions respectively. Here we take ϕ ϕ= = =ϕU x V x x W x x( ) , ( ) ( ), ( ) ( )d x

dx
( ) , 

where ϕ(x) represents the axial function which satisfies the geometric edge conditions.

υ

1 2 3 4

Zhang et al.7 0.0161 0.03927 0.10981 0.21028

Present 0.0161 0.03927 0.10981 0.21028

Difference% 0.006 0.001 0.001 0.0000

Table 1.  Comparison of frequency parameter ω ρ∆ = − R E(1 ) /2  of ̧s-ş shell. (m = 1,  = 0.3, L = 20, 
h = 0.05, R = 1).

Figure 7.  Vibrations of natural frequencies (Hz) for case-III Type II cylindrical shell against (n).

Figure 8.  Vibration of natural frequencies (Hz) for length to radius ratios against n for FGM shell of Case-II 
with ̧s-ş edge conditions.
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The axial function ϕ(x is taken as the beam function in the following form,

ϕ β μ β μ σ β μ β μ= + − +x h x cos x sinh x sin x( ) cos ( ) ( ) ( ( ) ( )) (14)m m m m m1 2 3 4

υ

1 2 3 4

Zhang et al.7 0.03285 0.04064 0.10997 0.21032

Present 0.0344 0.04077 0.11001 0.21038

Difference% 4.7 0.33 0.03 0.02

Table 2.  Comparison of frequency parameter ω ρ∆ = − R E(1 ) /2  of ς- ς shell. (m = 1,  = 0.3, L = 20, 
h = 0.05, R = 1).

υ

2 3 4 5 6

Loy & Lam4 319.5 769.9 1465.7 2366.9 3479

Present 319.52 769.86 1465.73 2366.93 3470

Table 3.  Comparison of frequency parameter ω ρ∆ = − R E(1 ) /2  of ς-f̧  cylindrical shell. (m = 1,  = 0.28, 
h = 63.5 mm. R = 1.63 mm. L = 502 mm).

Types of 
Shell

Internal 
Isotropic Layer

Central FGM 
Layer

External 
Isotropic Layer

Type I Z1 Z2/Z3 Z1

Type II Z1 Z3/Z2 Z1

Table 4.  Configurations of shell types.

Thickness 
arrangements

Internal 
Layer

Central 
Layer

External 
Layer

Case-I q1 q1 q1

Case-II q2 q3 q2

Case-III q4 q5 q4

Table 5.  Thickness differences of shell layers.

n υ = 1 υ = 2 υ = 3 υ = 5 υ = 10 υ = 15 υ = 20

1 1.6067 1.6024 1.6005 1.5988 1.5973 1.5968 1.5965

2 0.8251 0.8229 0.8220 0.8212 0.8205 0.8202 0.8201

3 1.8493 1.8446 1.8426 1.8408 1.8393 1.8388 1.8385

4 3.5182 3.5091 3.5053 3.5019 3.4991 3.4981 3.4976

5 5.6857 5.6711 5.6650 5.6594 5.6549 5.6533 5.6524

Table 6.  Variation of NFs (Hz) for various power exponent law υ against n for shell type-I ((m = 1, L/R = 50, 
h/R = 0.001).

n υ = 1 υ = 2 υ = 3 υ = 5 υ = 10 υ = 15 υ = 20

1 1.6245 1.629 1.631 1.6328 1.6343 1.6349 1.6352

2 0.8338 0.836 0.837 0.8379 0.8386 0.8389 0.839

3 1.8681 1.8731 1.8752 1.8771 1.8786 1.8792 1.8795

4 3.5539 3.5633 3.5672 3.5709 3.5739 3.5749 3.5755

5 5.7434 5.7586 5.765 5.7709 5.7757 5.7774 5.7783

Table 7.  Variation of natural frequencies for various power exponent law υ against n for shell type-II (m = 1, 
L = 50, h = 0.001, R = 1).
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Here values of βi are changed with respect to the edge conditions. (i = 1, 2, 3, 4) μm signify the roots of some 
transcendental equations and σm are parameters which depend on the values of μm.

For generalization of this problem following non-dimensional parameters are used.
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After substituting expression (3.4) into the expressions for I and Ì, we get Imax, Ìmax and  .max  Then Lagrangian 
functional max transformed into the following form by applying the principle of maximum energy.
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

Rayleigh-Ritz procedure is employed to get the eigenvalue form problem of the shell frequency equation. The 
Lagrangian energy functional max  is minimized with regarding the vibration amplitudes xm, ym and zm as 
follows,

∂
∂

=
∂

∂
=

∂
∂

= .
x y z

0
(18)

max

m

max

m

max

m

  

The obtained equations by arrangements of terms are written in matrix form as

− Ω =¸C X{[ ] [M]} 0 (19)2

where

ω ρΩ = R , (20)t
2 2 2

where [C] and [M̧] are the stiffness and mass matrices of the cylindrical shell respectively and its values are given 
supplementary file, and [C] contains the terms related material moduli nd the mass matrix [M̧] contains terms 
associated with shell mass,

′ =X x y z[ , , ], (21)m m m

the shell vibrations are determined after solving the eigenvalue equation (19) with the help of MATLAB software.
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Classifications of Materials
In present study a cylindrical shell is considered constructed from three layers, the internal and external layers are 
fabricated by isotropic material while the central layer is constructed from FG materials nickel and stainless steel. 
The volume fractions14 of the shell middle layer constructed from two constituents using trigonometric volume 
fraction law (VFL) are given by the following relations:

υ=










+







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=










+











≤ ≤ ∞.
υ υ

V sin z
h

V cos z
h

3 1
2

, 3 1
2

0
(22)

f f1
2

2
2

These relations satisfy the VFL i.e.Vf1+Vf2 = 1, where h is the shell thickness and υ denotes the power law 
exponent. It is presumed that each layer is of thickness h/3. Following are the material parameters: 

ρ ρ E and E, , , ,1 1 1 2 2 2 for nickel and stainless steel respectively. Then the effective material quantities: 
ρE and,fgm fgm fgm1  for one type of the configuration are given as:

ρ ρ ρ ρ

= −










+











+

= −










+











+

= −










+











+

υ

υ

υ

.

   

E E E sin z
h

E

sin z
h

sin z
h

[ ] 3 1
2

,

[ ] 3 1
2

,

[ ] 3 1
2 (23)
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1 2
2

2

1 2
2

2

From expression (23) at z = −h/6, Efgm = E2, = fgm 2, ρfgm = ρ2 and the material properties at z = h/6 
becomes:

Figure 9.  8 Vibration of natural frequencies (Hz) for length to radius ratios against n for FGM shell of Case-II 
with ς -ς edge conditions.

Figure 10.  9 Vibration of natural frequencies (Hz) for length to radius ratios against n for FGM shell of Case-II 
with f̧ -f̧  edge conditions.
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E E E sin E
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[ ] 1

[ ] 1 ,

[ ] 1
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fgm

1 2
2

2

1 2
2

2

1 2
2
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Thus the shell is consisted of purely stainless steel at z = −h/6 and the properties of material are combination 
of stainless steel and nickel at z = +h/6. The stiffness moduli are modified as:

= + +

= + +

= + +

a a iso a FGM a iso
b b iso b FGM b iso
d d iso d FGM d iso

( ) ( ) ( ),
( ) ( ) ( ),
( ) ( ) ( ),

ij ij ij ij

ij ij ij ij

ij ij ij ij

where i = 1, 2, 6 and (iso) represents the internal and external isotropic layers and FGM represents the central 
functionally graded material layer.

Results and Discussion
Results for an isotropic cylindrical shell with following edge conditions, simply supported-simply supported (ş-ş), 
clamped-clamped (ς- ς) and clamped-free (ς-f̧ ), are compared with the results available in open literature to 
ensure the validity, authenticity and robustness of the current technique. Tables 1 and 2 show the comparisons of 
frequency parameters with those in the Zhang et al.7 for ş-ş and ς- ς isotropic cylindrical shells. Comparison of 
natural frequencies (Hz) with those available in Loy & Lam4 for ς-f̧  isotropic cylindrical shell is presented in the 
Table 3. It can be noticed clearly that the current results are in agreement with the results in open literature.

Table 4 represents the types of three layered FGM cylinder shaped shell by interchanging the FG constituent 
materials. where Z1, Z2 and Z3 represent Aluminium, Stainless Steel and Nickel respectively. Material properties 
for the above materials are presented in refs5,19. Different arrangements of thickness for shell layers are presented 
in Table 5.

Figure 11.  Vibration of natural frequencies (Hz) for length to radius ratios against n for FGM shell of Case-II 
with ς-ş.

Figure 12.  Vibration of natural frequencies (Hz) for length to radius ratios against n for FGM shell of Case-II 
with ς -f̧  edge conditions.
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Here q1 = h/3, q2 = h/4, q3 = h/2, q4 = h/5, q5 = 3h/5.
Tables 6 and 7 represent natural frequencies (Hz) functionally graded material cylindrical shell versus against 

n for case-II, type-I & II with different power exponent law γ respectively. In these tables influence of υ is exam-
ined which is different for both types. The natural frequencies (Hz) are decreased for type-I and increased for 
type-II less than 1% when power exponent law increased from υ = 1–20 for n = 1–5. Hence natural frequencies 
are affected by the configuration of the essential materials in the three layered CS.

Figures 2–7 represent the natural frequencies (NFs) (Hz) of FGM cylinder-shaped shell against n for different 
thickness of the central layer under six edge conditions; ş-ş, ς-ς, f̧ -f̧ , ς-ş (clamped-simply supported), ς-f̧  
(clamped-free), ̧f-ş (free-simply supported). In Figs 2–4 Natural frequencies are presented for cylindrical shells of 
type I. Natural frequencies decrease for n = 2 and starts increase at n = 3 in each case. It is seen that the natural 

Figure 15.  Vibration of natural frequencies for thickness to radius ratios against n for FGM shell of case-II with 
ς-ς edge conditions.

Figure 13.  Vibration of natural frequencies (Hz) for length to radius ratios against n for FGM shell of Case-II 
with f̧ -ş edge conditions.

Figure 14.  Vibration of natural frequencies for thickness to radius ratios against n for FGM shell of case-II with 
ş-ş edge conditions.
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frequencies are minimum for clamped-free edge condition as compare to other five edge conditions and its max-
imum for free-free end point condition. The behavior of natural frequencies (Hz) remains same for all cases. 
Natural frequencies decreased <1% when thickness of the shell middle layer increased 66% or 100%. Figures 5–7 
demonstrate the results for cylindrical shells of type-II. It is clearly seen that the natural frequencies are little high 
for cylindrical shells of type-II as compare to type-I shells.

Figures 8–13 show the behavior of natural frequencies (Hz) versus n for various L/R ratios and for various 
edge conditions. It is seen that the natural frequencies (Hz) are decreased when the L/R ratios are increased. 
When L/R ratios are increased from 10 to 20, 30, and 50 then natural frequencies are decreased 72%, 87% and 
95% respectively for n = 1. Natural frequencies (Hz) for different h/R ratios against n are presented in Figs 14–19 
under six edge conditions. Natural frequencies (Hz) are increased with the increasing h/R ratios. In these figures, 

Figure 16.  Vibration of natural frequencies for thickness to radius ratios against n for FGM shell of case-II with 
f̧ -f̧  edge conditions.

Figure 17.  Vibration of natural frequencies for thickness to radius ratios against n for FGM shell of case-II with 
ς -ş edge conditions.

Figure 18.  Vibration of natural frequencies for thickness to radius ratios against n for FGM shell of case-II with 
ς-f̧  edge conditions.
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frequencies first decreased from n = 1 to 2 then increased from 2 to onwards. Natural frequencies are increased 
with the increasing h/R ratios from 0.001 to 0.005, 0.005 to 0.01 and 0.01 to 0.02 at n = 2 for different boundary 
conditions such as for simply supported - simply supported boundary condition 298%, 98% and 100% for ς-ς and 
f-f boundary conditions 105%, 84% and 95% for ς-ş and f̧ -ş boundary condition 165%, 92% and 98% for ς-f̧  
boundary condition 365%, 100% and 100% for respective ratios. Thus Natural frequencies affected significantly 
by h/R ratios.

Conclusions
In present study, frequency analysis of three layered FGM cylinder shaped shell is done for different thickness of 
the shell middle layer. Strain and curvature displacement relationships are adopted from Sander’s theory. To solve 
the current problem Rayleigh Ritz method is employed. Natural frequencies are examined for six edge conditions. 
It is noticed that Natural frequencies becomes minimum with the increase in thickness of the shell FGM middle 
layer. These also decreased with the increased of L/R ratios. When L/R ratios increased 100%, 200% and 500% 
then natural frequencies decreased 72%, 87% and 95% respectively for n = 1. Frequencies increased with the 
increased of h/R ratios. Thickness to radius ratios has significant effect on natural frequencies (Hz).
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