SCIENTIFIC REPLIRTS

A potential sensing mechanism
for DNA nucleobases by optical
_properties of GO and MoS,

et ot Nanopores

Published online: 17 April 2019 : . . . . . . .
ublished ontine pr . Vahid Faramarzi(®, Vahid Ahmadi, Bashir Fotouhi® & Mostafa Abasifard

© We propose a new DNA sensing mechanism based on optical properties of graphene oxide (GO) and

: molybdenum disulphide (MoS,) nanopores. In this method, GO and MoS, is utilized as quantum dot (QD)
nanopore and DNA molecule translocate through the nanopore. A recently-developed hybrid quantum/
classical method (HQCM) is employed which uses time-dependent density functional theory and quasi-

. static finite difference time domain approach. Due to good biocompatibility, stability and excitation

. wavelength dependent emission behavior of GO and MoS, we use them as nanopore materials. The

. absorption and emission peaks wavelengths of GO and MoS, nanopores are investigated in the presence
of DNA nucleobases. The maximum sensitivity of the proposed method to DNA is achieved for the 2-nm
GO nanopore. Results show that insertion of DNA nucleobases in the nanopore shifts the wavelength
of the emitted light from GO or MoS, nanopore up to 130 nm. The maximum value of the relative
shift between two different nucleobases is achieved by the shift between cytosine (C) and thymine
(T) nucleobases, ~111 nm for 2-nm GO nanopore. Results show that the proposed mechanism has a
superior capability to be used in future DNA sequencers.

. Rapid DNA sequencing methods are excellent tools for the growing field of personalized medicine and have
. been developed theoretically and experimentally'~”. These rapid DNA sequencers utilize any changes in the
© ionic or tunneling currents, surface plasmon resonances, self-aligned optical antenna and surface-enhanced
 Raman spectroscopy to determine type of the DNA nucleotides: adenine (A), cytosine (C), guanine (G) and
. thymine (T)>**. The minimal thickness of the single-layer nanopores such as graphene is the key driving force
. for two-dimensional-material nanopore>>. However, in order to achieve single-nucleotide resolution, there are
still many other challenges such as high membrane thickness, fast DNA translocation speed, slow sensing mech-
anisms and noise effects"**. In this paper, we propose and analyze a novel concept for sequencing DNA mole-
. cules by absorption and emission properties of fluorescent materials. For DNA sequencing by this new approach,
. we have to use molecules with excitation-dependent emission behaviours, because each DNA nucleotide has a
unique absorption spectrum. Recently, semiconductor quantum dots (QDs) are proposed to be used in fluores-
cence emission applications, because of their advantages such as higher quantum yields (the ratio of emitted to
absorbed photons from any object), controllable properties with size and shape, and resistance to photobleaching,
over commercial dyes”!°. However, according to the Kasha’s rule'’, the fluorescence of conventional fluorophores,
: such as organic dyes and semiconductor QDs, does not depend on excitation energy. This is because excited elec-
. trons are mostly relaxed to the bottom of the conduction band before the fluorescence begins, which is independ-
. ent of the initial excitation photon energy. On the other hands, graphene derivatives exhibit much interesting
. photoluminescence (PL) properties'*"3.
: Graphene oxide GO is a functionalized few layered forms of graphene with oxygen functional groups that
are attached on the basal plane. Studies show that the photoluminescence emission of GO in a polar solvent, like
© water, is dependent on the excitation wavelength'#'>, The position of the fluorescence peak of GO in such polar
© solvent, without changing the GO sheet size, red-shifts with increasing excitation wavelength. The strong excita-
. tion wavelength dependent fluorescence in GO is originated from the red-edge effect, which results from a slowed
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Figure 1. The schematic structure of our proposed DNA sequencing method based on the excitation-
dependent emission property of GO or MoS, nanopore while DNA molecule passes through the nanopore.

The structure is assumed to be suspended in a polar solvent such as water. Regarding the excitation wavelength
dependent behavior of GO and MoS, materials, the emission wavelength \,,, would be a function of the incident
light wavelength \;,. The blue, green, red and cyan colors represent the emission wavelength of the GO or MoS,,
corresponding to the presented A, T, C and G nucleobases at the nanopore. The function (f) is determined by
the type of the DNA nucleobases.

solvation process due to an interaction between solvent dipole and fluorophore dipole'. Furthermore, it is shown
that molybdenum disulfide (MoS,) QDs with a series of advantages, such as high quantum-yield, multicolor PL
emission ranging from blue to red and good biocompatibility, have a great potential for utilizing in bio-detection
applications'®!”. Also, excitation dependent PL emission spectra in MoS, QDs are observed and fluorescence
peak position, for the uniform size of the gathered MoS, QDs, varies under different excitation wavelengthls’zo.
The aim of this study is showing a new method using optical properties of GO and MoS, nanosheets in order
to fast, label-free and accurate detection and sequencing of DNA nucleobases. The photoabsorption spectra of
GO and MoS, nanopores in the presence of DNA are calculated by employing the powerful hybrid quantum/
classical method (HQCM)?!. Next, the impact of presented DNA nucleobases at the nanopores on the photo-
absorption spectra, band-gap energies, electric field enhancements and emission wavelengths of GO and MoS,
nanopores is investigated. Then, by a signal processing step, we find one frequency channel per DNA nucleobase
as an excitation wavelength for each type and size of nanosheets. Regarding the excitation wavelength dependent
emission properties of GO and MoS, nanosheets, emitted light wavelengths from the GO and MoS, nanopores
are calculated and analyzed in the presence of all types of the DNA nucleobases, individually. Thus, an emission
peak wavelength, as a detection signal, can be assigned for each type of DNA nucleobases. Results show a superior
capability of this concept to be used in future DNA sequencers.

The Proposed Structure and Operation Principle

The schematic structure of our proposed DNA sequencing method is presented in Fig. 1. It contains a symmetric
QD nanopore while a DNA molecule is introduced in the middle of the nanopore. In the structure, the GO or
MoS, is utilized as QD nanopore, and DNA molecule translocates through the nanopore. The pore is classically
created at the middle of nanosheet. In our theoretical model, the proposed GO and MoS, structures are consid-
ered to be the square sheets with the thicknesses of 1 and 0.65 nm, respectively. Then, a pore with a diameter of
1.5nm and the same thickness of nanosheet is made at the middle of it. Materials of the pore and surrounding
medium are water and treated with optical properties of water in the classical subsystem. The nanopore mem-
brane material and DNA molecules are assumed to be placed in an aqueous solution.

As DNA molecule has four nucleobases, we assign a unique optical signal for each type of DNA nucleobases.
The influence of presented DNA nucleobase at the nanopore on the optical properties of the nanopore membrane
material is investigated. For this purpose first, we need to obtain one photoabsorption spectrum for membrane
nanopore + DNA nucleobase complex per each type of the presented nucleobase at the pore. The selectivity factor
which is the capability of distinguishing between two different nucleobases is defined. For this purpose, we search
the maximum difference between absorbance peaks in absorption spectra of the membrane nanopore + DNA
nucleobases complexes. The peak wavelength of the final absorbed spectrum for which the difference between
absorbance peaks of two different nucleobases is maximum is achieved. So, we obtain one frequency channel per
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Figure 2. The molar absorbance for GO nanopores with the lengths of (a) 2, (b) 3 and (¢) 5nm, and MoS,
nanopores with the lengths of (d) 2, (e) 3 and (f) 5nm in length, with and without DNA molecules. The DNA
nucleobases have the most influence on the absorption spectra of GO or MoS, nanopore with a length of 2nm.
The impacts of presented DNA molecules at nanopore reduce with increasing the length of the sheets. The
thickness of GO and MoS, nanopores are assumed to be 1 and 0.65 nm, respectively.

DNA nucleobase and consider it as an excitation wavelength for the specific type and size of the membranes. In
order to detect DNA nucleobases at the output of the proposed system, we look for the emission wavelength of
the layer in the presence of the nucleobase at the nanopore corresponding to the achieved excitation wavelength.
According to Kasha’s rule, emission wavelength should be fixed and independent of the excitation wavelength
when we choose a certain dye or nanosheet. However, we have to use materials with the capability of having dif-
ferent emission wavelengths or excitation wavelength dependent emission properties, because we need to assign
an emission wavelength for each type of the nucleobases. On the other hand, GO and MoS, do not obey Kasha’s
rule in a polar solution (such as water), and the peak emission wavelength varies by changing the excitation wave-
length. Thus, taking into account the conditions mentioned above and also more significant amounts of molar
absorption of DNA molecule nucleobases at the higher energies, especially above 4 eV, and biocompatibility issues
we select GO and MoS, nanopores'*1820,

Results and Discussions

Figure 2 shows the absorption spectra for the GO and MoS, nanopores with and without DNA nucleobases. It
is assumed that the nanopore, with a diameter of 1.5 nm, to be symmetrically made in the center of GO or MoS,
nanopore and DNA molecule passes through the nanopore. The QD sheet lengths are assumed to be 2, 3 and 5nm
shown in Fig. 2(a-f), respectively. We should note that a single-stranded DNA molecule cannot pass through
nanopores smaller than 1.5nm in diameter*. Also, (for nanopore diameters larger than 1.5nm) increasing the
pore diameter above 1.5 nm gradually reduces the influence of the presented DNA nucleotides on the QD absorp-
tion spectra. Thus, we consider the nanopore with a diameter of 1.5nm. For example, in Fig. 2(a-f), we can see
that impact of the DNA nucleobases on the absorption spectrum of the QD nanopore is decreased by changing
the sheet length from 2 to 5nm for both GO and MoS, nanopores. This is because the optical absorption of QDs
increases with increasing the size of QDs and the impact of DNA nucleobases on the QD absorption spectrum
is reduced. Generally, absorbance peaks of the QD and DNA nucleobases complex are similar to the peaks of
the bare A, C, G and T nucleobases reported by Tsolakidis et al.?. For example, the dominant peaks for the A
and T nucleobases are near to each other and about 7eV (~176 nm)?. Similarly, in our study, and for the whole
complex of QD nanopores with A or T nucleobases, the dominant introduced peaks are near to each other, at
the same wavelength, that is, around 176 nm. For MoS, nanopore and DNA molecule complex, in comparison
with no nucleobase case, the absorbance increases for wavelengths smaller than 180 nm and decreases for longer
wavelengths. It should be noted that in the combined system, the resonance absorbance of the DNA molecule
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Figure 3. The differential absorbance of QD nanopores due to the presence of DNA molecules for GO sheets
with the length of (a) 2, (b) 3 and (c) 5nm, and MoS, sheets of (d) 2, (e) 3 and (f) 5 nm. Different amounts of
variations in differential absorbance are ascribed to different nucleobases. For lager nanosheets, a spectral line
shape like bare DNA absorption spectra (g) can be observed in differential absorbance. Insets: the induced
absorbance of differently sized GO and MoS, nanopores due to presented DNA nucleobases at nanopore.

For smaller QDs, DNA nucleobases make more peaks and shift the QD absorbance peak in the induced
absorption spectra. The absorbance peaks of 5-nm sheets show no considerable shift in the presence of the DNA
nucleobases. (g) The molar absorbance for all four bare nucleobases.

and MoS, nanopore are coupled, and this leads to hybridized quantum molecule-classical material states. The
absorbance peak of MoS, nanopore is strong as compared to that of the GO. On the other hand, the absorbance
resonances of DNA nucleobases are significantly weaker than the absorbance peak of MoS, nanopore, thus strong
interband damping takes place for MoS, absorbance peak when the absorbance peak of MoS, nanopore overlaps
in energy with the absorbance resonances of DNA nucleobases*!. Because of the limited absorption intensity of
DNA nucleobases at the higher wavelengths, in comparison to that of MoS, nanopore, this interband damping
effect for MoS, nanopore can be observed in the absorption spectra of MoS, nanopore + DNA nucleobases com-
plexes. Also, our calculated absorbance results for the GO and MoS, sheets are in good agreement with the exper-
imental studies?*?¢. For more investigation of the impact of the inserted DNA nucleobases on the QD absorption
spectrum, we calculate the induced absorbance of the QD due to the presence of the DNA molecule by the differ-
ence between the QD-DNA complex and the bare DNA nucleobases absorption spectra. The induced absorbance
shows the net absorbance of the QD in the presence of DNA molecule. It also reveals the changes in intensity and
peak position of the GO or MoS2 nanopore. Moreover, to determine the net absorbance of the system due to the
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Figure 4. The schematic structure of (a) bare A nucleobases, and in the presence of (b) GO and (c) MoS,
nanopores. The electric field enhancement of (d) bare A nucleobases, (e) at the GO and (f) MoS, nanopore at
178 nm. The black points show the amplified A nucleobase atoms. At the peak wavelength of 178 nm (~7¢eV).
The electric field of the A nucleobases at the GO and MoS, nanopores is enhanced by a factor of 1.2 and 2,
respectively. The molar absorbance of bare A nucleobases (g) and the enhanced absorbance of A nucleobases in
the presence of (h) GO and (i) MoS, nanopores. The enhancement factor of the A nucleobases absorbance at the
presence of GO and MoS, nanopores at the peak wavelength of 178 nm is about 1.49 and 4.1, respectively. The
length of the sheets is 5nm.

presence of the DNA molecule, we calculate the difference between the induced absorbance and the absorption
spectrum of the bare QD (differential absorbance). Figure 3(a-f) show the differential absorbance of GO and
MoS, nanopores for different lengths of 2, 3 and 5 nm, respectively. As can be seen in the Figure, GO nanopores
show more peaks than that of the MoS, because DNA nucleobases have more influence on the absorption spectra
of the GO nanopores, due to the smaller absorbance of GO compared to that of the MoS, nanopores. The QD
nanopores with 5nm length have higher differential absorption and show more and stronger peaks than that of
the smaller QD nanopores, as shown in Fig. 3(c,f). More peaks and larger amounts of differential absorbance can
be observed at lower wavelengths because of high optical absorption of DNA nucleobases in these wavelengths.
The differential absorbance spectrum of larger QDs, compared to smaller ones, shows a spectral line shape like
DNA absorption spectrum, as shown in Fig. 3(c,f,g). To discuss this, we show the results of the induced absorb-
ance of QD in the presence of DNA for GO nanopores with the length of 2, 3 and 5nm, and MoS, nanopores of 2,
3 and 5nm, in the insets of Fig. 3(a—f), respectively. Since optical absorption of GO and MoS2 nanopores increase
when the length of the nanosheet gets larger, the effect of DNA nucleobases on the absorbance peak of the larger
QD nanopores is not considerable, and the peak has no noticeable wavelength shift, as can be observed in the
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Figure 5. The band-gap energy of QDs in the presence of a DNA molecule. The band-gap energy of 2-nm GO
sheet shows the most variations in the presence of DNA nucleobases, and ranges from ~3.53 to 3.8 eV. Also, a
5-nm MoS, sheet has the minimum variations of the band-gap energy.

figures. Because DNA nucleobases have a limited optical absorption, thus for smaller QD nanopores, the induced
absorbance in the presence of DNA nucleobases shows more absorbance peaks and wavelength shifting of the
QD absorbance peak.

As a result, for larger nanosheets the DNA nucleobases absorption are overwhelmed by the large absorption of
the nanosheets and modified absorption spectra of DNA nucleobases can be obtained by differential absorbance.
Because, there is no noticeable wavelength shift in the induced absorbance for larger nanosheets, the differential
absorbance of the system will be a spectrum similar to that of the original DNA nucleobases. In other words, a
spectral line shape like bare DNA nucleobases absorption spectra can be obtained by calculation of differential
absorbance of the system. So, differential absorbance can be useful to distinguish different DNA nucleobases
presented to the nanopore. It has been shown that by considering the differential absorbance direct access to the
modified dye absorbance can be achieved and a spectrum similar to that of the original dye, which is only scaled
by the plasmonic enhancement factor, can be obtained?. Therefore, differential absorbance spectrum can provide
invaluable information about the inserted DNA nucleobases at the nanopore (such as position and number of
absorbance peaks) in a UV-vis absorption set-up by eliminating the background absorbance (absorbance spec-
trum of GO and MoS2 nanopore) of the system. The schematic structure of bare A nucleobase, and in the pres-
ence of GO and MoS, nanopores, are shown in Fig. 4(a—c), respectively. The electric field enhancement of these
configurations is calculated at the major absorbance peak wavelength of A nucleobase and shown in Fig. 4(d-f).
As shown in these figures, the electric field of A nucleobase is enhanced in the presence of GO and MoS, nanop-
ores. The A nucleobase at the MoS, nanopore has more field enhancement as compared to GO nanopore. Also, as
shown in Fig. 4(d-f), the MoS, nanopore has more enhancement effect on the DNA absorbance than that of the
GO, because MoS, nanopore has a stronger optical absorption than GO for a wide wavelength range from UV to
near-infrared. MoS, nanopore provides a more significant 4.1-fold enhancement in the A nucleobase absorbance,
as compared to 1.49-fold enhancement with GO nanopore at the peak wavelength of ~178 nm. The enhanced
absorption of DNA molecule at the GO or MoS, nanopore verifies the results of field enhancement. Similarly,
the electric field enhancement and corresponding enhanced absorption spectra of the other types of presented
DNA nucleobases at GO and MoS, nanopores, are shown in Supplementary Information Figs S1, S2 and S3. The
enhanced absorption spectra have similar dominant peaks at 178, 188, 192 and 177 nm, corresponding to A,
C, G and T nucleobases, respectively, compared with the bare nucleobases absorption spectra® (see Fig. 4 and
Supplementary Information Figs S1, S2 and S3 for more details).

To investigate the influence of the inserted DNA molecule on the band-gap energy of QD nanopore, we calcu-
late the band-gap energy of the GO or MoS, nanopore and DNA molecule complex using Tauc plots?. As shown
in Fig. 5, the band-gap energies of 5-nm GO and MoS, sheet are ~3.5eV and ~1.89 eV, respectively, which are in
good agreement with the results presented by Mathkar et al.?® and Arul et al.*’. As it is indicated in Fig. 5, the
band-gap energy ranges from ~3.53 to 3.8 eV for a 2-nm GO sheet and from ~1.98 to 2.14 eV for a 2-nm MoS,
sheet in the presence of DNA molecule.

Applicability of the proposed method for DNA sequencing is influenced by a combination of the spectral
shape of the input light and QD size. Here, we consider QD nanopores with lengths of 2, 3 and 5 nm, because
increasing the size of the QDs reduces the average sensitivity of QDs to the presence of DNA, as shown in Fig. 2.
Next, for DNA sequencing, we define figure-of-merit (FOM) given by
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Figure 6. The maximum achieved FOM for GO and MoS, nanopores. The maximum FOM is obtained under
conditions in which the center frequencies are 2.88, 2.68 and 2.66 eV, for 2, 3 and 5-nm GO sheets, and 3.95,
6.14 and 6.71 eV, for 2, 3 and 5-nm MoS, sheets, respectively.

FoM= ]
i,j=1,2,3,4
i=j

i<j (1)

It enables us to distinguish between the nucleobases absorption characteristic in DNA sequencing. Here, i
and j stand for possible types of DNA nucleotides: A, C, G and T. The )\, is defined as the peak wavelength of the
final absorption spectrum from the QD nanopore while the influence of the presented type i nucleobase to the
nanopore is considered. To calculate FOM, we apply a specific function to the absorption spectrum of each type of
the QD nanopore. The desired function is defined as a Gaussian function with a central frequency and a spectral
width of w, and ¢, respectively. w,. and o, are calculated to achieve the maximum value of FOM for each type of
the QD. Figure 6 shows the maximum FOMs obtained for the corresponding Gaussian functions with central
frequency and spectral width changed from 3 to 8eV and 0.1 to 1.5 eV, respectively. As the Fig. 6 shows, the best
FOM corresponds to 2-nm GO sheet with the Gaussian function of w.=2.88¢eV and o.=1.39 eV. Moreover,
for 2-nm MoS, sheet, the best FOM is achieved for w.=3.95eV and o.= 1.38eV. Then, we search for the peak
wavelengths (;) and peak widths of the absorbed light by the QD nanopore influenced by presented DNA nucle-
obases, corresponding to the best value of achieved FOM. The calculated peak wavelengths of the absorbed light
from GO and MoS, nanopores corresponding to the best value of achieved FOM, with and without DNA nucle-
obases are demonstrated in Fig. 7.

We consider each peak wavelength of the absorbed light as an excitation wavelength for GO or MoS, nano-
pore. Next, we calculate peak emission wavelength of the structures in the presence of each nucleobase. For this
purpose, we find the PL peak positions based on the excitation wavelength dependent emission property of GO
and MoS, nanopores. It is shown that when the GO sheet is suspended in a polar solvent, the emission peak of GO
is red shifted from 440 to 580 nm by increasing the excitation wavelength from 350 to 500 nm in water at room
temperature. This results in creating a linear relationship, with a constant slope of ~1, between the emission and
excitation wavelengths up to ~460 nm'. Also, MoS, QDs, with and without considering the solvent effect, show
variable PL emission under different excitation wavelengths and PL peak position is red shifted for the excita-
tion wavelength within 405-552nm'®%. Then, we calculate the peak emission wavelengths corresponding to the
absorbed light wavelengths.

Figure 7 shows the calculated peak wavelengths of the light absorbed and emitted from all three sizes of the
GO or MoS, nanopores and DNA nucleobases complexes. For example, 3-nm GO sheet has the emission peaks
centered at 337.9, 395, 363.8 and 290.8 nm corresponding to the absorbed light peaks centered at 284, 302, 269
and 191.3 nm, respectively.

To demonstrate the capabilities of the proposed structures for DNA sequencing, a relative shift of emitted light
wavelength from GO and MoS, nanopores between two different nucleobases is calculated. Figure 8 shows the
relative shift of the output light wavelength of GO and MoS, nanopores between two different nucleobases. The
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Figure 7. Peak emission wavelengths of all (a) GO and (b) MoS, nanopores with and without DNA nucleobases
corresponding to the center frequency and spectral width of the best achieved FOM for each type of QD
nanopore. The peak absorption wavelength is labeled for each peak emission wavelength in the figures.
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Figure 8. The relative shift of the main peak of the output emitted light from the QD nanopores between
different nucleobases are shown for 2-5nm (a) GO, and (b) MoS, sheets. 2-nm GO sheet has the most sensitive
emitted light to the type of DNA nucleobases. In all GO nanopores A and G show the minimum relative shifts,
and the shift between C and G in 5-nm MoS, sheet is the minimum value of the relative shift. 2-nm GO sheet
has the most sensitive emitted light to the type of DNA nucleobases, and the maximum relative shift of ~112 nm
is obtained by shift between C and T. In all GO nanopores, A and G show the minimum relative shifts of 12.4—
16.5nm, and a 2-nm shift between C and G in 5-nm MoS, sheet is the minimum value of the relative shift.

possible cases are A-C, A-G, A-T, C-G, C-T, and G-T. For GO (MoS,) nanopore, the maximum value of rela-
tive shift is obtained by the shift between C and T, A\ y=111.54nm, (G and T, A\ )= 56 nm,), while 2-nm
GO(2-nm MoS,) sheet is used as QD nanopore. The shift between C and G in 5-nm MoS, sheet is the minimum
value of the relative shift. Here, we define the average sensitivity as

1 |/\max,j - )‘max,i ..
Spve = _ZZ—, i,j=A,CG,T.
£ 4 Jjoi )‘mux,j (2)

where )\, is the peak emission wavelength of GO or MoS2 nanopore, i and j are types of the DNA nucle-
obases. The maximum sensitivity of our proposed method to the presented DNA nucleobases is ~52.2%, which
corresponds to 2-nm GO nanopore. This value is higher than the maximum sensitivities for the plasmonic-
based DNA sequencing studies with values of 19% and 38% reported in>°. Also, the maximum sensitivity for
Surface-enhanced Raman based method is about 34.22%’.
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It should be noted that in the field of nanopore DNA sequencing, in most cases, the main purpose of modeling
and simulation is to bring a new idea or class of DNA-sequencing mechanism to this field. Nevertheless, practi-
cal parameters and challenges such as pore size, salt solution, translocation dynamics, and nucleobases stick on
the pore, effects of noise signal from neighboring nucleobases, contaminations and defects are still present and
unknown. From the practical point of view, a study by Yanagi showed that smaller nanopores with a diameter of
1 to 2nm could be fabricated using dielectric breakdown. This method can generate nanopores with diameters of
sub-1 nm in a 10-nm-thick Si3N4 membrane with good stability®'. To prevent the nucleobases from sticking to
the pore and thus the accumulation of DNA molecules inside the nanopore in the real experiment the pore can
be passivated with a protein layer, insulating layer or specific atoms, resulting in an enhancement in the accuracy
of the optical measurements and noise level reduction. According to studies from several groups, passivating the
surface and the sidewall of a nanopore device can be done using bovine serum albumin (BSA)*?, photo-definable
PDMS (P-PDMS)* and silicon atoms® which result in preventing aggregation of DNA inside the pore, but oth-
erwise do not significantly affect DNA translocation.

Generally, using the proposed method for sequencing DNA molecules has some advantages over the previ-
ous methods such as ionic or tunnelling currents, Raman spectroscopy and surface plasmon resonances'~®. The
nanosecond-order lifetime of the method is both advantage and disadvantage for DNA sequencing, simultane-
ously. This is because DNA translocation time is short, but emission lifetime is large. This larger lifetime can be
used to the simple tracking of the sensing signal. Also, DNA amplification can be utilized to give enough time for
the emission mechanism to be complete. Moreover, because of size-dependent adjustability of the optical proper-
ties of QDs, and practical viability of nanometer-sized QDs, the proposed mechanism seems to be more reliable
than ionic and tunnelling currents, surface plasmons and Raman spectroscopy. This concept shows more signifi-
cant amounts of wavelength shifts due to presentation of DNA nucleobases. Hence, the method is more sensitive
and selective compared to ionic, tunnelling, plasmonic and Raman-based mechanisms for DNA sequencing®-.
Also, due to higher selectivity, the suggested method can determine the type of the presented DNA nucleobases
to the nanopore.

Methods

The Hybrid Quantum/Classical Method (HQCM) has been developed for computing electronic and optical
properties of semiconductors and metallic nanostructures using the real and imaginary parts of the refrac-
tive index?*4*>36, This method shows acceptable agreement between modeling and experimental data?**. In
this method, the calculations are divided into two parts: the quantum subsystem, which is propagated using
Time-Dependent Density Functional Theory (TDDFT) scheme, and classical subsystem that is treated using
Quasistatic Finite-Difference Time-Domain method (QSFDTD). This method employs dipole approximation
with neglecting the magnetic field**’. The subsystems share a common electrostatic potential, while they are
propagated separately in their own real space grids. In the Time-propagation TDDFT part of the calculation
the electrostatic potential is known as the Hartree potential, V2V9"(r, ) = —4mp?(r,t), and in the QSFDTD
method the electrostatic potential is solved from the Poisson equation as well V2V(r, ) = —47p(r,t). The hybrid
scheme is created by replacing in both schemes the electrostatic potential by a common potential as V2V*/(r,
1) = —4x[p(r, t) + p?(r, t)]**. Then, this total potential is used in the Kohn-Sham density functional theory
scheme (KS-DFT), and the electronic structure is solved for the ground state and excited state electron density.
Finally, using the electron density and solving the time dependent Schrédinger equation the photoabsorption
spectrum is extracted from the time-propagation simulations.

In our study, GO and MoS, nanopores are treated with classical subsystems, and DNA molecule is treated with
the quantum subsystem. Since the membranes are thicker than the distance between two adjacent nucleobases
(0.34nm) we use amplified DNA to make sure nanopore is filled with just one type of nucleobase. So, we use
four-fold amplified nucleobases (1 nm) for each specific type of DNA nucleobases, equal to the highest membrane
thickness (GO membrane).

For classical subsystem modeling, permittivity is modeled as a linear combination of Lorentz oscillators, as
demonstrated in

, L
e(w) = ep (W) + igp, (W) = e, + & Z 2. - 2
J W way —w 3)
here, 3, w;and o are parameters to fit desired model to the experimental permittivities. In Eq. 3, the frequency w
is presented in eV, e, and ¢, are real and imaginary parts of permittivity, respectively?*. To find fitting parame-
ters we search minimum value of

f VA(Re@) — £(@))? + Blegy(w) — &5(w)* dw @

where €, and ¢, are real and imaginary parts of experimental permittivity, respectively, A and B are constant
parameters which can be set to achieve the optimal fitting. The experimental permittivities for GO and MoS, have
already been reported in literature®*.

Note that the introduced single-stranded DNA molecule to the QD nanopore is assumed to be single-type
(only A, C, G or T) and DNA molecule length is considered to be almost equal to the diameter of the GO mem-
brane. In the HQCM calculations, we use 1 and 0.25 A... real-space grids for the classical and quantum subsys-
tems, respectively, and the distance between the atoms and the grid borders is 0.4 nm. In these calculations, the
time evolution is followed for 20 fs with 10 attosecond time steps, and the spectra are convoluted with Gaussian
FWHM of 0.35¢eV. For quantum subsystem, atomic coordinates of the relaxed DNA molecules are presented to
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the center of the nanopore. The main parameters for relaxation of DNA molecules and ground state calculations
are basis-set = ‘dzp; exchange-correlation functional = ‘LDA, MeshCutoff =200 Ry and QuasiNewton minimizer.
The optimization algorithm runs until all atomic forces are below 0.05 eV per Angstrom. It should be noted
that more accurate results will be obtained if DNA nucleobases are relaxed with GGA functionals. However, we
have compared the calculations results of LDA with those of GGA (unpublished results). We find that there is
no considerable difference between the LDA and GGA calculations. Therefore, in this study, regarding the com-
putational time and cost of GGA functionals, the LDA functionals have been utilized. The HQCM is accurate
under the condition in which characteristics dimensions of the system is smaller than the input light wavelength.
For example, if the structure size is about 50 nm, the results are valid up to 6 eV2!. Previous researches show that
DNA is naturally a fluorescent molecule®. Thus, the excitation light is absorbed and also emitted by both GO or
MoS, nanopore and DNA molecule composition, as a complex molecule. Hence, to study molecule absorbance
and emission, we consider the whole complex of the GO or MoS, nanopore and DNA molecule. For the HQCM
calculations we use GPAW codes®*#1#2, The absorbance spectrum of the whole complex of the QD and DNA is
calculated by

2 2
Molar Absorbance (w) = Z?—N £ S(w) (M em™
10°In10 | mc (5)
where N, is Avogadro’s number and c is the velocity of light**. In Eq. 5 § is dipole strength function, along the
direction parallel to the base plane of QD sheets and DNA molecule, which is numerically extracted by HQCM
codes.

Conclusion

We presented a novel method based on optical properties of GO and MoS, QDs for sequencing DNA molecules.
The mechanism combined with the nanopore-based DNA translocation is suggested and analyzed for sequencing
DNA molecules. The recently developed HQCM which employs TDDFT and QSFDTD calculations are utilized
to investigate impacts of DNA nucleobases on the absorption spectrum of the QD nanopores. Due to biocom-
patibility, stability, large band-gap energy and importantly excitation dependent PL properties, the GO and MoS,
nanopores are selected as nanopore materials. Effect of presented DNA nucleobases at the nanopores on the
different parameters of the proposed method such as absorbance spectra, electric field enhancement, band-gap
energies and emission peaks wavelengths of GO and MoS, nanopores, are studied. The effect of different GO and
MoS, nanopore sizes on the proposed method is investigated. The best condition for the proposed DNA sequenc-
ing application is obtained while the GO nanopore length is 2 nm, and central frequency and spectral width of
the applied Gaussian function is 2.88 and 1.39 eV, respectively. Results show that the presentation of each type of
DNA nucleobases in the GO or MoS, nanopore can change the wavelength shift of the emitted light between 1 to
130 nm. The large amounts of the wavelength shifts due to presented DNA to the nanopore, lead to higher sensi-
tivity and selectivity compared with ionic, tunnelling, plasmonic and Raman-based methods in DNA sequencing.
The results show that the proposed concept can clearly determine the type of unknown DNA nucleobases. Our
study proves that the proposed method can be effectively used to sequence DNA molecules. Proposed mechanism
and the results shed light on a new class of DNA sequencers for future personalized medicine.
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