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Targeting regulatory signaling pathways that control human bone marrow stromal (skeletal or

. mesenchymal) stem cell (hBMSC) differentiation and lineage fate determination is gaining momentum
in the regenerative medicine field. Therefore, to identify the central regulatory mechanism of
osteoblast differentiation of hBMSCs, the molecular phenotypes of two clonal hBMSC lines exhibiting
opposite in vivo phenotypes, namely, bone forming (hBMSC+®°") and non-bone forming (hBMSC—8°n¢)

. cells, were studied. Global transcriptome analysis revealed significant downregulation of several

. TGFB responsive genes, namely, TAGLN, TMP1, ACTA2, TGF32, SMAD6, SMADY, BMP2, and BMP4 in

- hBMSC—B°"¢ cells and upregulation on SERPINB2 and NOG. Transcriptomic data was associated with
marked reduction in SMAD?2 protein phosphorylation, which thereby implies the inactivation of TGF3
and BMP signaling in those cells. Concordantly, activation of TGFf3 signaling in hBMSC—5°"¢ cells using

. either recombinant TGF(31 protein or knockdown of SERPINB2 TGF(3-responsive gene partially restored

. their osteoblastic differentiation potential. Similarly, the activation of BMP signaling using exogenous

. BMP4 or via siRNA-mediated knockdown of NOG partially restored the differentiation phenotype of
hBMSC—Bone cells. Concordantly, recombinant NOG impaired ex vivo osteoblastic differentiation of
hBMSC*Bone cells, which was associated with SERBINB2 upregulation. Our data suggests the existence
of reciprocal relationship between TGFB and BMP signaling that regulates hBMSC lineage commitment
and differentiation, whilst provide a plausible strategy for generating osteoblastic committed cells from
hBMSCs for clinical applications.

Human bone marrow-derived stromal (skeletal or mesenchymal) stem cells (hBMSC) exhibit the potential to dif-
ferentiate into various mesodermal cells including osteoblasts, adipocytes, and chondrocytes'. These have all been
employed in regenerative medicine protocols for treating skeletal diseases e.g. non-healed fractures and the repair
of bone defects®. However, cultured hBMSC cells exhibit functional and molecular heterogeneity with respect to
differentiation capacity and bone formation potential®*. This may explain the variability in the results obtained
from hBMSC-based therapies®. One possible approach to enhance the therapeutic efficacy of hBMSC in bone
regeneration protocols is to employ osteoblast-committed progenitors. Moreover, in certain disease conditions
such as osteoporosis, for example, the impairment of osteoblast differentiation of hBMSC occurs, thereby necessi-
tating the in vivo enhancement of the bone forming capacity of hBMSC®. However, this requires the identification
of the signaling pathways and molecules that regulate hBMSC commitment into the osteoblastic lineage”*.

We have previously employed global transcriptomics and proteomic approaches in order to identify the mol-
ecules and signaling pathways regulating hBMSC lineage specific differentiation based on studying the in vitro
differentiation dynamics of hBMSC**-!!. Several follow up studies led to the identification of factors that are
relevant for in vitro osteoblast differentiation and in vivo bone formation'>'>. Whilst this approach is both useful
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and hypothesis-generating, it requires extensive and time-consuming screening. In the current study, we per-
formed reverse molecular phenotyping which is currently used in precision medicine. In this approach, the in
vivo phenotype is interrogated based on molecular phenotyping in order to identify the signaling pathways which
are to be targeted in individualized therapy. Using a similar approach, we tested the possibility of identifying
those signaling pathways relevant for in vivo bone formation based on the ability of hBMSC to form bone in
vivo'. We employed two previously established hBMSC lines derived from telomerase-immortalized hBMSCs
(hBMSC-TERT) that exhibited either ectopic bone forming or non-bone forming phenotype when implanted
in vivo into immunodeficient mice>!*. Employing whole transcriptome profiling comparing these two hBMSC
lines, we identified the molecular signature and signaling pathways associated with the bone-forming phenotype.
Most importantly, our data suggest the convergence of TGF(3- and BMP4-signaling pathways during osteoblastic
lineage commitment of hBMSC.

Materials and Methods
Ethics statement. This study did not involve human or animal subjects, therefore ethical approval is not
required.

Cell culture.  We employed the hMSC-TERT cell line which was created from primary normal human MSC
by overexpressing human telomerase reverse transcriptase gene (WTERT)!. The hMSC-TERT cells have been
extensively characterized and they exhibited similar cellular responses and molecular phenotype to primary
hBMSC. For ease, we will refer to this cell line as hBMSC’ for the remaining part of this manuscript. In the cur-
rent experiment, we employed two sub-clones of high bone-forming cells (hBMSC*E°2¢) and low bone-forming
cells (hBMSC~2°¢) which were derived from early-passage hBMSC-TERT cells [with a population doubling level
of (PDL) 77] as well as from late-passage hBMSC-TERT cells (PDL =233), respectively, as previously described”.
The cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with D-glucose 4500 mg/L,
4 mM L-Glutamine, 110 mg/L Sodium Pyruvate, 10% Fetal Bovine Serum (FBS), 1x penicillin-streptomycin
(Pen-strep), and non-essential amino acids (all purchased from Thermo Fisher Scientific, Waltham, MA), at 37°C
in a humidified atmosphere containing 5% CO?2.

siRNA-mediated transfection of hMSC. For transfection experiments, hBMSC cells in logarithmic
growth phase were reverse-transfected with Silencer Select Pre-designed and Validated SERPINB2-siRNA
(25nM) (Ambion ID: s10016, s10017, and s10018, Cat. No. 4392420, Thermo Fisher Scientific Life Sciences,
USA), or NOG-siRNA (25nM) (Ambion ID: s534108, Cat. No. 4392420) using Lipofectamine 2000 Reagent
(Invitrogen), plus serum-free Opti-MEM I medium (Thermo Fisher Scientific, Waltham, MA) as per the man-
ufacturer’s recommendations. On day 3 of transfection, the cells were induced into osteoblast (OS) or adipocyte
(AD) media.

In vitro osteoblast differentiation.  Cells were grown in standard DMEM growth medium in 6-well plates
at 0.3 x 10° cells/ml. When a 70-80% cell confluence was reached, the cells were cultured in DMEM supple-
mented with an osteoblast induction mixture containing 10% FBS, 1% Pen-strep, 50 ug/ml L-ascorbic acid (Wako
Chemicals, Neuss, Germany), 10 mM (3-glycerophosphate (Sigma), 10 nM calcitriol (1c,25-dihydroxy vitamin
D3; Sigma), and 10 nM dexamethasone (Sigma). The media was replaced 3 times per week.

In vitro adipocyte differentiation. Cells were grown in standard DMEM growth medium in 6-well plates
at 0.3 x 10 cells/ml. When a 90-100% cell confluence was reached, the cells were cultured in DMEM supple-
mented with adipogenic induction mixture containing 10% FBS, 10% Horse Serum (Sigma-Aldrich, St. Louis,
MO), 1% Pen-strep, 100 nM dexamethasone, 0.45 mM isobutyl methyl xanthine'® (Sigma, US), 3 ug/mL insulin
(Sigma, US), and 1M Rosiglitazone'® (Novo Nordisk, Bagsvaerd, Denmark). The media used was replaced 3
times per week.

Cytochemical staining. Alizarin Red S staining for mineralized matrix. The cell layer was washed with
PBS, and then fixed with 4% paraformaldehyde for 15 minutes at room temperature. After removing the fixative,
the cell layer was rinsed in distilled water and stained with 2% Alizarin Red S Staining Kit (ScienCell Research
Laboratories,

Carlsbad, CA, Cat. No. 0223) for 20-30 minutes at room temperature. Any excess dye was washed off with
water. For quantifying the Alizarin Red S staining, the Alizarin Red S dye was eluted in 800 ul of acetic acid and
then incubated in each well for 30 minutes at room temperature as described before?® and measured using the
Biotek™ Epoch™ Microplate Spectrophotometer (BioTek™ Instruments Inc., USA) at 405 nm.

Quantitative ALP activity. To quantify ALP activity in hBMSC before and after OS differentiation, we used
the BioVision ALP activity colorimetric assay kit (Biovision Inc., Milpitas, CA) with some modifications. Cells
were cultured in 24-well plates under normal conditions; then, on the day of analysis, wells were rinsed once with
PBS and were fixed using 3.7% formaldehyde in 90% ethanol for 30 seconds at room temperature. Subsequently,
the fixative was removed, and 50 L of pNPP solution was added to each well and the cells were next incubated
for 1 hour in the dark at room temperature. The reaction was subsequently stopped by adding 20 yL stop solution
and gently shaking the plate. The OD was then measured at 405 nm.

Osteolmage mineralization assay. The in vitro formed mineralized matrix was quantified using the
Osteolmage™ Mineralization Assay Kit (LONZA, USA, Cat. No. PA-1503). After this, the culture media was
removed and the cells were washed once with PBS and then fixed with 70% cold ethanol for 20 minutes. The
appropriate amount (as per the manufacturer’s recommendations) of diluted staining reagent was added, and the
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plates were incubated in the dark for 30 minutes at room temperature. The cells were then washed and staining
quantitation was performed using a fluorescent plate reader (SpectraMax M5 Molecular Devices, Sunnyvale, CA)
at 492/520 excitation emission wavelengths.

Oil red-O staining for lipid droplets. Mature adipocytes filled with cytoplasmic lipid droplets were visu-
alized by staining with Oil Red-O. After washing with PBS, the cells were fixed in 4% formaldehyde for 10 min-
utes at room temperature, then rinsed once with 3% isopropanol, and stained for 1hr at room temperature with
filtered Oil Red-O staining solution (prepared by dissolving 0.5 g Oil Red-O powder in 60% isopropanol). To
quantify the mature adipocytes that were formed, Oil Red O stain was eluted by adding 100% isopropanol to
each well. The color intensity was then measured using Biotek™ Epoch™ Microplate Spectrophotometer (BioTek
Instruments Inc., Winooski, VT) spectrophotometer at 510 nm.

Nile red fluorescence determination and quantification of mature adipocytes. A stock solution
of Nile red (1 mg/ml) in DMSO was prepared and stored at —20 °C protected from light exposure. Staining was
performed on fixed cells using 4% paraformaldehyde (Sigma) for 15 minutes. Cultured undifferentiated and dif-
ferentiated cells were washed once with PBS. The dye was then added directly to the cells (5 1g/ml in PBS), and
the cells were incubated for 10 min at RT. Fluorescent signals were measured using the SpectraMax/M5 fluores-
cence spectrophotometer plate reader (Molecular Devices Co., Sunnyvale, CA) using the bottom well-scan mode
where nine readings were taken per well using an excitation level of 485nm and an emission level of 572 nm.

Cell proliferation assays. Cell viability was measured using the alamarBlue assay according to the manu-
facturer’s recommendations (Thermo Fisher Scientific, Waltham, MA). In brief, 10 ul of alamarBlue substrate was
added to cultured cells in 96-well plates and the plates were incubated in the dark at 37 °C for 1 h. The reading was
subsequently taken using fluorescent mode (Ex 530 nm/Em 590 nm) using the BioTek™ Synergy II microplate
reader (BioTek Inc., Winooski, VT, USA).

Western blot analysis. Cells were lysed using RIPA buffer (Thermo Fisher Scientific, Waltham, MA)
and soluble proteins were immunoblotted using P-SMAD2 (Cell Signaling Technology, Danvers, MA, Cat no.
9523, diluted 1:500) and anti-3-ACTIN (Sigma-Aldrich, St. Louis, MO, A3854, diluted according to a ratio of
1:10,000). Reactivity was detected with horseradish peroxidase-conjugated secondary antibodies (Santa-Cruz
Biotechnology, Inc., Dallas, TX) and Clarity™ western ECL substrate (Bio-Rad) for chemiluminescence using
C-Digit Blot Scanner (Li-Cor Bioscience, Lincoln, NE).

DNA microarray global gene expression profiling. Total RNA was extracted using PureLink RNA
mini isolation kit (by Ambion Life Technologies, Carlsbad, CA, Cat No: 12183018 A) as recommended by
the manufacturer. One hundred and fifty nanograms of total RNA were labeled and then hybridized to the
Agilent Human SurePrint G3 Human GE 8 x 60k microarray chip (Agilent Technologies, Santa Clara, CA). All
microarray experiments were conducted at the Microarray Core Facility (Stem Cell Unit, King Saud University
College of Medicine). Normalization and data analyses were conducted using GeneSpring GX software (Agilent
Technologies). Pathway analysis was conducted using the Single Experiment Pathway analysis feature in
GeneSpring 12.0 (Agilent Technologies) as previously described®'. A two fold cutoff with P < 0.02 was used.

Quantitative real time PCR (QRT-PCR). Total RNA was extracted using PureLink kit (Ambion Life
Technologies, Carlsbad, CA, Cat No: 12183018A) as recommended by the manufacturer. Total RNA was quan-
tified by using the Nanodrop™ spectrophotometer (Nanodrop 2000, Thermo Fisher Scientific, Inc., Waltham,
MA). Complementary DNA (cDNA) was synthesized from 1 g of the RNA using a High Capacity cDNA Reverse
Transcription kit (Applied Biosystem, USA) and Labnet Multigene themocycler (Labnet International Inc.,
Edison, NJ) according to the manufacturer’s instructions. Relative levels of mRNA were determined from cDNA
using Power SYBR Green PCR kit or the TagMan Universal master Mix II with no UNG, both from Applied
Biosystems (Applied Biosystems, Foster City, CA) according to the manufacturer’s instructions. Following nor-
malization to the reference gene GAPDH, the quantification of gene expression was carried out by using a com-
parative Ct method where ACT is the difference between the CT values of the target and the reference gene. The
primers that were employed are listed in supplementary Tables 1.

Statistical analysis. All of the results were presented as the mean and standard deviation (SD) of at least 3
independent experiments. A Student’s t-test was used for testing the differences between groups. P-values < 0.05
was considered statistically significant.

Results

Molecular heterogeneity of bone-and non-bone-forming hBMSC clones.  We previously derived
two clonal hBMSC lines with bone-forming (hBMSC + Bone) or non-bone forming (hBMSC—Bone) proper-
ties. The clonal lines were derived from the parental hABMSC-TERT cell line)*. As shown in Fig. 1a, hBMSC—
Bone exhibited low osteoblastic (OB) differentiation potential when compared to hBMSC*8°¢ as evidenced by
decreased ALP activity (Fig. 1a, upper panel) as well as decreased extracellular mineralized matrix formation
(Fig. la, lower panel). The expression of the osteoblastic lineage gene markers: alkaline phosphatase (ALPL),
runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), osteonectin (ON), osteopontin (OPN),
bone morphogenic protein 4 (BMP4), and collagen-1A1 (COL1A1) was also decreased (see Fig. 1b). Similarly,
hBMSC—Bone showed low in vitro adipocytic (AD) differentiation potential as evidenced by the decreased for-
mation of mature lipid-filled adipocytes (Fig. 1c,d) as well as the reduced expression of the adipocyte lineage
gene markers: adipocyte protein 2 (aP2), lipoprotein lipase (LPL), and peroxisome proliferator-activated receptor
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Figure 1. Functional heterogeneity of bone- and non-bone- forming hBMSC clones. (a) Quantification of
percent ALP activity on day 14. Data is presented as the means & SD of three independent experiments; n=6;
##kp < 0,0005. The upper image panel shows Osteolmage™ staining, while the lower panel shows Alizarin Red
S staining. (b) qRT-PCR quantification of ALPL, RUNX2, OCN, ON, OPN, BMP4, and COL1A1 osteoblast
markers under osteoblastic induction conditions. The expression of each target gene was normalized to
GAPDH. Data are presented as mean =+ SD from three independent experiments, n = 9; *p < 0.05; **p < 0.005,
*#%p < 0.0005. (c) Nile red quantification of mature adipocytes on day 7 post adipocyte induction of the
indicated hBMSC clone. Data are presented as mean £ SD, #n =9 from three independent experiments.

*¥#%p < 0.0005. Upper panel shows Nile red staining of mature oil filled adipocytes, while the lower panel shows
oil red O staining for adipocyte (20 x magnification). (d) qRT-PCR quantification for aP2, LPL and PPARy2.
The expression of each target gene was normalized to GAPDH. Data is presented as the means + SD from three
independent experiments, n=9; ***p < 0.0005.

gamma 2 (PPARg2) (Fig. 1e). hBMSC*Bore cells exhibited enhanced differentiation potential into osteoblastic and
adipocytic cells versus hBMSC-Bone, which has limited differentiation capacity.

Impaired TGF(3 signaling pathway in hBMSC=B°",  We compared the whole transcriptome using global
gene expression profiling of hBMSC*8m¢ and hBMSC~8°"¢ to identify the molecular signature that was predic-
tive of functional divergence. The top ten significantly enriched KEGG pathways in the downregulated genes in
hBMSC~Pome js illustrated as pie chart in Fig. 2a. Interestingly, several TGF3-responsive genes were dysregulated
in hBMSC~8°m¢ compared with hBMSC*B® (Fig. 2a) including RUNX2, BMP2, BMP4, SMAD6, SMAD9, TGF32,
TAGLN, TPM1, ACTA2, COL1A1, SERPINB2, and NOG, suggesting the suppression of the TGFJ signaling path-
way in hBMSC~?°™. Validation of the microarray data using qRT-PCR revealed good concordance between the
microarray data and qRT-PCR for a selected panel of TGF3 responsive genes including: TAGLN, ACTA2, TPM1,
and SERPINB?2 (see Fig. 2b). Our previous data demonstrated inverse correlation between SERPINB2 upregula-
tion and TGFB activation?’. Furthermore, Western blot analysis of phosphorylated SMAD2 (p-SMAD?2) revealed
a marked reduction in p-SMAD?2 in hBMSC~Bon¢ y5. hBMSC*B°r¢ at baseline (Fig. 2¢, upper panel), on day 10
during in vitro osteoblastic (Fig. 2¢, middle panel), as well as adipocytic (Fig. 2¢, lower panel) differentiation.
Taken together, those data demonstrated impaired TGF signaling in the hABMSC " line.

Exogenous TGF31 promotes osteogenic and adipogenic differentiation of hBMSC—B0ne
cells. We subsequently assessed the effect of TGF31 (10 ng/ml) treatment on hBMSC 5" cell proliferation
and differentiation into osteoblasts and adipocytes. The hBMSC "¢ cells exhibited no changes in cell prolifera-
tion or viability when treated with TGF{31, (Fig. 3a); however, TGFB1 treatment led to upregulation of a number
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Figure 2. Impaired TGF signaling in hBMSC~Bom cells. (a) Pie chart illustrating the distribution of the top 10
KEGG pathways in the downregualted genes. The pie size corresponds to the number of matched entities. List of
TGFp responsive genes, which were differentially expressed in hRBMSC~Eo2¢ y5. hBMSC*8°r¢ a5 revealed by whole
genome microarray profiling is shown. (b) qRT-PCR validation for the expression of a panel of TGF3 responsive
genes (TAGLN, ACTA2, TPM1, and SERPINB2) in hBMSC B compared to hBMSC*Bon¢ cells. Expression

of each target gene was normalized to GAPDH. Data is shown as the mean £ SD from three independent
experiments, ***p < 0.0005. (c) Western blotting for P-SMAD?2 in hBMSC?°" compared to hBMSC 8¢ cells
(upper panel), whereas B-Actin (ACTB, lower panel) was used as a loading control. Phosphorylation of SMAD2
is also shown during the osteogenic and adipogenic differentiation of both cell lines.

of TGFB-responsive genes (TGALN, ACTA2, and TPM1) and the downregulation of SERPINB2 (Fig. 3b). ALP
activity and the quantification of formed mineralized matrix revealed significant increase in the osteoblastic
differentiation of hBMSC~2° in response to TGF31 treatment (Fig. 1c) and was corroborated by the increased
gene expression of the osteoblastic markers: ALPL, RUNX2, ON, OSP, and BMP4 (Fig. 3d). Similarly, qualitative
and quantitative Nile red staining of mature adipocytes revealed enhanced adipogenesis in response to TGF31
treatment (Fig. 3e,f). The data we have generated, therefore, supports a role for TGFB signaling in the regula-
tion of both osteoblast and adipocyte differentiation of hBMSC~5or¢ cells, where activation of TGFJ signaling in
hBMSC~Pom cells using recombinant TGF31 protein as able to rescue their osteoblastic differentiation phenotype.

Silencing SERPINB2 promotes osteoblastic and adipocytic differentiation of hBMSC—8°ne
cells. As shown in Fig. 2a, we observed elevated gene expression levels of SERPINB2 (3.2 FC), a
TGFB-responsive gene, in the hBMSC 2" cells. We have previously reported a negative regulatory role for
SERPINB?2 in hBMSC differentiation?. Thus, we employed a loss-of-function approach to determine the role of
SERPINB2 in hBMSCBm biology. The siRNA-mediated depletion of SERPINB2 had no effect on cell viability
(Fig. 4a), while it led to significant increase in the expression of TGFQ responsive genes, such as TAGLN, ACTA2,
TPM1, COL1A2, SMAD?2, and SMAD4 (Fig. 4a). In addition, SERPINB2-depleted hBMSC~50¢ cells exhibited
enhanced osteoblastic differentiation potential as demonstrated by increased qualitative and quantitative min-
eralized matrix formation (Fig. 4¢), and associated with upregulation of the osteoblastic gene markers: ALPL,
RUNX2, OCN, OPN, BMP4, and COL1A1 (Fig. 4d). Similarly, SERPINB2 depletion during adipogenesis led
enhanced adipocytic differentiation characterized by the increase in the number of Nile red positive mature
adipocytes (Fig. 4e) as well as the upregulation of adipocyte gene markers: AP2, LPL, and PPARG2 (Fig. 4f).
Therefore, activation of TGFf signaling in hBMSC~8°m cells using siRNA-mediated knockdown of SERPINB2
partially restored their osteoblastic differentiation potential.

Gene expression profiling of SERPINB2-depleted hBMSC—B8°" cells.  Given the observed effects of
SERPINB2-depletion on rescuing osteoblastic and adipocytic differentiation of hBMSC~8 cells, we sought to
determine the underlying molecular mechanisms linking SERPINB2 to osteoblastic and adipocytic differentiation
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Figure 3. Exogenous TGF31 stimulus promotes osteogenic and adipogenic differentiation of hABMSC~5one

cells. (a) Quantitative cell viability for hBMSC B cells on days 2 and 4 in the presence or absence of TGF31
treatment (10 ng/ml). (b) qRT-PCR quantification of TAGLN, ACTA2, TPM1, and SERPINB2 TGF3 responsive
genes in hBMSC 5" cells in the presence or absence of TGF31 treatment (10 ng/ml). The expression of each
target gene was normalized to GAPDH. Data are presented as mean + SD from three independent experiments,
##%p < 0.0005. () Percentage ALP activity in hBMSC~B°" in the presence or absence of TGFBI on day 14.
Data is presented as the means & SD from three independent experiments; n=6; ***p < 0.0005. The upper
image panel shows Osteolmage™ staining (20x magnification), while the lower panel shows Alizarin Red S
staining. (d) qRT-PCR quantification for ALPL, RUNX2, ON, OPN, and BMP4 osteogenic markers performed
on hBMSC~Bome cells exposed to osteogenic induction medium in the presence or absence of TGF31. The
expression of each target gene was normalized to GAPDH. Data are presented as the means &= SD from three
independent experiments, n = 9; b***p < 0.0005. (e) Nile red quantification of hBMSC~B° under the indicated
treatment conditions on day 7 post adipocyte induction. Data are presented as the means + SD, n=9 from
three independent experiments; ***p < 0.0005. Upper images shows fluorescence Nile red staining of mature
oil filled adipocytes (20 x magnification), while the lower panel shows oil red O staining of adipocytes (20
magnification). (f) QRT-PCR quantification for AN and AP2 mRNA. Expression of each target gene was
normalized to GAPDH. Data is presented as the means & SD from three independent experiments, n=19;

w85p < 0,0005.,

in hBMSC~Bon¢ cells. Hence, we performed global gene expression profiling on SERPINB2-depleted hBMSCBone
compared to scrambled-transfected control cells. Hierarchical clustering based on differentially expressed
transcripts revealed distinct clustering of the two groups (Fig. 5a). We identified 480 up-regulated and 423
down-regulated genes in SERPINB2-depleted hBMSC~Bom cells (2.0 FC, p < 0.05; Supplementary Table 2).
Pathway analysis was performed on the differentially expressed mRNA transcripts revealing significant enrich-
ment in several signaling pathways including focal adhesion, TGF3 signaling, adipogenesis, matrix metallopro-
teinases, MAPK, and osteoclast signaling (Fig. 5b). Good concordance was observed between the microarray
data and qRT-PCR validation of the regulation of a selected number of differentially expressed genes (Fig. 5c).
Therefore, or global transcriptome analysis revealed significant restoration of TGF( signaling pathway in
SERPINB2-depleted hBMSCBore cells.

NOG-depleted hBMSC—B°" cells exhibited enhanced osteoblastic and adipocytic differentiation.
BMP is a signaling pathway that exhibit cross-talk with TGF3 signaling during osteoblastic and adipocytic dif-
ferentiation of hBMSCs**?*. Interestingly, gene expression profiling (Fig. 2a) revealed a marked upregulation
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Figure 4. Downregulation of SERPINB2 promotes osteoblastic and adipocytic differentiation of hBMSCBone
cells. (a) Alamarblue quantification for cell viability of hRBMSC B cells transfected with scramble-siRNA
(SCR) or SERPINB2-siRNA on days 2 and 4. (b) qRT-PCR for SERPINB2, TAGLN, ACTA2, TPM1, COL1A2,
SMAD?2 and SMAD4 TGEf responsive genes in SERPINB2-depleted vs. scramble-siRNA (SCR) control

cells. The expression of each target gene was normalized to GAPDH. Data are presented as mean =+ SD from
three independent experiments; **p < 0.005, ***p < 0.0005. (c) Shows the OsteoImage™ staining (20 x
magnification) in differentiated hBMSC 8¢ cells post SERPINB2 knockdown compared to scramble-siRNA
transfected control cells. The lower panel shows Alizarin Red S staining. Quantification of mineralized

matrix formation under different treatments is shown on the right panel. Data are presented as mean
mineralization £ SD from three independent experiments, n = 9; ***p < 0.0005. (d) qRT-PCR quantification
of ALPL, RUNX2, OCN, OPN, BMP4, and COL1A1 osteogenic markers mRNA expression in SERPINB2-
depleted vs. scramble-siRNA (SCR) transfected hBMSC B2 cells under osteogenic induction conditions.
The expression of each target gene was normalized to GAPDH. Data are presented as the means =+ SD from
three independent experiments, n=9; *p < 0.05; **p < 0.005, ***p < 0.0005. (e) Nile red staining of mature
oil filled adipocytes (20 x magnification) in hBMSC~8°% cells on day 7 post adipocytic differentiation. Oil red
O staining is shown in the lower panel (20 x magnification). The right panel shows quantification of Nile red
staining, ***p < 0.0005. (f) qRT-PCR quantification for aP2, LPL and PPARG2 adipogenic markers. Expression
of each target gene was normalized to GAPDH. Data are presented as means £ SD from three independent
experiments, n=9; *p < 0.05; **p < 0.005.

of NOG expression (12.4 FC) in hBMSC~Bom cells. To determine the biological relevance of this observation,
hBMSC~Pone were transfected with NOG siRNA and were exposed to osteoblastic and adipocytic differentiation
induction media. The siRNA-mediated silencing of NOG had no significant effects on cell viability (Fig. 6a),
however it led to a significant increase in the expression of several TGFj3 responsive genes, including TAGLN,
ACTA2, TPM1, SMAD2, and SMAD4 (Fig. 6b). Interestingly, we also observed downregulation of SERPINB2 in
NOG-depleted cells. Concordant with TGFB activation, NOG-deficient hBMSC~5°¢ cells exhibited enhanced
osteoblast differentiation as shown by a significant increase in mineralized matrix formation and increased ALP
activity (Fig. 6¢) as well as an increase in the expression of a number of osteoblastic gene markers: ALPL, RUNX2,
OCN, and COL1A1 (Fig. 6d). Similarly, NOG-deficient hBMSC~5°"¢ cells exhibited enhanced adipocytic differ-
entiation shown by the increased number of lipid-filled mature adipocytes (Fig. 6e) and up-regulated expression
of AN, LPL and PPARg2 AD gene markers (Fig. 6f). The activation of BMP signaling via siRNA-mediated knock-
down of NOG partially restored the differentiation phenotype of hBMSC~Bom¢ cells.
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Figure 5. Gene expression profiling of SERPINB2-depleted hBMSC B cells under osteogenic conditions.
(a) Hierarchical clustering of SERPINB2-depleted hBMSC B¢ cells compared to scramble-siRNA transfected
control cells, based on differentially expressed mRNA transcripts. The expression level of each gene in each
condition is depicted according to the color scale shown. (b) Pie chart illustrating the distribution of top
pathway designations for the de-regulated genes in SERPINB2-depleted hBMSC 50" cells. (c) The expression
levels of selected genes from the microarray data was validated using qRT-PCR in SERPINB2-depleted
compared to Scrambled siRNA-transfected control hBMSC~5°¢, Data are presented as the means + SD from
two independent experiments, n = 6; ***p < 0.0005.

NOG suppresses osteoblastic and adipocytic differentiation of hBMSC*B° cells.  To confirm the
role of NOG in regulating hBMSC differentiation, recombinant NOG (10 ng/ml) was added to the osteoblastic
and adipocytic differentiation induction media of hBMSC*Bon¢ cells. NOG-treated hBMSC*82¢ cells did not
seem to exhibit any changes in cell proliferation (Fig. 7a). Moreover, gene expression analysis revealed downreg-
ulation of ACTA2 and TPM1 and upregulation of SERPNB2 expression levels in NOG-treated hBMSC 8o cells
(Fig. 7b). Moreover, NOG treatment diminished the osteoblastic differentiation of hABMSC*®°" cells as demon-
strated by an overall reduction in mineralized matrix formation (Fig. 7c), as well as the decreased expression of
ALPL, RUNX2 and ON osteoblastic gene markers (Fig. 7d). Furthermore, NOG-treated hBMSC*5°1 cells exhib-
ited diminished adipocytic differentiation as evidenced by the reduced number of lipid-filled mature adipocytes
(Fig. 7e) and the downregulation of AP2, AN, LPL and PPARg2 adipocytic markers (Fig. 7f). Therefore and in
support of the NOG loss-of-function data presented in Fig. 6, recombinant NOG impaired ex vivo osteoblastic
and adipcytic differentiation of hRBMSC*Eome cells.

BMP4 promotes osteogenic and adipogenic differentiation of hBMSC—8°" cells. BMP4 is one
of the BMPs produced by MSCs and plays a role during their osteoblastic differentiation®. We observed a signif-
icant downregulation of BMP4 gene expression in hBMSC 8o cells (—9.2 FC) (Fig. 2a). Since NOG antagonizes
BMP signaling, we assessed the effects of exogenous BMP4 (50 ng/ml) treatment on hBMSC~P°" cell differen-
tiation. Treatment with BMP4 did not affect the proliferation of hBMSC~Bo" cells (Fig. 8a). BMP4 treatment
up-regulated TGALN, TPM1, and COL1A2 in hBMSC~B™ cells (Fig. 8b). BMP4-treated hBMSC~B™¢ cells also
exhibited enhanced ALP activity and mineralized matrix formation (Fig. 8c). Concordantly, gene expression anal-
ysis showed upregulated ALPL, OCN, ON, and COL1A1 osteoblastic genes (Fig. 8d). Similarly, BMP4-treated
hBMSCBer¢ cells exhibited enhanced adipocytic differentiation marked by an increased number of lipid-filled
mature adipocytes (Fig. 8e) and the increased expression of LPL and CEBPA adipocytic gene markers (Fig. 8f).
Theefore, activation of BMP signaling using exogenous BMP4 was able to partially restore the differentiation
phenotype of hBMSC~Bome cells.

Discussion

Delineating signaling pathways regulating hBMSC osteoblastic and adipocytic lineage commitment and differen-
tiation is an area of active investigation. Our recent research highlighted the existence of functional heterogeneity
in cultured hBMSCs and the presence of progenitors at different stages of lineage commitment with different
functional capacities. Herein we investigated hBMSCT2°n¢ cells, which can differentiate readily into osteoblastic
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Figure 6. Downregulation of NOG promotes osteoblastic and adipocytic differentiation of hBMSC~50r¢ cells.
(a) Quantification of cell viability of hBMSC~Bom cells transfected with NOG-siRNA scramble-siRNA (SCR)
measured on days 2, 5, and 7. (b) qRT-PCR performed for NOG, TAGLN, ACTA2, TPM1, SMAD2, SMAD4
and SERPINB?2 responsive genes in NOG-depleted vs. scramble-siRNA (SCR) transfected hBMSC~Bome cells
under osteogenic induction conditions. The expression of each target gene was normalized to GAPDH. Data
are shown as mean + SD from three independent experiments, *p < 0.05; **p < 0.005, ***p < 0.0005. (c)
Osteolmage™ staining (20x magnification) for hRBMSC~2° cells transfected with NOG or control siRNA
under osteogenic induction conditions. The lower panel shows Alizarin Red S staining. The quantification of
mineralized matrix formation for scramble-siRNA (SCR) and NOG-depleted cells is shown in the left panel,
while the quantification of ALP activity under the same experimental conditions is shown in the right panel.
Data are presented as relative mean mineralization 4= SD from three independent experiments, n=9; *p < 0.05,
**%p < 0.0005. (d) qRT-PCR quantification of ALPL, RUNX2, OCN, and COL1Alosteogenic markers in
scramble-siRNA (SCR) and NOG-depleted hBMSC~Bom cells exposed to osteogenic differentiation medium.
The expression of each target gene was normalized to GAPDH. Data are presented as the means + SD from
three independent experiments, n=9; *p < 0.05; **p < 0.005, ***p < 0.0005. (e) Nile red staining of hBMSC~
Bone cells transfected with scramble-siRNA (SCR) or NOG-specific siRNA, which were then induced into
adipocytes for 7 days (20 x magnification). The cells were stained using oil red O staining as well. (lower panel,
20x magnification). The right panel shows the quantified fluorescence Nile red staining of mature oil-filled
adipocytes. **p < 0.005. (f) qRT-PCR quantification for AN, LPL and PPAR~2 adiocytic markers. Expression
of each target gene was normalized to GAPDH. Data are presented as the mean & SD from three independent
experiments, n=29; *p < 0.05; **p < 0.005, ***p < 0.0005.

and adipocytic cells versus hBMSC-Bone, which has limited differentiation capacity. Our data revealed TGF3
signaling as a major molecular pathway associated with differentiation responsiveness of hBMSCs. Interestingly,
the loss of this signaling pathway in hBMSC~B°" was reversible, suggesting an epigenetic rather than genetic
aberration in hBMSC 8¢ cells and may be related to cellular heterogeneity of cultured hBMSC.

To gain more in depth insight into the signaling networks associated with the bone and none-bone forming
phenotype, we performed global transcriptome profile for both cell types and identified a number of altered sign-
aling pathways. Our data revealed hBMSC B exhibited significant downregulation of several TGF3 responsive
genes including TAGLN, TMP1, ACTA2, TGF32, SMAD6, SMAD9, BMP2, and BMP4 genes as well as the upreg-
ulation of SERPINB2 and NOG. Concordantly, hABMSC~Eo2 exhibited low basal phosphorylation of the SMAD2
protein, even under induction conditions, suggesting diminished TGF3 and BMP signaling in hBMSC 8¢ cells.
Activating either TGF(3 or BMP signaling in hBMSC~Bo™ cells was able to partially rescue their differentiation
phenotype, thereby implying epigenetic rather than permanent differentiation impairment in those cells.

Our data further unraveled a complex interaction between TGFB and BMP signaling during hBMSC differen-
tiation (Fig. 8g). Exogenous TGF31 stimulus exhibited similar effects to those inflicted by SERPINB2 knockdown
on restoring the osteogenic and adipogenic differentiation of hBMSC=5°" cells, which would be concordant with
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Figure 7. Exogenous NOG suppresses osteoblastic and adipocytic differentiation of hBMSC'Eom cells. (a)
Quantification of cell viability measured on days 1, 4, and 6 for hBMSC*®°"¢ cells in the presence or absence of
recombinant NOG (50 ng/ml). (b) gqRT-PCR performed for TPM1, SMAD2 and SERPINB2 TGF3 responsive
genes in hBMSC TP cells in the presence or absence of recombinant NOG (10 ng/ml). The expression of each
target gene was normalized to GAPDH. Data are presented as mean & SD from three independent experiments,
##p < 0.005. (c) Osteolmage™ staining (20 x magnification) of hBMSC*Eo" cells which were induced into the
osteoblast in the presence or absence of recombinant NOG. The lower panel shows Alizarin Red S staining.

The quantification of mineralized matrix formation for vehicle or recombinant NOG-treated hBMSC*Bone

cells is shown (right panel). Data are presented as relative mean mineralization & SD from three independent
experiments, n=9; *p < 0.0005. (d) qRT-PCR quantification of ALPL, RUNX2, OCN, and COL1A1 osteogenic
markers in hRBMSC*Bom cells in the presence or absence of recombinant NOG (10 ng/ml) under osteogenic
induction conditions. The expression of each target gene was normalized to GAPDH. Data are presented as

the means + SD from three independent experiments, n = 9; **p < 0.005, ***p < 0.0005. (¢) hBMSC*Bore cells
were differentiated into adipocytes for 7 days under the indicated experimental conditions. Upper panel shows
fluorescence Nile red staining of mature oil filled adipocytes (20 x magnification), whilst the lower panel shows
Oil red O staining for adipocytes (20 x magnification). The lower panel shows the relative quantification of
Nile red staining of mature oil-filled adipocytes. (f) gRT-PCR quantification for AP2, AN, LPL and PPAR~2
adipocytic markers. The expression of each target gene was normalized to GAPDH. Data are presented as
mean =+ SD from three independent experiments, n=9; ***p < 0.0005.

our recent finding of bidirectional regulation between SERPINB2 and TGFB signaling®?. Plasminogen activator
inhibitor-2 (also known as PAI-2), is a serine protease inhibitor of the serpin superfamily, which serves as a
coagulation factor by inactivating the urokinase plasminogen activator (uPA) and tissue plasminogen activator
(tPA)*. It is expressed in most cells, especially in macrophages and monocytes, but exists in undetectable quanti-
ties in the blood?”. It is highly expressed during pregnancy, infection, inflammation, and other pathophysiological
conditions. Increasing accumulated information on the biochemistry, biology, and clinical aspects of SERPINB2
has revealed its involvement in various intracellular and extracellular physiological and pathological processes?.
It is involved in maintaining homeostasis during stress, damage, or inflammation?’. It has been recently reported
that SERPINB2 expression is necessary for in vitro collagen remodeling in stromal cells?. SERPINB2 in stromal
cells is a necessary component during extracellular matrix remodeling for fibroblast-contracted collagen 1 matrix
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Figure 8. Effect of exogenous BMP4 on osteoblastic and adipocytic differentiation of hBMSC 2" cells.

(a) Quantification of cell viability of hBMSC B cells in the presence or absence of recombinant BMP4.

(b) qRT-PCR quantification for TAGLN, TPM1, and Col1A2 in hBMSC~B™ cells in the presence or absence

of recombinant BMP4. The expression of each target gene was normalized to GAPDH. Data are presented

as mean + SD from three independent experiments, n=9; ***p < 0.0005. (c) Osteolmage™ staining (20x
magnification) of hBMSC B¢ cells which were induced into the osteoblast in the presence or absence

of recombinant BMP4. The lower panel shows Alizarin Red S staining. The quantification of mineralized
matrix formation for vehicle or recombinant BMP4-treated hBMSC 81 cells is shown (right panel). Data

are presented as relative mean mineralization + SD from three independent experiments, n=9; *p < 0.0005.
(d) qRT-PCR quantification of ALPL, OCN, ON, and and COL1A1 osteogenic markers in hBMSCBore cells

in the presence or absence of recombinant BMP4 under osteogenic induction conditions. The expression of
each target gene was normalized to GAPDH. Data are presented as the means + SD from three independent
experiments, n=9;, *p < 0.05%*p < 0.005, ***p < 0.0005. (¢) hBMSC~5°"¢ cells were differentiated into
adipocytes for 7 days under the indicated experimental conditions. Upper panel shows fluorescence Nile red
staining of mature oil filled adipocytes (20 x magnification), whilst the lower panel shows Oil red O staining for
adipocytes (20 x magnification). The lower panel shows the relative quantification of Nile red staining of mature
oil-filled adipocytes. (f) qRT-PCR quantification for LPL and CEBPA adipocytic markers. The expression

of each target gene was normalized to GAPDH. Data are presented as mean & SD from three independent
experiments, n=9; **p < 0.005, ***p < 0.0005. (g) Schematic model illustrating the convergence of BMP and
TGEF@ in regulating hBMSC differentiation.

formation®. Moreover, SERPINB2 was one of the highly regulated genes in hBMSC 8¢, suggesting that it most
likely plays a role in the blocking of TGF3-mediated hBMSC differentiation.

On the other hand, the silencing of NOG in hBMSC 2 has similar effects to those inflicted by an exogenous
BMP4 stimulus on promoting osteoblast and adipocytes lineage commitment and differentiation. This suggests
that there may well be a plausible convergence of the TGFB and BMP signaling in regulating hBMSC differenti-
ation. BMPs are involved in the TGF3 superfamily, which is known to participate in the regulation of stem cell
proliferation and differentiation®. Specifically, BMPs are involved in the regulation of osteogenesis and in in vivo
bone formation®. During development, the disruption of BMPs is associated with skeletal and extra-skeletal
abnormalities®"*2, Furthermore, it has been shown that BMPs play an important role in bone healing due to
their ability to stimulate the osteoblastic differentiation of hBMSC****. NOG is a BMP extracellular antagonist
that negatively regulates BMP signaling through binding to their receptors leading to impaired osteogenesis and
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bone formation®*-*. In our system, exogenous NOG lead to the suppression of BMP signaling, thereby causing
impaired in vitro bone formation. In addition, overexpression of NOG in the skeletal system leads to reduced
bone formation and osteopenia®**’. It has been reported that inhibition of NOG either using NOG-neutralizing
antibodies or siRNA led to enhanced BMP-dependent osteogenesis of MSC in vitro and in vivo*!~**. Interestingly,
our data revealed the existence of reciprocal relationship between SERPINB2 and NOG. Therefore, we propose a
schematic model illustrating dual signaling network comprising TGF3-mediated SERPINB and NOG-dependent
BMP4 signaling that regulate osteoblastic and adipocytic differentiation of hBMSC-Bone. Our model suggests
novel reciprocal relationship between SERPINB2 and NOG.

Our study has some limitations. We have employed human immortalized hBMSC lines in order to dissect the
interaction between TGF3 and BMP signaling and in order to avoid confounders of age, gender, in vitro replica-
tive senescence phenotype associated with use of primary hBMSC. Also, our studies were based on in vitro mech-
anistic approaches. Future studies examining changes in TGF(3 and BMP signaling in cohorts of human subjects
of different age and gender as well as its relationship to in vivo bone phenotype are needed.

Our study suggests that targeting of the SERPINB/TGFf3 and NOG/BMP axes is a plausible future strategy
for enhancing in vitro osteoblast commitment and differentiation of hBMSC prior to their use in clinical trans-
plantation. Also, the relevance of using small molecules that regulate these signaling pathways in the treatment
of patients with impaired bone formation e.g. age-related osteoporosis, remain to be examined in preclinical and
clinical studies.

Data Availability

Raw data will be provided upon acceptance of the manuscript.
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