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Obesity is a high risk factor for colorectal cancer (CRC). The contribution of underlying epigenetic
mechanisms to CRC and the precise targets of epigenetic alterations during cancer development

are largely unknown. Several types of epigenetic processes have been described, including DNA
methylation, histone modification, and microRNA expression. To investigate the relationship between
obesity and CRC, we studied both obese and CRC patients, focusing on genome-wide peripheral blood
DNA methylation alterations. Our results show abnormal distributions of overlapping differentially
methylated regions (DMRs) such as hypermethylated CpG islands, which may account for epigenetic
instability driving cancer initiation in obesity patients. Furthermore, functional analysis suggests that
altered DNA methylation of extracellular (e.g., O-glycan processing) and intracellular components
contribute to activation of oncogenes (e.g. KRAS and SCL2A1) and suppression of tumor suppressors
(e.g. ARHGEF4, EPHB2 and SOCS3), leading to increased oncogenic potency. Our study demonstrates
how DNA methylation changes in obesity contribute to CRC development, providing direct evidence
of an association between obesity and CRC. It also reveals the diagnostic potential of using DNA
methylation as an early risk evaluation to detect patients with high risk for CRC.

Being overweight or obese is considered to be a major risk factor for many cancers, in particular colorectal cancer
. (CRC)'". Epidemiological data suggests that obesity is associated with a 1.2-2.0 fold increased risk of CRC*. Even
. though the close link between obesity and the risk of CRC has been suggested by a large number of studies™®, the
. underlying molecular mechanisms are still largely unknown. Understanding the mechanisms linking obesity to
- the development of CRC may lead to the development of accurate methods for early detection and the identifica-
. tion of new targets for CRC prevention.
: DNA methylation is an epigenetic mechanism that occurs when a methyl group is added onto the C5 posi-
© tion of cytosine, thereby modifying gene function and affecting gene expression!®~'2. Most DNA methylation
: occurs at cytosine residues that precede guanine residues, called CpG dinucleotides, which tend to cluster in
: DNA domains known as CpG islands. The relationship between methylation and gene expression is complex. In
. general, DNA methylation of gene promoters is associated with transcriptional silencing'?, whereas methylation

in gene bodies is associated with increased gene expression!*-1°. Strong correlations between gene expression and

CpG islands and island shores have been demonstrated!”. Inappropriate methylation of CpG islands could result

in impaired transcription factor binding, recruiting repressive methyl-binding proteins, and stably silencing

gene expression'’. Global hypomethylation is thought to influence CRC development by inducing chromosomal

instability$-%.

Compared to studies in cancer, studies in obesity have not provided consistent evidence of a role for global

. methylation changes. Furthermore, differentiating early epigenetic alterations potentially involved in cancer ini-
© tiation is difficult considering the influence of multiple other factors on these epigenetic changes. Consequently,
* studying specific methylation changes that affect oncogenic transformation signaling is likely to provide a better
. picture of the association between obesity and CRC development.
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A (Mean £ SD) 40+ 15 years 36+ 10 years 5349 years
e
8 Range (21-65) (23-52) (39-71)
F 7 5 8
Gender
M 8 5 7
BMI (Mean +SD) 22.9+3.5kg/m? 34.4+4.1kg/m? 28.1+5.6kg/m?

Table 1. Subject Characteristics.
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Figure 1. Association of differentially methylated CpGs (DMCs) in obesity and CRC. (A) Venn-diagram

of DMC:s generated from CRC vs. Control and Obesity vs. Control genes; (B) Scatter plot displaying the
methylation differences in overlapping DMCs and the distribution of these DMCs partitioned by hyper-/
hypomethylated CpGs in CRC and obesity; (C) Number of hyper-/hypomethylated CpGs in CRC and obesity.
The Chi-Square test was used to determine a potential significant relationship between obesity and CRC.

Genome-wide mapping of differentially methylated CpG sites (DMCs) or differentially methylated regions
(DMRs) is an important means to reveal the impact of epigenetic modifications on inheritable phenotypic varia-
tion in both obesity and CRC and to understand their correlation. Currently, a massive effort is directed at provid-
ing better insight into tissue-specific epigenetic alternations and their roles in disease development®-**. Ronn, T.
et al. demonstrated that epigenetic biomarkers in blood can mirror epigenetic signatures in target tissues*'. Using
bisulfite pyrosequencing, Ally and colleagues observed a correlation between colonic tissue methylation and
blood methylation of estrogen receptor 1 (ESR1) that is independent of age, gender, disease status, and body mass
index (BMI)*. To date, only a few studies have reported results from examining the genome-wide methylation
pattern in colorectal tumors?’ " and no earlier studies have specifically addressed the effects of DNA methylation
alterations in the blood of CRC patients. The aim of the present study was to explore whole blood DNA methyla-
tion patterns in obese and CRC patients to identify epigenetic changes associating CRC to obesity by comparing
whole genomic DMR and DMC patterns of DNA methylation using an overlapping method. We provide direct
evidence of the connection between cancer development and obesity. The recognition that the same epigenetic
changes are a driving force for the development into CRC in obese individuals supports the promising biomarker
potential of DNA methylation studies for early diagnosis.

Results

Significant associations observed between obesity and CRC in Overlapping DMCs and
DMRs. Genome-wide methylation analysis was conducted in 15 CRC patients and compared to publically
available data from 10 obese subjects and 15 healthy lean controls (Table 1). The case and control groups were
comparable with respect to gender. Age was used as a covariate in differential analysis in order to remove its pos-
sible effects. To avoid systematic errors for the DNA methylation data, histogram transformation was applied to
equalize the distributions of the methylation levels to the control group. We performed differential methylation
analysis of the reduced representation bisulfite sequencing (RRBS) profiling data for the obesity and CRC cases
versus the control group. We identified 186,511 DMCs between CRC and control subjects and 91,809 DMCs
between obese and controls (Fig. 1). To evaluate whether obesity is associated with CRC through DNA methyla-
tion alterations, we overlapped these DMCs identified separately from CRC and obesity. If CRC and obese DNAs
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Figure 2. Association of differentially methylated regions (DMRs) in obesity and CRC. (A) Venn-diagram

of the DMRs generated from CRC vs. Control and Obesity vs. Control genes; (B) Scatter plot displaying the
mean methylation difference of overlapping DMRs and the distribution of these DMRs partitioned by hyper-/
hypomethylated DMRs in CRC and obesity. (C) Number of hyper-/hypomethylated DMRs in CRC and obesity.

were both differentially methylated at a certain CpG site, the DMC was counted as an overlapping DMC. As
shown in Fig. 1A, there were 40,605 overlapping DMCs, accounting for 44% of DMCs identified from the obese
group. Surprisingly, we observed methylation changes of these overlapping DMCs occurred in the same direction
for obesity and CRC (Fig. 1B). In other words, a vast majority of overlapping DMCs for obesity and CRC were
either hypermethylated (36.7%) or hypomethylated (45.2%) for both obesity and CRC (Fig. 1C). A Chi-square
test showed that there was a significant association between obesity and CRC (p < 0.0001).

A similar trend of DNA methylation alterations was observed in the 750 overlapping DMRs identified (Fig. 2).
They accounted for 27.6% of the 2,713 DMRs identified in the obese group. The association between obese and
CRC in overlapping DMRs was highly significant as suggested by Chi square test (p < 0.0001). These data suggest
that obesity is highly associated with the risk of developing CRC.

Distribution patterns in overlapping DMRs is Similar to the pattern in CRC.  We then annotated
hypermethylated or hypomethylated overlapping DMRs for both obesity and CRC to gene regions and CpG
islands (Fig. 3). In CRC, peripheral blood showed higher overall genomic hypomethylation than hypermethyl-
ation?'~2* (Fig. 3A). This is consistent with previous reports showing that genomic DNA hypomethylation is a
hallmark of most cancer genomes, prompting genomic instability and cancer transformation®**>-?%, In contrast,
the numbers of hyper- or hypomethylated DMRs in all gene regions were similar in obesity (Fig. 3B). However,
the distribution of overlapping DMRs (Fig. 3C) was closer to the distribution of non-overlapping DMRs in can-
cer than the distribution of non-overlapping DMRs in obesity. Greater number of hypomethylated rather than
hypermethylated DMRs were identified in the promoter, intron and intergenic regions in cancer and overlapping
DMRs (Fig. 3A,C). Similarly, a closer distribution was seen among the distribution of overlapping DMRs and the
distribution of non-overlapping DMRs in cancer over CpG islands (Fig. 3D-F).

These data suggest that the risk of obesity-related CRC can be potentially be evaluated by analyzing overlap-
ping DMRs. Using gene annotation enrichment analysis, biomarkers linking obesity to CRC risk can be poten-
tially identified.

Functional analysis of genes associated with overlapping DMRs.  To identify the most important
DMRs linking obesity to CRC, DMRs either hyper- or hypomethylated for both obesity and CRC were further
selected using nonparametric procedures. The average methylation level across DMRs was calculated for each
subject, and the Kruskal-Wallis test, followed by multiple pair-wise comparisons of groups by Mann-Whitney U
test, was performed to determine significance of differences. Four hundred and forty-two DMRs with a p value of
atleast 0.1 or less by the Kruskal-Wallis and Mann-Whitney U tests were selected. Among these, 238 DMRs were
located in the promoter or gene body regions.

KEGG pathway*-*! and GO biological process (GO-BP) analyses of the 238 genes associated with overlapping
DMRs were performed to better understand how DNA methylation links obesity to CRC development. The top
KEGG pathways and GO-BP are summarized in Table 2. Overall, these analyses, enriched by selected genes, are
related to the extracellular microenvironment such as the extracellular matrix microbiota and mucin glycans, and
to changes in intracellular signaling pathways, such as metabolic, transforming growth factor (TGF)-3 and KRAS
signaling, which may play a central role in CRC initiation®>*.
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Figure 3. Bar plots of the number of cancer-specific, obesity-specific, overlapping DMRs by gene subregions
(A-C) and CpG islands (D-F).

Major pathways affected by DNA methylation. The signal-transduction pathways dysregulated by
DNA methylation changes in both obesity and CRC include: 1) extracellular matrix components, i.e., O-glycan
processing, protein glycosylation, and extracellular matrix scaffold; 2) KRAS and TGF-3 signaling; and 3) lipid
and glucose metabolism (Table 2 and Fig. 4). The alterations in these extracellular and intracellular metabolites
could induce CRC-associated metabolic reprogramming in obesity and contribute to the initiation of CRC in
obese patients. Further details are given below.

Extracellular matrix components affected by methylation changes. In the O-glycan processing (GO: 0016266)
and mucin type O-glycan biosynthesis pathway (hsa00512), 5 genes were associated with selected DMRs.
B-1,4-galactosyltransferase 5 (B4GALT5) (intron region), polypeptide N-Acetyl galactosaminyl transferase 17
(GALNT17) (intron region) and mucin 5B (MUC5B) (coding region) (Fig. 4B). These genes were hypomethyl-
ated, whereas glucosaminyl (N-acetyl) transferase 1 (GCNT1), GALNT6 were hypermethylated in the 5’-UTR
and promoter regions, respectively. The CRC microenvironment and extracellular matrix are mainly constituted
by collagen and elastin®*-°. In the extracellular matrix organization (GO: 0030198), we observed that the elastin
(ELN), and collagen a1 (IX) chain (COL9A1) (Fig. 4C) in the coding region were hypomethylated, and COL6A1
was hypermethylated in the coding region. Elastin and collagen are the main components of elastic fibers and
their DNA methylation changes indicate altered extracellular matrix barrier function which may be associated
with tumor progression®”.

Altered DNA methylation of KRAS and TGF-{3 signaling. In the pathways in cancer (hsa05200), although not in
the list of top KEGG pathways, we found 10 genes with selected DMRs, among which 4 genes are involved in the
CRC pathway (hsa05210) (see Table 2). These include TGF-32, KRAS (Fig. 4D), adenomatous polyposis coli pro-
tein 2 (APC2) and SMAD family member 3 (SMAD?3) (Fig. 4E). KRAS, a well-established proto-oncogene, was
hypermethylated in the intron region. We also found that fibroblast growth factor 3 (FGF3) (Fig. 4F), upstream
of KRAS, is associated with a hypomethylated DMR in its promoter region in obesity and is even further hypo-
methylated in CRC. SMAD3, a central component of the TGF-{ signaling pathway*, was hypomethylated in
the promoter region. Solute carrier family 2 member 1 (SLC2A1), which encodes the glucose transporter type 1
protein (GLUT1) and is responsible for basal glucose transport in all cell types, contained a hypomethylated DMR
in its 5’-UTR region (Fig. 4G). APC-stimulated guanine nucleotide-exchange factor (ARHGEF4) was hypermeth-
ylated in the promoter region in CRC peripheral blood (Fig. 4H). The epidermal growth factor receptor (EGFR),
a transmembrane tyrosine kinase involved in triggering the MAPK signaling pathway*’, was associated with a
hypomethylated DMR in its coding region (Fig. 4I). Eph receptor B2 (EPHB2) has been suggested to be a tumor
suppressor gene in colorectal carcinogenesis*!, and was associated with a hypomethylated DMR in its intron
region (Fig. 4]).
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. . PRKD2, EGFL7, FAP, BCAS3, PLXND1, MYH9,
GO0001525 Angiogenesis 10 0.001 ADAMS, TMPRSS6, TGEB2, EPHB2
GOoo71230 | Cellular response to amino 5 0.002 EGFR, SH3BP4, COL6A1, RPTOR, NEURL1
acid stimulus
GO0007411 Axon guidance 7 0.012 KRAS, WNT3, EFNA2, KIF26A, CDH4, TGFB2, EPHB2
CAPN15, DHH, CAPN10, THOP1, FAP, CAPN9,
GO0006508 Proteolysis 13 0.017 RHBDFI, ST14, DPEP3, HTRA3, ADAMS, PMPCA,
TMPRSS6
Positive regulation of GTPase ARHGEF4, EGFR, OBSCN, LIMS1, ARHGEF7,
GO0043547 tivi 8 14 0.018 CAMK2G, RASAL1, ACAP3, TBCD, BCAS3,
activity RAP1GAP2, SHC2, EPSSLL, FGF3
GO0043393 | Regulation of protein binding | 3 0.021 HDAC4, SMARCD3, PAX7
GO0021772 | Olfactory bulb development 3 0.021 CRTACI, EFNA2, SKI
MYTI1L, HDAC4, ARHGEF7, CAMK2G, PCDHBI12,
GO0007399 | Nervous system development | 9 0.022 IGSF9B, DPF1, NEURLI, EPHE2
GO0030198 Extrac'elh‘llar matrix 7 0.030 COL9A1, COL9A3, ITGAX, ICAMS5, ELN, COL6A1,
organization TMPRSS6
GO0016266 O-glycan processing 4 0.035 GALNT6, GCNT1, MUC5B, B4AGALTS5
GO0051491 | Positive regulation of 3 0038 | PALM, BCAS3, NEURLI
filopodium assembly
GO0045930 | NNegative regulation of mitotic | 5 0038 | EGFR, BRINP1, SMAD3
cell cycle
Homophilic cell adhesion via
GO0007156 | plasma membrane adhesion 6 0.041 CDH12, SDK1, PCDHB12, IGSF9B, CDH4, KIRREL3
molecules
Negative regulation of
GO0o30512 | transforming growth factor ), 0.041 | SMAD3, SKI, HTRA3, LDLRAD4
beta receptor signaling
pathway
G00002520 Immune system development | 2 0.047 SMAD3, CACNA1IC
Regulation of transforming
G00032909 growth factor beta2 2 0.047 SMAD3, TGFB2
production
GOo00193g | Fositive regulationof 4 0.049 PRKD2, EGFL7, NR4A1, RPTOR
endothelial cell proliferation
hsa00512 Mucin fype O-Glycan 4 0008 | WBSCR17, GALNT6, GCNTI, BAGALT5
iosynthesis
hsa04550 Signfiling pathways regulating 7 0.011 SETDBI1, KRAS, WNT3, PCGF3, APC2, SMAD3,
pluripotency of stem cells WNT2B
hsa04925 ?;i‘;ﬁg;"ne synthesis and 5 0.023 PRKD2, CAMK2G, NR4A2, NR4A1, CACNAIC
hsa04020 Calcium signaling pathway 7 0.032 EGER, GNAL, CAMK2G, RYR3, NTSR1, CACNAIC,
PTAFR
. . EGFR, KRAS, WNT3, APC2, ST14, MIR133A2, ABCC1,
hsa05206 MicroRNAs in cancer 9 0.037 RPTOR, TGFB2
hsa05210 Colorectal cancer 4 0.050 KRAS, APC2, SMAD3, TGFB2
Lo . EGFR, KRAS, CAMK2G, RYR3, CACNAL1C,
hsa04921 Oxytocin signaling pathway 6 0.050 CACNA2D4

Table 2. KEGG pathways and Gene Ontology-Biological Processes (GO-BP) enriched for genes with DMRs.
KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, gene ontology.

Aberrant DNA methylation of lipid and glucose metabolism genes. Obesity is related to energy imbalance
and metabolic dysfunction*?**. Consistent with this, we observed some related genes associated with overlap-
ping DMRs. Regulatory-associated protein of mTOR (RPTOR) is involved in the control of mMTORC1 activ-
ity, which plays an important role in lipogenesis and in regulating the endothelial cell proliferation (GO:
0001938) (see Table 2). We identified hypermethylated overlapping DMR of RPTOR located in the gene body
region. In addition, we observed a hypomethylated DMR in the coding region of suppressor of cytokine sign-
aling 3 (SOCS3) (Fig. 4K). We also observed methylation changes in several mitochondria-related genes, such
as hydroxyacyl-Coenzyme A dehydrogenase (HADH), an enzyme that catalyzes the metabolism of short-and
medium-chain fatty acids*%. This showed a hypomethylated DMR in the gene body region in obesity which was
further hypomethylated in CRC, representing changes that may affect its function in lipid metabolism. The suc-
cinate dehydrogenase (SDH) complex (SDHAF1), which encodes a protein essential for the assembly of mito-
chondrial enzyme succinate dehydrogenase (SDH), the main element of complex I1*°, was hypermethylated in its
promoter region in obesity and further hypermethylated in CRC. In addition, RXRA, a common heterodimeric
partner for a number of nuclear receptors*®, was hypermethylated in the intron region in obesity and further
hypermethylated in CRC. Consistent with a recent study showing that HIGD1A expression is increased during
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Figure 4. Mean methylation levels of relevant DMRs. (A) Summary of 12 overlapping major DMRs; (B-M)
Box plots of methylation level of individual DMRs in three different gene groups. Each dot represents the mean
methylation level of the specific DMR for each individual subject.

glucose deprivation to modulate cell survival and tumor growth*’, we observed a hypomethylated DMR in the
promoter region of HIGD1A in CRC (Fig. 4L). Calcium voltage-gated channel subunit alphal C (CACNA1C)
belongs to the insulin secretion and MAPK signaling pathways and alterations in its expression may have an
adverse effect on tissue homeostasis, which may result in tumorigenesis*®. We identified a hypomethylated DMR
in the intron region (Fig. 4M). Collectively, aberrant lipogenesis and changes in lipid and glucose metabolism
are key features of metabolic reprogramming, which may induce aberrant activation of KRAS signaling and a
sustained pro-inflammatory environment, leading to cancer initiation.
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Figure 5. Heatmap displays mean row-centered log-CPM (log2-counts per million) values of the representative
genes selected in Fig. 4 in two replicas of HCT116 and DKO cell line.

Altered mRNA expression of representative genes affected by DNA methylation in HCT116 cells. 'The DNA meth-
yltransferases, DNMT1 and DNMT3B, are essential for maintenance and de novo CpG methylation and disrup-
tion of these 2 genes results in more than 95% loss of genomic methylation*. To further confirm the functional
impact of DNA methylation alterations on gene expression, we utilized two human colorectal carcinoma cell
lines, namely HCT116 wild type and HCT116 DNMT1/DNMT3B double knockout (DKO) cells. As shown in
Fig. 5, gene expression of these representative genes were affected by DNA methylation changes with high repro-
ducibility. We observed an opposite effect on the gene expression of a group of genes (KRAS, FGF3, HIGD1A and
SLC2A1) as compared with the other group of genes (ARHGEF4, CACNA1C, EGFR, EPHB2, SOCS3, SMAD3,
MUCS5B and COL9A1). Especially, KRAS showed reduced expression and ARHGEF4 showed elevated expression
in HCT116 DKO as a consequence of DNMT inhibition, consistent with the hypermethylated DMRs we observed
in the gene body and promoter regions of KRAS and ARHGEF4, respectively in CRC.

Discussion

CRC remains the second leading cause of cancer-related death in the United States*. The 5-year relative survival
rate for early-stage CRC is 90%; for advanced stage IV CRC, the rate drops to about 11%'. But only about 4 out of
10 CRCs are found at the early stage®?, partially due to the poor patient acceptance and/or sensitivity of available
screening modalities. Blood-based DNA methylation has great potential as an early, accurate, non-invasive bio-
marker for risk evaluation and early detection to improve the survival rate for CRC patients. Obesity is a complex
disorder that contributes to many human diseases™. In this study, we aimed at understanding whether DNA
methylation alterations in blood play a role in the association between obesity and CRC. Using genome-wide
methylation sequencing data and overlapping analysis, we observed DNA methylation changes in obesity and
CRC with significant association (Figs 1 and 2). The distribution pattern of overlapping DMRs, such as hyper-
methylated CpG islands, was similar as the pattern of DMRs in CRC were comparable to that in obesity (Fig. 3).
By further analyzing these overlapping DMRs, we observed DNA methylation changes in extracellular matrix
components and organization, O-glycan processing, and intracellular factors including KRAS signaling and lipid
and glucose metabolism, all pathways that may enhance the CRC risk in obesity.

In the extracellular components, we showed DNA methylation changes in the mucin type O-glycan biosyn-
thesis pathway (hsa00512) and O-glycan processing (GO: 0016266) (Table 2). Mucins are the main components
of mucus and the colonic mucus forms a protective homeostatic barrier against enteric pathogens between the
resident microbiota and the underlying epithelial cells*=”. These DNA methylation alterations would lead to
mucus degradation and compromise epithelial barrier function.

In the intracellular signaling domain, our data indicated altered DNA methylation of KRAS and of meta-
bolic reprogramming, which play a crucial role in tumorigenesis. Our data suggests that metabolic stress in obe-
sity contributes to the acquisition of an oncogenic potential. Alterations in DNA methylation may contribute
to dysregulation of the insulin signaling pathway, which is associated with activated oncogenes (e.g. KRAS and
SCL2A1) and downregulated tumor suppressors (e.g. SOCS3, EPHB2 and ARHGEF4), leading to increased and
unregulated cellular proliferation and malignant transformation. The intron region of KRAS was hypermethyl-
ated in both CRC and obesity. KRAS signaling is also a shared component in signaling pathways regulating pluri-
potency of stem cells, microRNAs in cancer and oxytocin signaling pathway (hsa04550, hsa05206, and hsa04921,
respectively), suggesting its central role in obesity and cancer pathology. SCL2A1, which encodes the GLUT1

SCIENTIFIC REPORTS |

(2019) 9:5100 | https://doi.org/10.1038/s41598-019-41616-0 7


https://doi.org/10.1038/s41598-019-41616-0

www.nature.com/scientificreports/

transporter®s, was hypomethylated in its promoter region. GLUT1 is primarily undetectable in normal epithelial
tissues and benign epithelial tumors, and overexpression of GLUT1 during oncogenesis has been identified in
various cancers, and is considered as an important player of active tumor cell glucose uptake and metabolism*°.
In addition, metabolic stress, such as increased glucose uptake induced by SLC2A1 upregulation and glycolysis,
is consistent with oncogenic mutations in oncogenes, such as KRAS or BRAF®. In contrast, the coding region
of SOCS3 which is associated with obesity-related cancers, was hypomethylated in obesity and CRC. A previous
study suggested that methylation silencing of SOCS3 suppresses its response to IL-6 stimulation and increases
the propensity to malignant transformation®. ARHGEF4 is a binding partner of adenomatous polyposis coli
(APC)® and an important tumor suppressor gene in the development of CRC*. We found that ARHGEF4 was
hypermethylated in the promoter region, which may suppress its expression. Moreover, we observed the trans-
forming growth factor (TGF)-3 /SMAD signaling was disrupted by DNA methylation as a shared component in
angiogenesis, negative regulation of TGF-8 receptor signaling pathway, regulation of TGF-{3 production and CRC
pathway (GO: 0001525, GO: 0030512, GO: 0032909 and hsa05210, respectively). This disruption may contribute
to pro-tumorigenic mechanisms of TGF-f3 signaling. Previous studies have shown TGF- signaling reduces pro-
liferation, promotes apoptosis and differentiation and acts as a tumor suppressor in premalignant tumor devel-
opment and as a tumor promoter in advanced tumors®. SMAD3 can form transcription complexes to regulate
TGF-f target genes and loss of SMAD3 appears to promote colorectal tumorigenesis®®®’. By utilizing RNA-seq
data from HCT116 and DKO cell lines, we further verified the functional consequences of DNA methylation
changes of selected gene for colorectal tumorigenesis (Fig. 5). Our results, although may not accurately reflect the
role of blood DNA methylation alterations during tumorigenesis, suggest the different impacts of DNA methyl-
ation changes on the gene expressions of oncogenes (e.g. KRAS and SCL2A1) and tumor suppressor genes (e.g.
ARHGEF4, EPHB2 and SOCS3). In order to fully elucidate the impact of DNA methylation alterations on CRC
development and progression, further studies on the physiological function analysis of each genes is warranted.

Despite the above novel findings, some limitations in our study should be noted. Clearly, the sample size is
relatively small. We took a more conservative approach to the data analysis. For example, we only selected 238
DMRs for functional analysis. Despite the encouraging initial CRC specific results, further work is warranted to
validate these findings in a large cohort of patients.

Furthermore, there is a large difference between the mean ages of the CRC group and the obese or control
groups. The association between age and the DNA methylation profile is previously reported. As indicated in
the first paragraph of the Results section, age was considered as a covariate in the logistic regression model for
detecting differential DNA methylation to control any distortion effect. Given the fact that the overlapping DMRs
were identified separately from CRC and obesity and the obese group is age-matched to the control group, we can
deduce that age has minimal effect on the overlapping DMRs. Further studies with age-matched CRC patients are
needed to determine the relationship between age-related methylation changes and CRC susceptibility.

Finally, we acknowledge the heterogeneity of our sample as whole blood samples contain a mixture of various
cells that exist in the blood circulation. Nonetheless, an interplay between cell types composing the whole blood
exists and may have an implication for CRC development. It was thus important to assess whole blood rather
than isolated plasma, serum and leukocytes including monocytes, macrophages and neutrophils. Moreover, the
contribution of the cellular composition is accounted for by the total variation of DNA methylation measured. In
clinical research, whole blood is one of the most readily available samples for biomarker analysis. Because under
certain circumstances the amount of blood drawn from patients does not allow us to analyze the contribution of
each component to DNA methylation changes in blood, a pooling method using DNA from groups of individuals
has recently shown promise in identifying significant methylation markers®.

In summary, our study points to DNA methylation alterations linking obesity and CRC with the promise for
early prognosis of CRC risk in relation to obesity. Our results provide additional information for deeper under-
standing of CRC development, and highlight potential new targets for prevention of CRC. Future research effort
should include the integration of DNA methylation, gene expression and disease initiation and progression to
provide comprehensive insight into the mechanisms through which obesity may drive cancer pathogenesis.

Materials and Methods

Study population. The study was approved by the Wright State University Institutional Review Board and
all methods were performed in accordance with the relevant guidelines and regulations. Whole blood samples
were obtained from either the Cooperative Human Tissue Network (CHTN) (15 CRC patients) and Advocate
Sherman Hospital (5 CRC patients and 5 lean controls) (Table 1). The informed consent was collected by CHTN
and Advocate Sherman Hospital. The DNA methylation data of whole blood samples from obese (n=10) and lean
controls (n = 10) was obtained from a publicly available database (NCBI GEO; accession number GSE85928). RNA-
seq datasets for two replicates of HCT116 and DKO cells were obtained from GEO (accession number GSE60106).

DNA extraction, RRBS library preparation and sequencing. Whole genomic DNA was extracted
from whole blood using a DNeasy Blood & Tissue Kit (Qiagen, USA) following the manufacturer’s protocol.
After checking the quality of the extracted DNA, 500 ng of genomic DNA was digested overnight with Msp1 (New
England Biolabs, USA). The sticky ends produced by Mspl digestion were filled with CG nucleotides, and 3'A
overhangs were added. A DNA library was prepared using NEXTflex Bisulfite-Seq Kit (Bioo Scientific) following
a standard procedure. A bisulfite conversion step was performed prior to PCR amplification using the EZ DNA
Methylation-Gold kit (Zymo Research Corp.) following the manufacturer’s instructions. All PCR reactions for
RRBS were purified using AMPure XP (Beckman Coulter, Brea, USA), and analyzed on a bioanalyzer. Sequencing
was performed on the Illumina HiSeq.2500 for a paired-end 2 x 50bp run, with 150 million reads from each
direction. Data quality check was done on the Illumina SAV. De-multiplexing was performed with the Illumina
Bcl2fastq2 v2.17 program.
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Bioinformatics and statistical analysis. The quality of the raw reads was examined with FastQC. The
adapter trimming and filtering of the high quality reads was carried out with Cutadapt v1.8.3 and Trim Galore
v0.4.0 with the -RRBS option. Quality processed reads were mapped to human genome (hgl19) using Bismark
assisted by Bowtie2. Before DMC and DMR analyses, methylation calls were filtered by discarding bases with
coverage below 5X and bases with more than 99.9th percentile coverage in each sample. CpG sites on sex chromo-
somes and mitochondrion were excluded from the analyses. Individual DMCs were identified between obesity/
CRC and control groups using logistic regression with the R package methylKit. Read coverage was normalized
between samples. A minimum of three individuals per group were required for a CpG site to be analyzed. The
CpGs with at least 10% methylation difference and a q-value < 0.05 were considered to be differentially meth-
ylated. DMRs were determined using the R package eDMR with default parameters. To be considered signifi-
cant, a DMR needed to contain at least one DMC, three CpG sites, and an absolute mean methylation difference
greater than 5%. We annotated the DMRs identified using UCSC Refseq gene models with promoter regions
defined as being 2kb upstream from transcription start site (TSS). CpG islands were defined based on UCSC
annotation (http://genome.ucsc.edu/). Functional Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses of involved genes were performed using DAVID bioinformat-
ics resources (version 6.8; http://david.abcc.ncifcrf.gov/). The p-value was calculated using the modified Fishers
exact test and the GO categories and KEGG pathways were identified as significantly enriched when p value was
<0.05. Additional parameters were set to the default values. The Kruskal-Wallis test was used for comparison of
DNA methylation levels among all groups, while the Mann-Whitney U test was used for comparison between the
groups of subjects. A p value < 0.05 was defined as statistical significance and <0.1 was considered as marginal
significance. Raw reads from RNA-seq were trimmed and mapped to human genome (hg19) using Tophat v2.1.1.
Gene-level counts were generated using HTSeq v0.6.1 and also validated with Cufflinks v2.2.1. For differential
expression analysis, read counts were normalized across libraries using the trimmed mean of M-values (TMM)
method implemented in the R package edgeR v3.22.3 and were subsequently transformed to log2-counts per mil-
lion (log-CPM) and corrected for heteroscedasticity with voom transformation of the R package limma v3.36.2.
The log-CPM values of representative genes were visualized as heat map using the heatmap.2 function of the R
package gplots v3.0.1 with ‘scale = row’ parameter.

Data Availability
The datasets generated during and/or analyzed during the current study are not publicly available but are available
from the corresponding author on reasonable request.
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