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Roles of cellular heterogeneity, 
intrinsic and extrinsic noise in 
variability of p53 oscillation
Dao-Guang Wang1,2, Shaobing Wang1, Bo Huang1 & Feng Liu1

The p53 protein is a key mediator of the cellular response to various stress signals. In response to DNA 
damage, the concentration of p53 can temporally oscillate with fluctuations in both the amplitude and 
period. The underlying mechanism for p53 variability is not fully understood. Here, we construct a core 
regulatory network of p53 dynamics comprising the ATM-p53-Wip1 and p53-Mdm2 negative feedback 
loops. We dissect the contributions of cellular heterogeneity, intrinsic noise, and multiple forms of 
extrinsic noise to p53 variability in terms of the coefficients of variation of four quantities. Cellular 
heterogeneity greatly determines the fraction of oscillating cells among a population of isogenic cells. 
Intrinsic noise—fluctuation in biochemical reactions–has little impact on p53 variability given large 
amounts of molecules, whereas extrinsic colored noise with proper strength and correlation time 
contributes much to oscillatory variability in individual cells. With the three sources of noise combined, 
our results reproduce the experimental observations, suggesting that the long correlation time of 
colored noise is essential to p53 variability. Compared with previous studies, the current work reveals 
both the individual and integrated effects of distinct noise sources on p53 variability. This study provides 
a framework for exploring the variability in oscillations in cellular signaling pathways.

The p53 protein is one of the most important tumor suppressors, mediating a multitude of cellular responses to 
stress including DNA damage and oncogene activation1,2. The subcellular localization, posttranslational modi-
fications, concentration, and dynamics of p53 all affect its tumor suppressive function. It is increasingly evident 
that p53 dynamics play a key role in cell fate decision3,4. Upon DNA damage, the concentration of p53 exhibits 
oscillatory behavior in various cell lines such as MCF-7, H1299 and U2OS ones4–8, and it was suggested that the 
number of p53 pulses determines cellular outcome9,10. Notably, there exists variability in both the amplitude and 
period of p53 oscillations at the single-cell and population levels11. It was proposed that such variability originates 
from intrinsic and extrinsic noise in the p53 signaling network11,12 and from cellular heterogeneity13.

Although the impacts of intrinsic noise13–15 and extrinsic noise11 on the variability in p53 oscillation have 
been probed respectively, an integrative study is missing; combining various sources of noise and comparing the 
relative influence of each source should unravel the essence of p53 variability and its influence on the function of 
p53. This in turn provides an effective manner to modulate p53 dynamics and enhance the design of p53-based 
therapeutic treatments.

Motivated by the above considerations, here we build a minimal network model, comprising the essential 
regulators of p53 dynamics, and quantify the effect of noise on p53 variability in terms of the coefficients of var-
iation of the amplitude, width, period of p53 oscillations and the delay between p53 and Mdm2 oscillations. We 
first examine the deterministic dynamics of the network and the influence of cellular heterogeneity on oscillatory 
dynamics, then probe the stochastic dynamics of the network and the effects of intrinsic and extrinsic noise on 
oscillatory variability, and further integrate the three sources of noise and reveal their combinatory impact on p53 
variability. We use multiple methods to estimate the noise parameters, which is important for the interpretation 
of experimental data. In contrast to a minor effect of intrinsic noise on p53 variability given large numbers of 
species, cellular heterogeneity greatly determines the fraction of oscillating cells, and the extrinsic noise with 
long correlation time underlies the p53 variability in individual cells. Since the stochastic factors we analyze 
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are ubiquitous in biochemical systems, our main conclusions may be of wide applicability, and our modeling 
approach could be exploited to investigate the stochasticity in biochemical systems.

Model and method
Model.  Based on previous studies8–11, we construct a minimal network model, comprising the core compo-
nents regulating p53 oscillation (Fig. 1). Under unstressed conditions, p53 is kept at low levels due to the negative 
regulation by the E3 ubiquitin ligase Mdm216,17. When cells are exposed to ionizing radiation (IR) or DNA-
damaging agents such as neocarzinostatin (NCS), DNA double-strand breaks (DSBs) are induced. Normally, 
DNA repair proteins are recruited to fix the DSBs, thus leading to a limiting number of p53 pulses6. Several 
theoretical models have taken into account the DNA repair process, aiming to unravel the dependence of cell fate 
on the extent of DNA damage9,10. Since we only focus on the variability in oscillatory dynamics, especially in the 
amplitude and period, here we ignore the DNA repair process and take the number of initial DSBs as an input. 
Such a setting allows us to simulate long-term dynamics and sample sufficient pulses for statistical analysis.

Figure 1.  Diagram of the network model. Upon DNA damage, ATM is activated via autophosphorylation, and 
ATMp further phosphorylates p53 and Mdm2, stabilizing and activating p53. p53p induces the expression of 
mdm2 and wip1, while Wip1 dephosphorylates ATMp and p53p. Lines with arrow head denote the processes of 
transcription (orange), translation (black), mRNA degradation (blue), protein degradation (green), reversible 
phosphorylation (gray), and nuclear import and export (purple). Φ denotes the degradation of species. All the 
reaction rate constants are marked. p53u: unphosphorylated p53; p53p: phosphorylated p53; Mdm2n: nuclear 
Mdm2; Mdm2c: cytoplasmic Mdm2.
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The ataxia mutant (ATM) kinase is activated via rapid autophosphorylation upon IR, with ATM dimer (ATM2) 
converted to phosphorylated ATM monomer (ATMp)18–20. ATMp phosphorylates p53 and Mdm2, promoting the 
degradation of Mdm2 and enhancing the stability and activity of p5321–23. Phosphorylated p53 (p53p) induces 
the production of Mdm2 and the phosphatase Wip1 (PPM1D), and Wip1 dephosphorylates p53p and ATMp

24,25. 
Thus, there exist three negative feedback loops: the p53-Mdm2, p53-Wip1 and ATM-p53-Wip1 loops. Although 
it was reported that, as a target of p53, PTEN can weaken the Mdm2-mediated inhibition of p53 by repressing Akt 
activity26, PTEN cannot always be expressed, such as in MCF7 cells because of its promoter methylation27. Given 
our model is a minimal one, here we ignore PTEN and the associated positive feedback loop. Moreover, mRNAs 
are explicitly included here.

Deterministic equations.  In the continuum limit, the dynamics of the network are governed by ordi-
nary differential equations (ODEs). We mathematicalize our model in a manner similar to that in refs 9,10. (see 
Supplementary Information (SI) Text for details). The reaction rate constants in the ODEs are marked in Fig. 1. 
All the default parameter values and initial values of variables are listed in Tables S1 and S2, respectively. Time 
is in units of minutes, while the concentrations of network components are dimensionless, i.e., the number of 
species is divided by dimensionless cell volume, Ω (see SI Text for details). Moreover, we take into account cellular 
heterogeneity and set different values for reaction rate constants among a population of isogenic cells (see below).

Stochastic simulation.  Generally, the stochasticity in biochemical processes can be described by intrinsic 
and extrinsic noise. The intrinsic noise–fluctuations in biochemical reactions–is significant when the number of 
reactant molecules is small (e.g. less than 102). Extrinsic noise has many sources. One source is the time-varying 
fluctuation in the amounts of species that do not appear explicitly in the model but still participate in reactions, 
e.g., RNA polymerases controlling the rate of transcription and ribosomes regulating the rate of translation28. 
Extrinsic noise is often colored, i.e., temporally correlated. In contrast to uncorrelated noise (white noise) with 
zero correlation time, correlated noise (colored noise) has a finite (non-zero) correlation time29–31. To unravel the 
impact of intrinsic and extrinsic noise as well as their combination on network dynamics, we perform three types 
of stochastic simulation.

	 1)	 For the simulation of intrinsic noise alone, we transform the above ODEs into a set of coupled biochemical 
reactions given in Table S3. The reaction rates are also listed there. Stochastic simulations are performed 
using the binomial τ-leap algorithm32, rather than the Gillespie one33,34. The reason is as follows. For a 
large number of reactants, the τ-leap algorithm is more efficient since reactions may occur more than once 
every time step35. More exactly, the number of times that each reaction occurs obeys a Poisson distribution 
with the mean equaling the firing rate times the time step. For some species, however, its number could be 
negative if the possible decrease in molecule number due to reactions like degradation exceeds the increase 
plus the current number. This problem is solved by using the binomial τ-leap algorithm, which replaces the 
Poisson distribution with a binomial distribution (see SI Text for details). The time step is fixed at Δt = 0.01 
min.

	 2)	 For the simulation of extrinsic noise in a specific process (e.g., gene transcription, translation, degradation 
of protein or mRNA), we assume that relevant parameters (see Table S4) change stochastically. Take the 
transcription of p53, mdm2 and wip1 as an example. In simulation, we solve the ODEs using Euler method 
with time step Δt = 0.01 min; at each step, ksp53 is multiplied by ηe t( )1 , ksmdm20 and ksmdm2 are multiplied by 

ηe t( )2 , and kswip10 and kswip1 are multiplied by ηe t( )3 , where ηi(t) (i = 1, 2, 3) are assumed to be independent 
uniform white noise (UWN), Gaussian white noise (GWN), or colored noise (CN). For the UWN, 

η ∼ −t a a( ) ( , ) (a > 0), where  −a a( , ) denotes the uniform distribution with the probability density 
being 

a
1

2
 over [−a, a] or zero otherwise; for the GWN, η σ∼t( ) (0, )2 , where σ(0, )2  denotes the 

normal distribution with mean 0 and variance σ2. The samples of η(t) at each step are independent, because 
white noise is uncorrelated temporally.
Colored noise can be generated by the Ornstein-Uhlenbeck (OU) process, obeying the following stochastic 
differential equation:

η η
τ

= − + Γ
d t

dt
t c t( ) ( ) ( ), (1)

1/2

where Γ(t) is Gaussian white noise, τ is the relaxation time, and c is the diffusion constant36,37. We assume 
=

τ
c D2  with D denoting the strength of noise. Thus, the OU process with the initial condition η(t0) = η0 is38

η η= − ≥τ τ− − − −t e D e t t( ) ( , (1 ))( ), (2)
t t t t

0
( )/ 2( )/

0
0 0

where σm( , )2  denotes the normal random variable with mean m and variance σ2. Specifically, for a 
stationary OU process, the distribution of η(t) is time-independent, and η =t D( ) (0, ). That is, D is just 
the variance of the stationary distribution of η(t). The autocovariance function is

η η ′ = − ′−t t Decov{ ( ), ( )} , (3)t t t( )/

with t′ > t. Thus, η(t) and η(t′) are significantly correlated only when t′ − t is much less than τ, which is thus 
called correlation time. Based on Eq. (2), η is updated at each time step38,39:
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η η ξ+ Δ = + −τ τ−Δ − Δt t e t D e( ) ( ) [ (1 )] , (4)t t/ 2 / 1/2

where Δt = 0.01 min is the time step and ξ is a unit normal random variable.
	 3)	 For the simulation of both the intrinsic and extrinsic noise, we integrate the two methods above. At each 

step in the binomial τ-leap algorithm, some parameters are multiplied by eη(t). Specifically, the colored 
noise η is generated based on Eq. (4) with Δt = 0.01 min.

Results
p53 oscillation in the deterministic case.  We first investigate the dynamics of the network in the absence 
of any noise. Without DSB, i.e., nDSB = 0, the network remains in a stable steady state with [p53] kept at low levels 
(Fig. 2(a)). At nDSB = 8, the steady state becomes unstable and limit-cycle oscillation arises. As nDSB increases, 
the amplitude and period of p53 oscillation first rise and drop, respectively, and then change slightly. It is known 
that 35 DSBs on average can be induced upon the irradiation of 1 Gy40. Since our results will be compared with 
the experimental data in ref. 11, where the irradiation of 5 Gy is applied, we set 175 as the default value of nDSB in 
the following analysis. At nDSB = 175, the oscillation period is 317 min (~5.3 h), consistent with the experimental 
results8,41.

Notably, ATM is first activated by DSBs (Fig. 2(b)), leading to a rise in [ATMp], and ATMp phosphorylates 
p53 and Mdm2. Phosphorylated Mdm2 is then degraded rapidly. Consequently, p53 is stabilized and activated to 
induce the production of Wip1 and Mdm2; Wip1 in turn dephosphorylates ATMp and p53p, while Mdm2 targets 
p53 for degradation. These lead to a decrease in [ATMp] and [p53]. ATM can be reactivated by DSBs, and a new 
round of oscillation is induced. Collectively, the ATM-p53-Wip1 and p53-Mdm2 negative feedback loops under-
lie the sustained oscillation of p53.

Cellular heterogeneity.  Given the heterogeneity among a population of isogenic cells, such as cell-to-cell 
variability in nDSB and rates of protein synthesis and degradation13, we determine the upper and lower thresholds 
(pU and pL) of 30 parameters, including nDSB and 29 reaction rate constants, allowing for p53 oscillation when 
they separately vary from 0.1 to 10 times their default value pdefault (see Table S1). We show the ratio of pU (pL) to 
pdefault on a logarithmic scale in Fig. 3(a). The system can still undergo oscillation even if any of those parameters 
is decreased by 40% or increased by 70%. That is, p53 oscillation can exist in a relatively wide parameter range.

To simulate cellular heterogeneity, we perturb nDSB and each rate constant (denoted by pi (i = 0, 1, 2, ..., 29)) via 
multiplying it by ξeS i, where ξ ′si  are independent unit normal random numbers, i.e., ξ ∼ (0, 1)i  , and S describes 
the degree of parameter heterogeneity12,13. For each S, we randomly sample 1000 parameter sets (all ′p si  are per-
turbed simultaneously) and calculate the percentage of parameter sets admitting p53 oscillations (Fig. 3(b)). The 
percentage drops with increasing S: p53 oscillations always occur at S = 0, but appear for only 33.6% of parameter 
sets at S = 0.5.

To characterize the influence of cellular heterogeneity on p53 oscillation, we calculate the coefficients of 
variation (CVs) of the amplitude, width, and period of p53 oscillation and the delay between p53 and Mdm2 
oscillations (as depicted in the inset of Fig. 3(c)). The CV is defined as the ratio of standard deviation to mean 
of statistical variables. When only one of 30 parameters is perturbed and the others are kept at their default val-
ues, all the CVs at S = 0.1 are lower than 0.1, and relatively high CVs are induced when ksp53, kdp53m, or krp53 is 
perturbed (Figs. 3(c) and S1(a)–(c)). These three parameters modulate the production and degradation of p53 
mRNA and production of p53, respectively. Such sensitivity is consistent with the essential role of p53 in regulat-
ing network dynamics.

Figure 2.  Network dynamics without noise. (a) Bifurcation diagram of [p53] versus nDSB. Black and gray dots 
denote the stable and unstable steady states, respectively. The blue dots denote the maxima and minima of p53 
oscillation. The vertical dotted line indicates nDSB = 175. The red dots denote the oscillation period (right y-axis). 
(b) Time courses of protein concentrations at nDSB = 175. [p53] and [Mdm2] denote the total concentration of 
unphosphorylated and phosphorylated p53 and that of nuclear and cytoplasmic Mdm2, respectively.
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With all the parameters perturbed simultaneously, each CV is close to the root of sum of squares of the corre-
sponding CVi calculated when only one parameter is perturbed alone. Take the CV of the amplitude as an exam-
ple. When only parameter pi is perturbed, the oscillation amplitude is μi + δi, where μi is the mean amplitude and 
δi is a random variable with zero mean and standard deviation σi. The corresponding CV is thus CVi = σi/μi. 
When all the parameters are perturbed simultaneously, the amplitude is μ + δ, where μ is the mean amplitude and 
δ is a random variable with zero mean and standard deviation σ. Ideally, all the mean amplitudes are identical 
(possibly equal to the amplitude with the default parameters), i.e., μi = μ for all i, and δ δ= ∑i i; for independent 
random variables, σ σ= ∑i i

2 2. Thus, = ∑CV CVi iAll
2 2. Actually, this equality only approximately holds true, since 

μi may deviate from μ and δ′si  are not completely independent.
When all the parameters are perturbed simultaneously, all the CVs rise with increasing S for S ≤ 0.5 (Fig. 3(d)). 

The CV of the amplitude is always the highest and differs from the other CVs more markedly at larger S. This 
indicates that the amplitude is more sensitive to parameter variation than the period, in agreement with experi-
mental observation11.

Intrinsic noise.  To probe the influence of intrinsic noise on the oscillatory dynamics, stochastic simulation 
is performed to obtain the temporal evolution of molecule numbers. The concentration of species equals its mol-
ecule number divided by Ω, which controls the system size and intensity of intrinsic noise. When Ω rises from 
102 to 104, the fluctuations in p53 oscillations decrease increasingly (Fig. 4(a)). Accordingly, the CVs all drop 
monotonically with increasing Ω; for example, the CV of the amplitude declines approximately following 2.4 Ω−0.5 
(Fig. 4(b)). A similar relationship was observed experimentally in a synthetic genetic oscillator31.

Figure 3.  Influence of cellular heterogeneity on p53 oscillation. (a) Base-10 logarithm of the ratio of the upper 
(red) or lower (blue) threshold of each parameter admitting p53 oscillation to its default value. The parameter 
value ranges from 0.1 to 10 times its default value. Parameters are indexed as follows: 0. nDSB, 1. kdwip1, 2. krwip1, 
3. kdwip1m, 4. kswip1, 5. kswip10, 6. kdmdm2n1, 7. kdmdm2n0, 8. ki, 9. ko, 10. kdmdm2c, 11. krmdm2, 12. kdmdm2m, 13. ksmdm2, 14. 
ksmdm20, 15. kdp53s, 16. kbdp53p, 17. kdp53, 18. kbdp53, 19. kacp531, 20. kwip53s, 21. krp53, 22. kdp53m, 23. ksp53, 24. kudim, 25. 
kdim, 26. kdeatmwip, 27. kdeatm, 28. kauto, and 29. kacatm. (b) Percentage of oscillating cells versus S. (c) CV for the 
amplitude of p53 oscillation when each parameter alone (0–29) or all parameters (All) are perturbed at S = 0.1. 
The dotted line denotes the estimate of the CV in the latter case. The inset schematically shows the amplitude 
(H), width at half height (W), period (P) of p53 pulses and the p53-Mdm2 delay (L). (d) CVs for the amplitude, 
width, period of p53 oscillation and p53-Mdm2 delay versus S. All parameters are perturbed.
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Figure 4.  Impact of intrinsic noise on p53 oscillation. (a) Typical time courses of [p53] for Ω = 102,103 and 104. 
(b) CVs of the amplitude, width, period of p53 oscillation and p53-Mdm2 delay versus Ω. The dotted curve 
is a fit to the data on the blue curve by 2.4 Ω−0.5. For each Ω, 1000 runs of simulations lasting 3000 min are 
performed. The axis of Ω is on logarithmic scale.

Figure 5.  Influence of extrinsic noise on the variability in oscillations. (a) Time courses of [p53] with the UWN, 
GWN or CN at D = 0.1 and τ = 45 min. (b,c) Dependence of the CVs of the amplitude, width, and period of 
p53 pulses and p53-Mdm2 delay on τ at D = 0.1 (b) and D = 0.3 (c). (d) Comparison of the CV of the amplitude 
when the CN is added to the process of transcription, translation, mRNA degradation, protein degradation 
alone or together at D = 0.1. The dotted line denotes the estimate for the CV. In each case, 1000 runs of 
stochastic simulations lasting 3000 min are performed. The axis of τ is on logarithmic scale.
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Extrinsic colored noise.  We model the effects of three types of extrinsic noise–UWN, GWN and CN–on 
gene transcription by perturbing the transcription rate constants in a similar manner to that in ref.29. In each case, 
the parameters relevant to the transcription of p53, mdm2 and wip1 (parameters on the orange lines with arrow 
in Fig. 1) are perturbed by independent noise (see Table S4). For comparison, three types of noise are assumed to 
have the same variance, i.e., D = 0.1 for CN, = −a D3  for UWN, and σ2 = D for GWN. Notably, adding the 
UWN or GWN with small D does not markedly elevate oscillatory variability, whereas adding the CN with τ = 45 
min leads to remarkable fluctuations in p53 oscillation (Fig. 5(a)). In fact, the UWN/GWN with D ≤ 1 has a 
minor impact on p53 variability (Fig. S2); but when D rises to around 2, the CVs begin to rise sharply, especially 
for the CV of the period. Furthermore, p53 oscillation even disappears for D > 2.2. We take the GWN as an exam-
ple to interpret these results. At each time step the specific rate constants are perturbed by multiplying their 
default values with ηe t( )i  (i = 1, 2, 3), where η ′si  are independent and identically distributed Gaussian random 
variables with mean 0 and variance D. The expectation of ηe t( )i  is eD/2, which equals 1.16 and 2.71 for D = 0.3 and 
2, respectively. Thus, the mean values of perturbed parameters change slightly with D = 0.3 but vary a lot with 
D = 2, approaching the thresholds for oscillation. As a result, the system becomes more sensitive to noise inten-
sity. Given the CN exerts a much larger effect on p53 variability compared to the UWN/GWN with the same 
variance, we only consider the CN with small D in the following.

We calculate the CVs for different values of D when τ is fixed at 100 min, where nearly the maximal CVs are 
acquired for each D. In the presence of only extrinsic noise, the noise with D around 0.2 induces a moderate CV. 
For D > 0.5, p53 oscillation will become rather irregular and it cannot be distinguished from purely random 
fluctuations. Thus, here we only present the results for D = 0.1 and D = 0.3 as examples. For D = 0.1, the CVs 
of the amplitude, width and period of p53 oscillation and p53-Mdm2 delay all change non-monotonically with 
increasing τ (Fig. 5(b)). If D is increased to 0.3, all the CVs become greater and still vary non-monotonically with 

Figure 6.  Combinatory effects of intrinsic noise (IN), extrinsic colored noise (CN) and cellular heterogeneity 
(CH) on the variability in oscillation. The influence of the CN alone, CN and IN, CN and CH, and three sources 
together on the amplitude (a), width (b), period (c) of p53 pulses and p53-Mdm2 delay (d). The dotted lines 
denote the estimates of CV. Parameters are set as follows: D = 0.1 for CN, Ω = 102 for IN, and S = 0.1 for CH. In 
each case, 1000 runs of stochastic simulations lasting 3000 min are performed. In the presence of CH, a set of 
parameter values is sampled for each simulation. The CN is only added to the process of gene transcription. The 
axis of τ is on logarithmic scale.
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τ (Fig. 5(c)). When τ is very small (e.g., τ = 0.001 min), the CN approximates the GWN with the same variance 
D, exerting little influence on oscillatory variability. Clearly, with such noise the fluctuations in reaction rate 
constants at adjacent time points tend to offset each other, leading to minor variability. In contrast, for the noise 
with relatively large τ, the changes are closely correlated within the time bin of τ and may differ markedly between 
adjacent bins, which promotes the variability in oscillation. When τ is sufficiently large, however, the long-range 
correlation instead weakens the variability, since the rate constants may change slightly over a long time interval. 
Collectively, the correlation time of the CN is crucial to the variability in p53 oscillation.

Similar to the CN in transcription, the CN in translation, mRNA degradation or protein degradation (by per-
turbing the parameters on the black, blue, and green lines with arrow in Fig. 1; see Table S4) all induces a similar 
non-monotonic change in CVs with increasing τ (Fig. 5(d) and Fig. S3(a)–(c)). If the CN is added to all the above 
four processes simultaneously (by perturbing the above parameters with 12 independent noise; see Table S4), the 
resulting CV of the amplitude still varies non-monotonically with τ and approximately equals the root of sum of 
squares of the CV’s above when τ is not large enough.

Combinatory effect of intrinsic noise, extrinsic noise and cellular heterogeneity on p53 oscillation.  
We have shown how cellular heterogeneity, intrinsic and extrinsic noise each affect the variability in p53 and 
Mdm2 oscillations. Here, we explore their combinatory effect in three cases: the CN together with intrinsic noise 
(IN), CN with cellular heterogeneity (CH), and all three types of noise present, with D = 0.1, Ω = 102, and S = 0.1. 
In each case, the CVs still vary non-monotonically with increasing τ, although they tend to be flat when more 
types of noise are added (Fig. 6). Notably, the CVs in the case of three types of noise combined can be well approx-
imated by the root of sum of squares of the corresponding CV’s under individual noise sources.

Of note, the values of CVs in Fig. 6, especially that for the amplitude, differ from the experimental data in 
ref.11. To eliminate this discrepancy, we need to choose appropriate values of S, Ω, D and τ based on the known 
data. It was reported experimentally that nearly 50% of cells exhibit p53 oscillations upon irradiation of 5 Gy, and 
the CVs are 0.7 ± 0.05, 0.3 ± 0.05, 0.2 ± 0.05, and 0.3 ± 0.05 (mean ± standard deviation) for the amplitude, width, 
period and p53-Mdm2 delay, respectively11. According to our analysis of cellular heterogeneity, 52.8% of param-
eter sets allow for sustained oscillation at S = 0.3 (Fig. 3(b)). Accordingly, the CVs are 0.50, 0.22, 0.17, and 0.22 

Figure 7.  Estimation of the values of D and τ. Contour maps of D versus τ for the amplitude (a), width (b), 
period (c) and p53-Mdm2 delay (d) in the presence of only colored noise. Blue curves are specified by the values 
of CVs. The black circles denote the case with D = 0.04 and τ = 103 min. In each case, 1000 runs of stochastic 
simulations lasting 3000 min are performed. The axis of τ is on logarithmic scale.
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for the amplitude, width, period, and p53-Mdm2 delay; all these values are lower than the experimental values 
except the CV of the period. Moreover, cellular heterogeneity alone cannot underlie the irregularity in oscillation 
in individual cells. Therefore, part of p53 variability should be attributed to dynamic noise.

It was estimated that the number of p53 proteins in MCF7 cells is about 104–105 42 and those of Mdm2 pro-
teins and mRNA are around 105 and 103, respectively43. Given Ω = 104, the numbers of proteins and mRNAs are 
around 103–104 and 102–103, respectively. Strikingly, in the presence of only intrinsic noise with Ω = 104, the CVs 
are 0.024, 0.029, 0.027 and 0.066 for the amplitude, width, period, and p53-Mdm2 delay, which are all less than 
0.1. That is, intrinsic noise alone exerts little effect on the oscillatory variability. Thus, extrinsic noise should play 
a marked role in p53 variability.

It is difficult to determine the values of D and τ directly due to lack of experimental data. But we make an 
estimation using the above approximate relationship between the resulting CV and CV’s under individual noise 
sources. Given S = 0.3 and Ω = 104, the CVs under extrinsic noise alone should fall within the following ranges: 
[0.41,0.56], [0.11,0.27], [0,0.18] and [0.10,0.27] for the amplitude, width, period, and p53-Mdm2 delay, respec-
tively. By parameter sweeps, we can roughly determine the ranges of D and τ. We run simulations for different D 
and τ when colored noise is added to the processes of transcription, translation, mRNA degradation and protein 
degradation, and plot the contour maps for the CVs (Fig. 7). The CVs change monotonically with increasing D 
but non-monotonically with τ. The CVs are of the expected values in the light red regions. Clearly, the possible D 
and τ should be located in the overlap of these four regions (i.e., dark red region), suggesting that a long correla-
tion time in the CN is probably necessary for the p53 variability observed experimentally.

To justify our estimates of noise parameters, i.e., S = 0.3, Ω = 104, and (D, τ) in the above overlap region, we 
take D = 0.04 and τ = 103 min and perform 1000 runs of stochastic simulations with intrinsic noise, extrinsic 
noise (in transcription, translation, and degradation of mRNA and protein) and cellular heterogeneity (in nDSB 
and 29 rate constants). Consequently, 54% of simulation trajectories of [p53] display sustained oscillation. The 
histograms in Figs. 8 and S4 can be roughly fitted by normal distributions (we also check the normality using Q-Q 
plot). We then calculate the average CVs (see SI Text): 0.71, 0.32, 0.26, and 0.29 for the amplitude, width, period 
and p53-Mdm2 delay, respectively. All these results agree well with the experimental data (Fig. 8(d–f), cited from 
ref.11 the CV of the period was only mentioned in the main text therein). Notably, the histogram for the amplitude 
is left skewed due to the difficulty in distinguishing irregular small fluctuations from sustained oscillations. To 

Figure 8.  Comparison of simulation results with the experimental data. The upper row shows the histograms 
for the base-10 logarithm of the peak amplitude and width of p53 oscillation and p53-Mdm2 delay divided by 
their respective mean values, respectively. The lower row shows the corresponding experimental data from 
ref.11. 1000 runs of stochastic simulations lasting 3000 min are performed with S = 0.3, Ω = 104, D = 0.04,  
and τ = 1000 min. Red curves are fittings by Gaussian density function (2πσ2)−1/2exp[−(x − μ)2/(2σ2)] with  
(μ, σ) = (−0.091, 0.28) (a), (−0.026, 0.14) (b), (−0.017, 0.12) (c), (0, 0.22) (d), (0, 0.13) (e), and (0, 0.11) (f). The 
average CVs are marked in the figure. For (a)–(c), the CV can be estimated as follows: CV = σ0/μ0, where 
μ μ σ= + +log xexp[( )ln10 ( ln10) /2]0 10

2 , σ σ μ σ= − + +log x{exp[( ln10) ] 1}exp[2( )ln10 ( ln10) ]0
2 2

10
2 , 

and x  is the corresponding mean value: =x 11761 for amplitude, 118 min for width, and 101 min for p53-
Mdm2 delay.
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fit the normal distribution to the majority of the data, light blue bars with the values less than −0.5 are excluded 
from the fitting (Fig. 8(a)). Taken together, appropriate cellular heterogeneity and extrinsic colored noise with 
proper strength and correlation time suffice to induce the observed variability in p53 oscillations.

Discussion and Conclusion
One striking feature of p53 oscillation is the variability in amplitude and period. Unraveling the underlying mech-
anism for this variability is essential to understand the modulation of p53 dynamics. Diverse sources of stochastic 
factors may contribute to that variability. We found that intrinsic noise, extrinsic noise and cellular heterogeneity 
have distinct roles. Given large amounts of network components, intrinsic noise has a minor effect on the varia-
bility. In contrast, extrinsic colored noise and cellular heterogeneity can induce a marked variability. With all these 
factors combined, simulation results quantitatively agree with the experimental observations11.

Our analyses of p53 oscillations under various stochastic conditions reveal an approximate relationship 
between the CVs for the combined and individual noise sources, which can facilitate estimation of noise parame-
ters, such as the strength and correlation time of noise. Our work provides new insights into the underlying mech-
anism for p53 variability. In contrast to the conclusion in refs.13,15, where the numbers of proteins are assumed to 
be only 102, the intrinsic noise does not contribute much to p53 fluctuations given the actual numbers of proteins 
and mRNAs are nearly 104 and 103, respectively. Cellular heterogeneity affects whether cells can exhibit p53 
oscillations, but it alone fails to underlie the stochastic dynamics in individual cells. Variability in individual tra-
jectories of p53 oscillation is mainly attributed to the extrinsic colored noise with proper strength and correlation 
time. Moreover, the CVs show a non-monotonic dependence on the correlation time of colored noise, which may 
be a generic feature of biochemical oscillators.

Similar to a theoretical study13, here we present a minimal model of the core regulatory network of p53 
dynamics. The model comprises the ATM-p53-Wip1 and p53-Mdm2 negative feedback loops, and the synthesis 
of mRNAs is explicitly modeled, which increases the effective time delay in negative feedback. Therefore, p53 
oscillations can arise in a relatively wide parameter range. Taking into account other processes such as DNA 
repair, regulation of cell cycle progression, and crosstalk between the p53 and other signaling pathways should 
advance our understanding of p53 oscillations and p53 variability. Such modeling deserves more efforts given p53 
dynamics play a critical role in its tumor suppressive function.
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