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Combined predictive effects of 
sentential and visual constraints in 
early audiovisual speech processing
Heidi Solberg Økland1, Ana Todorović   2, Claudia S. Lüttke3, James M. McQueen3,4 & 
Floris P. de Lange3

In language comprehension, a variety of contextual cues act in unison to render upcoming words more 
or less predictable. As a sentence unfolds, we use prior context (sentential constraints) to predict what 
the next words might be. Additionally, in a conversation, we can predict upcoming sounds through 
observing the mouth movements of a speaker (visual constraints). In electrophysiological studies, 
effects of visual constraints have typically been observed early in language processing, while effects 
of sentential constraints have typically been observed later. We hypothesized that the visual and 
the sentential constraints might feed into the same predictive process such that effects of sentential 
constraints might also be detectable early in language processing through modulations of the early 
effects of visual salience. We presented participants with audiovisual speech while recording their brain 
activity with magnetoencephalography. Participants saw videos of a person saying sentences where 
the last word was either sententially constrained or not, and began with a salient or non-salient mouth 
movement. We found that sentential constraints indeed exerted an early (N1) influence on language 
processing. Sentential modulations of the N1 visual predictability effect were visible in brain areas 
associated with semantic processing, and were differently expressed in the two hemispheres. In the left 
hemisphere, visual and sentential constraints jointly suppressed the auditory evoked field, while the 
right hemisphere was sensitive to visual constraints only in the absence of strong sentential constraints. 
These results suggest that sentential and visual constraints can jointly influence even very early stages 
of audiovisual speech comprehension.

If, during an English conversation, you see your friend put her upper teeth against her lower lip, you would know 
which kind of speech sound to expect next: a labiodental fricative consonant, i.e. either /f/ or /v/. These two dif-
ferent speech sounds share the same viseme (the facial gesture we can see when someone utters a speech sound). 
Visemes have been suggested to function as predictive cues to upcoming acoustic speech1. However, sentence 
context may also provide you with valuable information about upcoming speech. For example, your friend might 
say, “The firewood immediately caught […]”. Such a context enables you to draw on both your linguistic and world 
knowledge (e.g., about the expression “to catch fire” and about the properties of firewood). In this case you might 
be able to predict “caught fire” as a likely ending. Sentential constraints could thus also serve as predictive cues2. 
In the current study, we asked whether visual and sentential constraints jointly influence language comprehen-
sion and, if so, when they do so. Specifically, can contextual cues (e.g., sentential information about upcoming 
“fire”) modulate uptake of visual cues (e.g., mouth movements about the upcoming /f/-/v/ viseme) early in the 
comprehension process?

During speech recognition, visual information often precedes auditory information3. Visemes can communi-
cate information about the place of articulation of a speech sound earlier and more efficiently than the acoustic 
signal alone4. While visemes can therefore be used to predict upcoming acoustic speech, the degree to which they 
can do so depends on the level of certainty with which they signal (classes of) speech sounds. We will refer to this 
as viseme salience. The viseme for /f/ and /v/ is highly salient, as critical aspects of the articulation of these sounds 
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are clearly visible. Visemes such as those belonging, for example, to velar consonants (/g/ and /k/) are less salient, 
since the constriction that produces the sound is not visible. The available visual information associated with 
velar consonants is consistent with sounds produced at other posterior places of articulation. Viseme salience is 
reflected in an early neuronal response: the auditory N1 peaks earlier and has a lower amplitude with more salient 
visemes5–7, a phenomenon we will refer to as the viseme effect. Importantly, the viseme effect has been observed 
when single words, or even meaningless syllables are presented8, with no preceding sentence context.

The auditory N1 is an event-related potential (or event-related field) peaking around 100 ms following a 
change in the acoustic environment9. It is also considered to reflect early stages of language processing such as 
prelexical acoustic-phonetic analysis10–12. Although traditionally seen as a stimulus-driven response to an audi-
tory event, the N1 has also been found to be sensitive to higher-level cognitive states like attention and expecta-
tion9,13,14. A possible interpretation of the viseme effect, then, is that visemes serve to influence the probability of 
which sounds might be encountered next, with more salient visemes enabling more accurate predictions. Many 
viseme studies, however, used isolated phonemes or syllables5,7,8,15, thus trading off tighter experimental control 
for slightly lower ecological validity. One study that did employ an audiovisual paradigm with speakers uttering 
entire sentences, interestingly, found a reverse viseme effect (a stronger N1 for high visual saliency) confined to 
the right hemisphere16.

In addition to viseme salience, there is considerable evidence to suggest that we are able to use grammatical, 
semantic and pragmatic sources of information in sentences to make predictions about what words will come 
next in those sentences17–24. One possibility is that sentence context, similarly, serves to influence the probability 
of which sounds might be encountered next, through facilitating predictions not only about the meaning of the 
incoming word, but also about its form. In electrophysiological studies, however, sentence context predictions 
have been shown primarily to modulate the neural response in the N400 range25. The N400 is a negative deflec-
tion in the event related potential (ERP) that peaks approximately 400 milliseconds after word onset, but is often 
visible from 250 ms onwards. The N400 to a word that is not predicted or is unexpected will have a higher ampli-
tude than if the word was predicted or expected26,27. This modulation comes later than the viseme effect.

Are the abilities to use visual and sentential information two sides of the same coin, that is, do they reflect the 
same predictive process? Before we attempt to answer this question, it is important to be clear what we mean by 
“prediction”. Different mechanisms that could support prediction have been proposed, including those based 
on pre-activation28, on Bayesian principles29,30, on generative models22,31, and on predictive coding32–34. Given 
these varying theoretical perspectives, there are different views of what “prediction” is. For example, if prediction 
is based on pre-activation, anticipatory effects (e.g. evidence that the listener is actively considering a word as 
a perceptual hypothesis before any acoustic evidence for that word has been heard) can be taken as the litmus 
test of predictive processing. From a Bayesian perspective, however, processing that is not strictly anticipatory 
(i.e., where prior knowledge modulates processing of a word as it is being heard) is still predictive30. There is also 
debate about whether prediction is the sole process underlying language comprehension, or whether it is only one 
of multiple processes35,36. Relatedly, there is current discussion about whether a key demonstration of prediction 
replicates28,36,37. In spite of these ongoing debates, there is consensus that, at least under some circumstances (e.g. 
when the previous context is highly constraining), comprehenders can use contextual information to anticipate 
upcoming words and their associated features17,38. This anticipatory ability is what we mean here by “prediction”.

Can visual and sentential cues therefore be used jointly to predict acoustic-phonetic aspects of spoken words? 
At first glance, the electrophysiological data might suggest that prediction based on visual information is distinct 
from that based on sentential information: the N1 is several hundred milliseconds earlier than the N400. The 
timing of the N400 is such that N400 effects based on sentence context may not even reflect prediction: they are 
late enough to reflect instead effects of integration (where the current word is being integrated into the ongoing 
interpretation of the sentence)39. If, however, visual and sentential constraints influence the same anticipatory 
process, we should expect to see effects of sentential context in the same time window as the N1. This hypothesis 
is supported by other evidence indicating anticipatory effects of sentential constraints on speech comprehension. 
In visual-world eye-tracking studies, for example, verb-based constraints about the type of noun that is likely 
to be the grammatical object of the verb can influence processing before the acoustic onset of the noun17. Since 
sentential constraints can thus be used anticipatorily, and predictive processes based on visual information can be 
detected as changes to the N1, it ought to be possible to observe a modulation of the N1 visual effect by semantic 
constraints.

To test this potential early modulation, we used magnetoencephalography (MEG) to look at auditory N1 
latency and amplitude in an audiovisual speech paradigm. The final words of spoken sentences could be contex-
tually constrained or unconstrained and they began with salient or non-salient visemes. We predicted that the 
viseme effect (more N1 suppression to salient visemes) would depend on whether the sentence was constrained 
or not. Such a demonstration would suggest that sentential constraints are being used to predict (i.e., to antici-
pate) rather than to influence semantic integration. This is because the N1 is not considered to reveal semantic 
integration and because modulation of the N1 by viseme salience is a signature of form-based processing (i.e., it 
reflects predictions about the sentence-final word’s initial consonant, not its meaning). Such an interaction would 
thus suggest that effects of visual and sentential information in audiovisual speech comprehension are indeed 
two sides of the same coin, that is, that they both reflect the ability of the listener to predict upcoming words. 
We expected an interaction between viseme salience and sentential constraint to arise in the left hemisphere. We 
did not have a specific hypothesis about the shape of the interaction. One possibility, for example, was that the 
viseme effect would be present only in the absence of sentential constraints, as might be expected if the sentential 
constraints were powerful enough to fully predict the phonological form of the upcoming word and hence to 
make the visemes uninformative. As noted above, however, the prior literature does not provide clear evidence 
that word forms are predicted based on sentential context (i.e., N400 effects reflect processes higher than the 
word-form level). Furthermore, even if word-form predictions are made, it is unclear whether they would be 
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sufficiently unambiguous to neutralize all effects of visual information. Such a specific hypothesis was therefore 
not warranted. Similarly, other detailed hypotheses about the form of the interaction (e.g., whether sentence and 
viseme would jointly suppress the neural response and shorten N1 latency) were also not made. We also included 
the right hemisphere, where we did not expect to find an interaction, as a control.

Materials and Methods
Participants.  The criteria for participation in the study were as follows: Dutch native speaker, 18–30 years 
of age, no dyslexia or other language-related or neurological problems, right-handed, normal hearing, normal or 
corrected-to-normal eyesight and no metal in the body. We determined eligibility based on participants’ self-re-
port. Twenty-five subjects took part in the experiment (6 male, mean age = 22.4 years, SD = 2.25). All signed an 
informed consent form in accordance with the Declaration of Helsinki. The study was approved by the local ethics 
committee (CMO region Arnhem/Nijmegen), and participants were paid for their participation. One participant 
was excluded due to excessive artifacts caused by makeup residue that had been magnetized during a magnetic 
resonance imaging (MRI) session earlier that day. All were right-handed, with normal hearing and normal or 
corrected-to-normal vision.

Experimental materials, design and procedure.  Participants watched videos of a speaking person who 
was recorded from the shoulders up (see Fig. 1A). The videos contained spoken sentences. The last word (target 
word) of the sentence either started with a salient or a non-salient viseme. A salient viseme allowed the upcoming 
auditory content of the target word to be predictable (relative to a non-salient viseme). The content of the target 
words could also be predictable depending on the form and meaning of the preceding sentence. We therefore 
orthogonally manipulated the viseme salience of the initial sounds of sentence-final words and the sentential 
constraints on those words (see Table 1). This resulted in four experimental conditions: constraining sentential 
context with salient viseme, constraining sentential context with non-salient viseme, unconstraining sentential 
context with salient viseme, and unconstraining sentential context with non-salient viseme. Additionally, we 
presented the spoken target words in isolation to test for the early N1 effect of viseme salience without a sentence 
context. Here, our manipulation resulted in two experimental conditions: salient viseme and non-salient viseme.

Target words.  We manipulated viseme salience while keeping acoustic features constant across and within con-
ditions. In order to achieve this, we selected two Dutch speech sounds that are phonetically similar but that differ 
in visual salience: the unvoiced labiodental fricative /f/ (the same sound as an English f) and the unvoiced velar 
fricative /x/ (similar to the final sound in ‘Bach’). Fricatives are consonants we produce by forcing air through a 
narrow constriction. In the case of an /f/, this constriction is between the upper teeth and lower lip, making it 
visually salient. For /x/, the constriction is created by positioning the back of the tongue close to the soft palate, 
resulting in a less salient viseme. Based on auditory information alone, Dutch participants can correctly distin-
guish /f/ and /x/ after having heard approximately equal portions of the sounds40. In addition, these two sounds 
are often confused with each other early in the auditory recognition process40. They are also similar in duration. 
To confirm this, we measured the frication duration for 7/f/ and 7/x/words, yielding means of 143 ms and 147 ms 
respectively. Since /f/ and /x/ are acoustically similar, additional visual information could make their discrimi-
nation easier.

We then chose four words starting with each of these two speech sounds followed by the vowel /ɪ/ to further 
ensure acoustic similarity. This resulted in eight target words (Table 1). The mean frequencies of the words in 
the two conditions were not significantly different (t(6) = 0.145, p = 0.89) based on the word frequencies in the 
SUBTLEX-NL database41. We visually inspected the sound clips in Praat42 to determine acoustic duration. We 
determined visual duration (onset to offset of lip-movements) by visual inspection of the video clips in Adobe 
Premiere Pro 6. To minimize the effect of word repetition and strategic processing related to the onset sounds, we 
additionally introduced trials ending with 16 filler words, none of which started with /f/ or /x/. The filler words 
were semantically related but acoustically distinct from the target words (e.g., “verband” (bandage) and “klei” 
(clay) for the target word “gips” (plaster)). We did not analyse neural activity related to these filler trials.

Sentences.  We initially constructed 24 different sentences ending with each of the eight target words, which 
makes a total of 192 sentences. Half of the sentences strongly predicted a particular sentence-final target word, 
whereas the other half were not strongly constraining, and thus poor predictors of the target words. We pilot 
tested how predictive the sentences were (without the final words) on a group of 40 Dutch participants (native 
speakers with no dyslexia) with one of four versions of a pen-and-paper sentence completion test. Participants 
were asked to indicate which word best completed each sentence. Based on the results of this test, we then selected 
the 10 most and 10 least reliably predictive sentences for each target word, which gave us a final set of 160 target 
sentences (see Supplementary Materials for all sentences and Table 2 for examples). The predictive power of the 
sentences selected for the experiment was on average 80% predictability of the sentence-final word. We also con-
structed 10 sentences for each of the sentence-final filler words, half of which were predictive and half of which 
were not.

Video recording and editing.  A male native Dutch speaker with a neutral dialect was chosen as speaker. He was 
seated in a chair facing the camera. A soft box lighting device was behind the camera to ensure maximal visibility 
of his facial movements. The speaker was instructed to speak clearly and at a natural pace, but to include a pause 
before the sentence-final word. Later, a single target word video was chosen and presented at the end of all 20 sen-
tences associated with that word. The recording was done in a soundproof room using a digital HD video camera 
(JVC HD GY-HM100E) at 1920 × 1080 resolution and 25 progressive frames per second. Sound was recorded 
with the camera microphone at a sampling rate of 48 kHz.
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Figure 1.  Experimental task, sensor selection, N400 and latency results. (A) Trial sequence. A video displays a 
speaker uttering a Dutch sentence for about four seconds. The final word of the sentence appears after a short blank 
screen (320 ms). In this example, the auditory contents of the sentence-final target word are made more predictable 
due to the salient viseme (/f/), and the constraining sentential context. The target word here (‘fire’) is followed by 
a written word, presented on 20% of the trials. Participants pressed a button to indicate whether it was the same 
as the previous word. (B) N400-effect of sentence context. Left: topography of the difference in activity to words 
preceded by a sententially unconstrained vs. constrained context, with significant sensors highlighted. Sententially 
unconstrained words led to stronger neural activity over temporal, parietal and frontal sensors. Right: event-related 
fields to sententially unconstrained (purple) and constrained sentences (orange), averaged over sensors highlighted 
on the left. (C) Sensors of interest with average N1 topography to videos of single words. The most active left and 
right temporal sensors are highlighted. (D) Event-related fields to words beginning with salient (green line) and 
non-salient visemes (black line), plotted separately for sensors in the left and right hemisphere. Jackknifed auditory 
N1 peak latencies for each subject are represented by dots, their means by the vertical lines. In the left sensors, the 
auditory N1 peaked earlier if the viseme was salient than if it was not.
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First, video clips of each sentence and each sentence-final word were selected and cut out from the raw record-
ings in Adobe Premiere Pro 6. Every sentence and word video started and ended with a neutral face and a closed 
mouth. The video clips of the lead-in sentences had six frames (240 ms) of neutral face at the beginning and three 
frames (120 ms) at the end, whereas the word video clips started with three (120 ms) and ended with six frames 
(240 ms) of neutral face. This enabled us to control the visual gap between lead-in sentence and target word. 
The sound was noise-reduced in Audacity and its amplitude was root mean square equalized in Praat. We put 
the edited sound clips back into the video clips in Adobe Premiere Pro 6 without any audiovisual asynchrony or 
realignment, after which we exported the edited video clips in uncompressed AVI format with a 720 × 480 frame 
size. Finally, we compressed and exported the video clips as AVI files in the Indeo 5.10 codec using VirtualDub.

Stimulus presentation.  Each trial started with a fixation cross placed approximately between the eyes of the 
speaker in the upcoming video. After 1500 ms, the fixation cross was replaced by the lead-in sentence video (in 
sentence trials) or target-word video (in word trials). In the sentence trials there was a gap during which a uni-
formly black screen was presented for 320 ms between the lead-in sentence and the sentence-final target word 
(Fig. 1A). This ensured a constant interval (560 ms) between visual lead-in sentence offset and target word onset. 
Additionally, it allowed us to use identical target word videos across trials. Importantly, the onset of the auditory 
content in the target word videos naturally lagged the viseme onset by 50 ms. This lag was constant within and 
across conditions.

We used two types of trials in the experiment: sentence trials and world trials. The sentence trials made up the 
first part of the experiment, and the word trials came last. The word trials contained exactly the same target words 
as the sentence trials, but no fillers. The order of stimulus presentation was pseudorandom throughout the exper-
iment. During sentence blocks, a target word was never repeated on two consecutive trials, and the proportion 
of fillers and targets was balanced across blocks. In word-only trials the target and filler words were presented in 
a pseudorandom order.

Task.  While participants performed the task, we recorded their ongoing neural activity with MEG. The video 
was projected on a screen at a distance of 70 cm from the participant, and the sound delivered binaurally through 
MEG-compatible air tubes at a comfortable sound pressure level. Stimulus presentation was controlled by a PC 
running Presentation software (Neurobehavioral Systems). The experiment contained 8 sentence blocks of 40 
trials, leading to a total of 160 filler trials and 160 target trials. After the sentence blocks, there was one word-only 
block with 20 trials per target word, again leading to a total of 160 trials. The inter-trial interval varied randomly 
between one and two seconds throughout the experiment. All participants saw the same set of stimuli, but the 
order of presentation differed per participant.

To ensure that participants would pay attention to the target words, we added a word discrimination task on 
20% of the sentence trials and 35% of the word trials. During task trials, a written word appeared on the screen 
immediately after the word video, and the participants had to indicate with a button press whether this word was 
the same or different from the word they had just heard. As the word discrimination task came later in the epoch 
than the time of interest for us (that associated with target word processing), these trials were included in the 
analyses.

Before the experiment began, participants tried two practice trials. During the experiment, there was a break 
of at least 30 seconds after every block of 40 sentence trials, and a break of at least 60 seconds before the word-only 

Target 
words

English 
translation IPA Frequency

Acoustic word 
duration (ms)

Visual word 
duration (ms)

Total clip 
duration (ms)

fik fire [fik] 6.49 293 440 1000

film film [film] 174.28 372 720 1160

filter filter [ˈfiltər] 2.04 541 640 1040

fit in good shape [fit] 5.37 373 600 1040

gif poison [xif] 13.56 400 960 1320

gil scream/shriek [xɪl] 9.99 330 640 1040

gisteren yesterday [ˈxistərə] 131.79 513 640 1000

gips plaster/gypsum [xips] 2.36 492 680 1040

Table 1.  Target words. IPA = International Phonetic Alphabet. Frequency did not differ significantly between 
/f/- and /x/-words.

Salient viseme Non-salient viseme

Sententially constrained Het brandhout vloog meteen in de FIK
The firewood immediately caught FIRE

De tanden van een cobra bevatten dodelijk GIF
The teeth of a cobra contain deadly POISON

Sententially unconstrained Toen Roel thuiskwam stonden zijn spullen in de FIK
When Roel came home his stuff was on FIRE

De biologiestudenten lezen een artikel over GIF
The biology students read an article about POISON

Table 2.  The four experimental conditions with example sentences.
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block. After these obligatory breaks were over, participants could press a button to proceed with the experiment 
whenever they wanted.

MEG acquisition.  We recorded brain activity using a whole-head MEG (275 axial gradiometers, VSM/CTF 
Systems) at a sampling rate of 1200 Hz in a magnetically shielded room. Participants’ head position was moni-
tored during the experiment using coils placed at the nasion and in both ear canals, and was corrected during 
breaks if needed. Horizontal and vertical electro-oculogram (EOG) was recorded using 10-mm-diameter Ag–
AgCl surface electrodes. We later used the vertical EOG to aid offline rejection of blink artifacts.

MEG data analysis.  The MEG data were preprocessed and analysed in Matlab (MathWorks, Natick) using 
the FieldTrip toolbox43. We calculated event-related fields (ERFs) time-locked to the onset of the target word 
videos, and used these to analyse auditory N1 latencies as well as early and late amplitude effects as a function of 
our experimental manipulations.

Calculation of event-related fields.  We extracted trials of 1300 ms from the data starting 300 ms before the onset 
of the target word videos. Trials containing jumps in the MEG signal caused by the SQUID electronics were 
rejected based on visual inspection. Trials containing excessive muscle artifacts were then rejected after visual 
inspection of the amount of variance in an epoch with the signal bandpassed at 110–140 Hz. Next, we used inde-
pendent component analysis44 to remove variance in the signal pertaining to eye blinks45. Finally, we discarded 
any remaining trials where the ERF amplitude was more than 4 standard deviations above or below the mean. In 
total, we rejected an average of 12.75 (SD = 4.80) trials per participant.

Before calculating ERFs for each condition of interest, we low-pass filtered the data at 40 Hz and baseline cor-
rected relative to a 100 ms time window before the onset of the word videos. Finally, we calculated planar gradient 
transformed ERFs46, a procedure which simplifies the interpretation of the sensor-level data because it places the 
maximal signal above its source47. Importantly, this operation removes the polarity of ERF components, making 
the strength of their deflections from zero across conditions the main information of interest. The error bars in all 
the ERF figures represent within-subject standard errors48.

Sensors of interest.  We constrained our analyses to temporal sensors, with the exclusion of sensors bordering 
occipital areas (in order to avoid excessive contamination by visual activity). To further select the sensors of 
interest, we used the grand averaged ERF data from words presented in isolation. We selected the 10 most active 
temporal sensors in each hemisphere in a time window corresponding to the auditory N1 component, 60–100 ms 
after auditory onset (Fig. 1C). We have used the same sensor selection procedure for all previous auditory studies 
in our lab.

Analysis of auditory N1 peak latency.  We calculated auditory N1 peak latencies for the target words, separately 
for each hemisphere. We used a jackknife approach, which allows for robust estimation of latency differences, to 
estimate the N1 peak latencies49,50. Instead of computing one average N1 latency value per participant, we com-
puted as many averages as there are participants while leaving one participant out each time. If the latency is con-
sistent over participants, then the average value will not change substantially depending on which participant is 
left out. To test whether the conditions of interest exhibited latency differences, we compared the estimated peak 
latencies for salient vs. non-salient visemes in the time window between 60 and 100 ms after auditory onset, with 
the t-values corrected to tcorrected = t/(n − 1) in order to reduce the false positive error rate51. We first compared 
latencies in the word-only condition, then for words in sentence contexts. To assess whether viseme salience 
modulations of N1 latency depend on sentential predictability, we also tested the viseme/context interaction by 
comparing the difference of the viseme effects in the two sentential conditions against each other.

Analysis of auditory N1 amplitude.  We tested for auditory N1 amplitude differences as a function of the preced-
ing viseme and sentential information. We used nonparametric cluster-based permutation t-tests for paired sam-
ples52. All reported amplitude p-values are cluster p-values. Cluster-based permutation tests are well suited to test 
for differences between conditions in time-series data. The test controls for the false alarm rate by taking advan-
tage of the fact that effects are typically clustered in time. We tested for clusters of amplitude differences across 
samples of a 300 ms long time-window starting from 100 ms before auditory onset (i.e., 50 ms before viseme onset, 
100–400 ms after target word video onset,), using 5000 permutations for the generation of the null distribution. 
We first compared salient to non-salient visemes in the word-only condition, followed by the same comparison 
for words in a sentence context. We also compared the effect of constraining vs. unconstraining sentential con-
texts. We also tested the viseme/context interaction. In order to test the viseme x sentential constraint interaction 
using FieldTrip, we calculated the difference between the two viseme conditions in our sensors of interest, and 
then compared this difference in a t-test between constraining and unconstraining sentence contexts. Finally, to 
perform a three-way interaction (viseme x sentential constraint x hemisphere), we calculated the difference of dif-
ferences of these two conditions in each hemisphere separately (i.e., weak minus strong viseme in unconstrained 
sentences minus weak minus strong viseme in constrained sentences) and averaged over left sensors in the left 
hemisphere and over right sensors in the right hemisphere. We then compared these two sets of numbers in a 
final t-test. It is important to note that we could have, in principle, approached the interaction from an opposite 
angle, by testing for a difference in the context effect across the two different levels of visual salience. The decision 
to set up our interaction test the other way was theoretical, as we were primarily interested in how viseme salience 
works with real words in the context of sentence predictability. Previous research on viseme predictability tended 
to use syllables without meaning8, and our aim was to build from there: first, to show whether the meaning in real 
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words diminishes this early auditory effect, and second, to see whether the meaning conveyed by the sentence 
context would modulate it further.

N400 analysis.  To verify that our sentence context manipulation resulted in a classical N400 effect26, we used 
a cluster test to compare ERFs of the sententially constrained and unconstrained sentence-final words. This test 
searches for groups of sensors that show a significant difference between the two conditions. We collapsed over all 
time points from 200 ms to 500 ms after auditory onset for this analysis.

Data sharing.  The raw datasets collected during this study as well as the analysis scripts are avail-
able for download from the Donders online repository. https://data.donders.ru.nl/collections/di/dccn/
DSC_3018012.05_367?5.

Results
Task accuracy.  On 20% of the sentence trials, participants performed the word discrimination task. They did 
so with high accuracy (94.63% + 0.52%, mean + SD) suggesting that they paid attention to the target words. In 
the word-only trials, accuracy was very similar (93.08% + 0.83%).

N400 amplitude decreases in constrained sentence contexts.  We first examined whether our 
manipulation of sentence context resulted in an N400 effect. The N400 component to a sentence-final word is 
known to decrease in amplitude in the presence of a constraining context, that is, when the sentence context 
renders it predictable26. This is what we found as well: a large number of sensors showed an attenuated response 
in the constraining sentential context compared to the unconstraining sentential context (p = 0.015, pre-defined 
time window of 200–500 ms after auditory onset). The difference topography in this time window (Fig. 1B) sug-
gests that the effect of sentential constraints was present in both hemispheres, but was more pronounced on the 
left side. It originated from a difference in activity in temporal sensors, as well as a smaller number of parietal and 
frontal sensors.

Salient visemes shorten auditory N1 latency in the left hemisphere.  We assessed whether viseme 
salience influenced the peak latency of the auditory N1 to words presented in isolation, outside of a sentence 
context (Fig. 1D). We were able to extract a reliable N1 peak latency for both viseme conditions (salient and 
non-salient) in the left hemisphere. In contrast, in the right hemisphere, the jackknife-estimated peak latencies 
following salient visemes formed a bimodal distribution, indicating two separate peaks of similar amplitude (i.e. 
an absence of a reliable N1 peak). We therefore compared the peak latencies only in the left hemisphere. There 
we found that words beginning with salient visemes were associated with an earlier auditory N1 peak than words 
beginning with non-salient visemes (69 vs. 88 ms, SD 1.15 vs. 1.12, t(23) = 2.25, p = 0.034).

We next tested whether the viseme effect - earlier N1 peaks to words containing salient compared to 
non-salient visemes - would continue to be present when the words were embedded in a (constraining or uncon-
straining) sentence context (Fig. 2C). We performed this comparison in the left hemisphere only. We found that 
salient visemes shortened the N1 latency in an unconstrained sentential context, in other words when the upcom-
ing word could not be predicted (64 vs. 85 ms, SD 1.8 vs. 1.1, t (23) = 2.15, p = 0.02). We did not find an effect 
of viseme salience in the constrained sentential context (72 vs. 78 ms, SD 1.13 vs. 0.59, t (23) = 0.98, p = 0.41). 
However, we did not find evidence for an interaction effect between viseme salience and sentential context (no 
difference in the viseme effect in constraining compared to unconstraining sentences, mean difference of differ-
ences = 15 ms, t (23) = 1.49, p = 0.147). In sum, although the viseme effect persisted when words were embedded 
in unconstraining sentences, the lack of an interaction effect makes it difficult to estimate the extent to which 
sentential constraints do or do not influence how much viseme salience influences auditory N1 peak latency.

The early joint influence of viseme salience and sentential constraints is hemisphere- 
dependent.  We looked at ERFs (up to 300 ms after word onset) to assess whether viseme salience, which 
exerted a consistent influence on N1 latency in the left (but not right) hemisphere, would also exert an effect on 
signal amplitude. When words were presented in isolation neither the left (p = 0.137) nor the right (p = 0.131) 
hemisphere showed evidence of an amplitude difference in early auditory processing following visemes of differ-
ent salience (Fig. 1C).

We then asked whether viseme salience affects signal amplitude to words presented in the context of a sen-
tence. We found that viseme salience and sentential constraints came together to exert a joint influence on 
auditory processing, but that the pattern of their interaction depended on the hemisphere (Fig. 2B,C). In both 
hemispheres, non-salient visemes led to larger auditory responses in the N1 time window. However, this viseme 
effect was modulated by sentential constraints in opposite ways in the two hemispheres. A viseme effect was 
evident only in the presence of sentential constraints in the left hemisphere, and only in the absence of senten-
tial constraints in the right hemisphere (three-way interaction between hemisphere, sentential constraints and 
viseme salience: p = 0.012, 90–135 ms). In other words, the left auditory cortices responded less to salient visemes 
when the upcoming word could be predicted based on sentential constraints while the right auditory cortices 
responded less to salient visemes when the upcoming word could not be predicted using sentential constraints 
(Fig. 2B, left).

Next, we looked at the effect of viseme salience and sentence context for the two hemispheres separately. In the 
left hemisphere, we found no evidence for an effect of sentential constraints on early auditory responses (main 
effect of sentential constraints: no clusters found). Viseme salience, in contrast, did exert an effect on the early 
neural response (main effect of viseme salience: p = 0.012, 80–126 ms after sound onset). The stronger amplitude 
to non-salient than salient visemes depended on whether a sentence was sententially constraining or not (mar-
ginal interaction between viseme salience and sentence context: p = 0.061, 131–159 ms). Namely, a viseme effect 
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Figure 2.  Main effects and interactions on ERF amplitudes. (A) Topography of the main effects of sentential 
constraints and viseme salience in the time window of the significant three-way interaction between 
hemisphere, viseme salience and sentence context. Sensors of interest are highlighted. (B) Left - Topography 
of the interaction. Right - Individual subject representation of the interaction, in two most prominent sensors 
on each side. Each red and blue dot represents the difference in the signal between non-salient and salient 
visemes, under different conditions of sentential constraint. (C) ERFs for the salient and non-salient visemes in 
the two hemispheres under different conditions of sentential constraint. Clusters of significant differences are 
highlighted. Dots in the upper plots (left hemisphere) represent individual jackknife-estimated N1 latencies, 
with their means represented as vertical lines.
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was present if the sentences were sententially constrained (p = 0.04, 71–152 ms), but we found no evidence of it if 
the sentences were sententially unconstrained (p = 0.265).

In the right hemisphere, we observed a reverse pattern of results. We found no evidence of an effect of viseme 
salience on neural activity (no main effect of viseme: p = 0.196). Conversely, we observed stronger activity to 
sentence-final words preceded by an unconstraining sentential context relative to a constraining one (main 
effect of sentential constraint: p = 0.020, 12–51 ms). As in the left hemisphere, in the right hemisphere we also 
found a combined effect of whether a viseme was salient and whether the sentence was sententially constrained 
(interaction between viseme salience and sentential constraint: p = 0.044, 87–117 ms). Here, words starting with 
non-salient visemes led to more neural activity than words starting with salient visemes in sententially uncon-
straining sentences (p = 0.040, 90–121 ms), but we found no evidence of a viseme effect in sententially constrain-
ing ones (p = 0.278).

No evidence that sentential constraint modulates neural activity before word onset.  A poten-
tial limiting factor of this study is that the sentence-final words were preceded by a blank screen of 320 ms. During 
this time window, predictions related to sentential constraint might already begin to influence neural activity. If 
that were the case, then the ERFs following word onset would partly reflect this already accumulated prediction. 
This type of prediction accumulation, in turn, might not be an accurate representation of language processing 
that unfolds at a natural speed.

In order to assess the influence on sentential constraints on the period just before the final word onset, we 
compared ERFs during this time window. Our epochs here were limited to the blank 320 ms period, starting 
with a 100 ms baseline just before the blank screen and ending at target word onset. We did not find evidence of 
a difference between sententially constrained and unconstrained sentences (p = 0.35), indicating that neural dif-
ferences began only after target word onset. We additionally repeated this test separately in left and right sensors, 
but found no difference in either (p = 0.32 and p = 0.55, respectively).

Discussion
In this study, we examined the independent and joint effects of viseme salience and sentential constraints on early 
auditory processing in sentence-final words. In electrophysiological studies, viseme salience typically affects N1 
latency and/or amplitude5, while sentential constraints typically affect the N40025–27,53. If, however, both effects 
reflect an increase in the predictability of the upcoming auditory input, and since studies using other paradigms 
(e.g. eye tracking)17, have demonstrated effects of sentential context even earlier than the N1, we predicted that 
sentential constraints could modulate the early viseme effect by making the viseme more or less predictable. We 
found that sentential context can indeed have an effect on early language processing (~90 ms after word onset) 
through modulating reliance on early visual cues, but that the pattern of this effect depended on the brain hem-
isphere: the left hemisphere integrated probabilistic cues from visual and sentential information, while the right 
hemisphere gave visual cues priority only when no strong sentential constraints were present.

Before we go on to discuss these results in greater detail, it is important to note where our study stands in terms 
of ecological validity. The majority of studies on viseme salience investigate the effect in isolated phonemes or syl-
lables5,7,8,15. In contrast, we employed a paradigm where full sentences were spoken. However, we introduced a 
break between the penultimate word and the target word. This manipulation allowed for better experimental con-
trol and a higher signal to noise ratio, but it comes at the cost of reducing predictability based on natural prosody 
and coarticulation. While we believe that our results allow for the conclusion that comprehenders can use both 
viseme salience and sentential constraints to predict upcoming words, they do not necessarily imply that people 
always do so in natural speech situations. In addition, we repeated the target words throughout the experiment. 
This might have increased anticipation of their identity in all experimental conditions, which could have led to 
an attenuated neural signal based on both higher predictability and repetition suppression, and therefore smaller 
observed differences between the conditions. As the target words were task-relevant, the increased predictability 
might have also increased attention to them. It remains an open question whether the pattern of observed results 
would hold with task-irrelevant words. Another caveat we need to make is the following. We have assumed that 
viseme salience is the only driver of our viseme effect, as previous studies have found the degree of salience relates 
to the degree of N1 suppression15. And indeed, the effect we find goes in the same direction, with more salience 
meaning more suppression. However, we cannot rule out the possibility that the auditory processing of the /f/ and 
/x/ sounds we used might have different cortical sources54,55. The differences we observed in N1 amplitude may 
therefore reflect auditory rather than visual differences between the two critical speech segments.

We first replicated a typical N400 effect (a decreased amplitude to words embedded in a constrained com-
pared to an unconstrained sentence context, Fig. 1B). This suggests that participants were anticipating upcoming 
word forms when the sentential context was constrained, although it might equally reflect ease of integration39. 
We also replicated a viseme effect (shorter N1 latencies to words beginning with a salient viseme compared to a 
non-salient one) in left temporal sensors, when words were presented outside the context of a sentence, but we 
did not find a visual salience effect on the N1 amplitude. The latency shortening implies that participants used the 
visual information from the lip movements to predict upcoming auditory input. This type of latency shortening 
has been argued to reflect faster auditory processing7, and to be insensitive to whether or not the speech sound 
matches the viseme15. One suggested mechanism underlying visual facilitation of auditory speech processing is 
phase-resetting of activity in auditory cortex due to input from visual motion areas15,56.

Crucially, when we investigated auditory activity to words embedded in the context of a sentence, we found 
that the level of sentential constraints modulated both the N1 latency and its amplitude, through changes in 
the effect of viseme salience. Both hemispheres exhibited joint sensitivity to viseme salience and sentential 
constraints, but, interestingly, the effect of these two factors on early auditory word processing were differently 
expressed. In the left hemisphere, we observed N1 peak latency shortening to salient visemes in the absence of 
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sentential constraints, as well as an amplitude reduction in the presence of sentential constraints. In the right 
hemisphere, we did not detect reliable N1 peaks (and so did not estimate latencies or a possible hemispheric inter-
action), but a lower amplitude to salient visemes was evident in the absence of sentential constraints.

A number of studies have demonstrated a suppressed and earlier N1 for words beginning with more salient 
visemes5–7, and one study suggested that the degree of salience could be predictive of the degree of suppression 
of the BOLD response8. We replicated this stronger suppression to words beginning with more salient visemes in 
the left hemisphere when prior sentence context was constrained, but not when it was unconstrained. In contrast, 
the N1 latency to salient visemes in the left hemisphere was shorter only in the absence of sentential constraints. 
It is important to note that, even though we found an N1 peak latency shift to salient visemes when the target 
words were not sententially constrained, and no viseme effect when they were, we did not find evidence of a 
viseme-context interaction in this analysis. This is partially in line with a recent EEG study that combined senten-
tial constraints with viseme salience, where there was an N1 latency shift only for salient (vs. non-salient) visemes, 
but no early interaction with sentential constraints16.

We also looked at the effect of viseme salience and sentence context on the ERF amplitudes. Both hemispheres 
were sensitive to a combination of sentential constraints and viseme salience in the N1 time window, but surpris-
ingly, the reliance on viseme salience as a function of sentential constraints differed per hemisphere, with the left 
hemisphere integrating both effects, but the right hemisphere giving priority to visual cues only in the absence 
of sentential constraints. In the right hemisphere, we found a higher amplitude for non-salient visemes in the 
absence of sentential constraints, indicating a reliance on visual cues only when there was no helpful sentential 
context. In the left hemisphere, conversely, the combined effect of sentential and visual cues suppressed neural 
activity jointly. Here it appears that the presence of sentential context rendered the word form predictable, and 
hence also the viseme itself, thus facilitating subsequent auditory processing. The resulting topography of this 
early hemisphere by context by salience interaction is bilateral and symmetric (Fig. 2B, left).

Why would the joint effect of viseme salience and sentence context (both of which make an upcoming word 
more predictable) lead to a reduction in the early auditory neural response to words in the left hemisphere? 
Recent research proposes a major role for stimulus likelihood. Namely, expecting an upcoming auditory stimulus 
attenuates the auditory N1 both for pure tones14,57–59 and for spoken words60. Auditory predictions related specif-
ically to viseme salience also cause this early attenuation8,15.

Where in the brain do these predictabilities exert their influence? The topographies of our early effects suggest 
a broad bilateral effect in the temporal lobes for viseme salience (Fig. 2A), and a slightly more anterior, more 
constrained effect for the interaction between viseme salience and sentential context (Fig. 2B). Broad activity 
along the superior temporal sulcus has previously been found both when people observed lip movements without 
sound and when they heard speech61. The sensitivity to mismatch between visual and auditory speech has also 
been suggested to rely on a feedback signal from the superior temporal sulcus15. In addition, the anterior tempo-
ral cortex has been implicated in several studies of sentential processing62,63, and we find it a likely candidate for 
the source of our interaction effect. In fact, in one study activity related to the predictability of semantic priming 
was localized in the left anterior superior temporal gyrus64, indicating a sensitivity to probabilistic semantic pro-
cessing. In other words, our interaction of probabilistic processing appears more closely associated with areas 
corresponding to semantic processing than to those related to viseme processing alone.

A striking finding in this study is that both cortical hemispheres displayed an early sensitivity to viseme sali-
ence and sentential context, but that the pattern of this sensitivity differed. We did not expect to find a hemi-
spheric interaction; however, the topography of the interaction appears convincingly symmetric, suggesting that 
it is constrained to the same brain area. It is possible that the presence of the viseme effect in the N1 window 
allowed us to observe predictive processing more closely (through perturbing the predictive system so to speak), 
and that this is why effects of sentence context on predicting word form became evident only in conjunction 
with the viseme effect. This finding adds to a growing body of research that demonstrates an organization of 
language processing within the ventral stream which is bilateral, but with a hemispheric asymmetry in activa-
tion65,66. Behavioural research also supports the idea that the left and right hemisphere both process visual infor-
mation, but in slightly different manners. For example, it has been claimed that the right hemisphere relies on 
surface-type visual information longer, whereas the left hemisphere has quicker access to deeper levels of lexical 
representation: when participants are asked to recognize a letter in a visual stimulus, the right hemisphere, as 
opposed to the left hemisphere, displays no word superiority effect67. In addition, when people have to complete 
words based on the first few letters, the right hemisphere displays a stronger effect of priming by previously seen 
words if the case in which the prime was presented matches the case in which the beginning of the target word 
is presented68. Our observation that right hemisphere processing was sensitive to a main effect of sentence con-
text early on, is in line with these findings, suggesting that the right hemisphere processed the word form in this 
early time window, whereas the left hemisphere already had access to its meaning. This is also in agreement with 
behavioural research that suggests that the right hemisphere accesses semantic information later, with semantic 
priming showing effects with a larger prime-to-target stimulus onset asynchrony than in the left hemisphere69–74.

Neural evidence also shows that sampling speed in auditory cortex in the two hemispheres differs, with the left 
hemisphere dominating in faster gamma sampling75, compared to the right hemisphere which is more reliant on 
slower theta sampling76. Here we show that, while probabilistic language processing is also bilateral, the pattern 
of neural responses conforms to the functional specificity of the two hemispheres. In other words, sentential and 
visual predictions interact in functionally different ways in the two hemispheres. Perhaps due to this difference 
in sampling speed, it appears that the left hemisphere was capable of combining the two probabilistic computa-
tions early on, while the right hemisphere was slower to integrate the viseme into the word context. In the right 
hemisphere, we found a viseme effect only in the absence of sentential constraints, indicating a stronger reliance 
on visual information compared to the left hemisphere. The left hemisphere, in contrast, appears able to combine 
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the probabilistic information involved in sentential constraints and viseme salience, whereby the sensitivity to 
visemes becomes more pronounced in the presence of a semantic context.

Conclusion
Spoken language processing requires integration of information across time, and one of the means that compre-
henders have at their disposal to achieve this is that they can make predictions about upcoming content based on 
preceding content. These predictions vary in strength, arise from different cues, and are made at different levels of 
language processing. It remains to be determined what the functional mechanism is (e.g., pre-activation, Bayesian 
inference, generative modelling or predictive coding), but at the neural level it appears that there is suppression of 
neural activity to predictable sounds and words. Our study sheds light on the joint effects of viseme salience and 
sentential constraints. We found that both of these factors have an effect on early auditory processing (in the N1 
range). The two hemispheres however handled this combined information differently, with the right hemisphere 
giving priority to visual information in the absence of strong sentential constraints, and the left hemisphere com-
bining visual and sentential information. This speaks to a complex hierarchy of predictions in language process-
ing, one that is reliant on general probabilistic processing mechanisms but is simultaneously highly dependent on 
the functional specificity (and lateralization) of the associated cortical areas.
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