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Mechanism of Common-mode
Noise Generation in Multi-
conductor Transmission Lines

Souma Jinno(®", Shuji Kitora, Hiroshi Toki & Masayuki Abe

The mechanism of common-mode noise generation in multi-conductor transmission lines is presented.
Telegraphic equations, wave equations, and reflection coefficients in the normal and common modes
are derived, which provide the mechanism of common-mode noise generation. In addition to coupling
among transmission lines, the origin of the common-mode noise generation is elucidated by deriving
the reflection coefficients in the normal and common modes.

In the fabrication of electric and electronic circuits, noise analysis is an important process to improve the perfor-
mance of original designs. Electromagnetic (EM) noise among the transmission lines in the propagation of elec-
tric signals is a troublesome problem. Although multi-conductor transmission line (MTL) theory should enable
the interference of signals among distributed lines to be described! ', there remain difficulties in obtaining an
intuitive interpretation of noise and in reducing the noise significantly.

From a physical point of view, electromagnetic noise originates from interactions between a circuit and its
environment, such as the ground and the earth. However, the environment in an MTL system is usually repre-
sented theoretically as an ideal reference frame, which does not have any physical function. It is important to
treat conductors in the environment explicitly for the quantitative understanding of electromagnetic noise. If
we approximate the conductors in the environment as a transmission line, we are able to formulate a telegraph
equation representing potentials and currents in MTLs from the Maxwell equations!®. In a previous study, the
concepts of the normal mode (NM) and the common mode (CM) were introduced in order to obtain an intuitive
understanding of EM noise. The NM is usually treated as a circuit signal, and the CM is generated by interaction
with the environment and causes various noises. Originally, the concepts of the NM and CM voltages were dis-
cussed by Maxwell in his book!2 He pointed out that the observable quantity is the normal mode, which is the
differential mode, and did not pay much attention to the common mode, even saying that the common mode
had “no physical meaning”. However, these two modes interact with each other, and electric signals are inter-
changed from one to the other'*!*. This interaction would induce CM noise and even generate unwanted external
radiation'>*°.

One of the successful cases in actual applications to reduce noise is a power supply of accelerators for parti-
cle physics®*?!. The power supplies have a symmetrical configuration of three transmission lines together with
lumped circuits, which suppresses the interference of the normal and common modes in the power lines®?. The
symmetric three-line circuit was verified to be the best configuration for the reduction of noise, where the normal
mode decouples from the common mode!!. We formulated a three-line circuit for numerical calculations and
showed the relation between the CM noise* and can say that electrically and geometrically symmetric circuit
structure does not generate CM noise and does not couple with the normal mode®*.

Previously, we showed numerically why the symmetric three-line circuit is the best configuration for noise
reduction. However, it is desirable to understand why this configuration is the best and to know what is important
to the actual choice of electric components. To this end, we would like to formulate the reflection coefficients of
the three-line circuit for any electric components to be attached to the three-line circuit. In this way, we are able
to quantify the amount of common mode noise in three-line circuits.

In the present paper, we introduce an analytical approach that supports further understanding of the electro-
magnetic noise induced in three-conductor transmission-line circuits. In Section 2, we introduce a formulation
in the NM and CM framework for all of the quantities describing the circuit. We apply the formula to three-line
systems and define vectors and matrices in the NM and CM quantities, which provide an intuitive understand-
ing of the CM noise generation at the MTL boundaries. Equations and parameters of the signal propagation are
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Figure 1. Three-line circuit consisting of three lines, 1 — 1/, 2 — 2/, and 3 — 3/, with resistances R, and R,; and a
power supply denoted by a circled & on the source side and resistance R’}, on the load side.

expressed in the NM and CM framework. We found that coupling between the NM and CM modes occurs not
only along the MTL, but also at the edges of the MLT, and the coupling at the edges of the MLT also depends on
the lumped-parameter circuit configuration. In Section 3, we discuss the configurations of both the distributed-
and lumped-parameter circuits for the reduction of the CM noise and calculate explicitly the amount of coupling
for several circuit configurations using the formula developed in the present paper. Section 4 summarizes the
present study.

Transmission-Line Theory in Terms of the Normal and Common Modes of aThree-Line
Circuit

Telegraphic and wave equations. In order to formulate reflection coefficients in the NM and CM, as in
our previous studies'!, we use a three-line circuit to which lumped-parameter circuits are connected, as shown in
Fig. 1. In addition to a conventional two-line circuit configuration (distributed lines 1—1" and 2—2’ with lumped
parts), another conductor line, 3—3/, is connected on the source side as the ground. The NM is expressed as a
relative relationship between two lines of the circuit and usually used in the circuit theory as “observable” differ-
ence mode:

W=U-0 (1)

1
IL=—(—1)
n 2 1 2 (2)
Since the CM is generated by the interaction between the circuit and the surrounding environment, line 3—3’
should be explicitly considered as a conductor influencing the signal lines. In the same way as NM, the CM can
be formulated by considering the difference mode between the circuit and the environment, where we express the
circuit as the average potential and sum current of two lines*:

1
V.= =(U+U,) — U
c 2(1 2) 3 (3)

1
IL==—(+L-1I
C 2(1 2 3) (4)

The NM-CM expression of the potentials and currents under the TEM approximation leads to telegraphic
equations for the NM-CM quantities'".

oV (x, t) OL,(x, t) OL(x, t)
= _Pnn - Pnc >
ot Ox Ox (5)

oVi(x, t) _p OL(x, t) _p OL(x, t)

ot T 9x Ox (6)
Moo ) _ | Ot | OLn D)

Ox ) e 7)
oVi(x, t) B OL(x, t) 1 OL(x, t)

ox " ot < o (8)

Here, the three lines are assumed to be lossless and are in a uniform medium, where both the permittivity
and magnetic permeability are constant. Furthermore, we assume that there is no radiation from the circuit,
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Figure 2. Lumped-parameter circuit consisting of resistances and voltage sources connected to a three-line
MTL. By substituting V3= V,;=0 and R;; — 00, the circuit becomes equal to the source (left) side of Fig. 1. The
right-hand boundary circuit of Fig. 1 will be obtained by setting V,, = V,3=V,;=0and R;, — 0o and R;; — c0.

I, + I, + I;= 0% Both P and L represent potential and inductance coefficients, respectively. We use P instead
of capacitance, which is conventionally used in the one-dimensional telegraphic equation, because we need to
consider potentials induced by charge for further discussion*?. The subscripts denote the diagonal and coupling
terms of the normal and common modes'".

The telegraphic equations indicate that the potentials and currents propagate in the conductor lines accompa-
nying the NM and CM couplings, unless the decoupling condition P, = P,.= L., = L,.=0 is satisfied. Physically,
the decoupling conditions are that lines 1—1’ and 2—2’ have the same sizes and are positioned symmetrically with
respect to line 3—3/%,

Definitions of vectors and matrices in the NM-CM quantities. In order to understand the NM-CM
coupling, we define the vectors and matrices in the NM-CM quantities.

| Valxs D) | axs 8)
Vix, t) = Vs o)) I(x, t) = [Ic(x, t)],
Pnn PﬂC Lnn an
P= , L= .
[Pcn Pcc ] [ Lcn Lcc ] (9)

Here, V and I are vectors of the NM and CM quantities, respectively. In addition, P and L are matrices of the
potential and inductance coefficients, which were derived in a previous study!!.
Definitions of the respective vectors and matrices provide wave equations in the NM-CM quantities.

9’ 19°

oD = gV D, (10)
0? 10

a0 = D (ay

Here, c is the signal velocity in the MTL, and the coefficient matrices satisfy the relation LP~'=P~! L=1/¢1,
where 1 is an identity matrix®*.

The reflection coeflicients at the boundaries of the MTL depend both on the MTL configurations and on the
elements of the lumped circuits connected to the MTL. Here, in order to derive the reflection coefficients in the
NM-CM quantities, we study a case in which resistances and voltage sources are connected to the edges of the
three-line circuit, as shown in Fig. 2. Here, we derive the NM and CM equations of the lumped circuit which is the
boundary of MTL by using Kirchhoff’s equations and Ohm’s law. First, the currents flowing at the boundary (I,(0,
1), I,(0, t) and I;(0, t)) are expressed by brunch currents in the lumped circuit:

11(0> t) = - 113(t) - lz(t) (12)
L0, t) = I,(t) — Ls(t) (13)
13(0: t) = 123(t) + 113(t) (14)

Next, the potentials at the boundary (U,(0, t), U,(0, t) and U;(0, )) are also expressed by the lumped circuit
quantities which are resistances, brunch currents and voltage sources:

U0, t) — U)0, t) = Rp,L(1) + Vi(t) (15)

Uy(0, £) — U0, £) = RysLy(t) + Vis(t) (16)
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U0, 1) — Us(0, 1) = Ry3I35(8) + Vi5(h) 17)

We can now rewrite these boundary conditions in terms of the NM and CM voltages and currents expressed
in Egs (1, 2, 3, 4). We write the results in a matrix form as:

V(x =0,t) = —RI(0, t) + E(t). (18)

Here, R and E(¢) are a resistance matrix and a voltage source vector in the NM and CM quantities, respectively.
Then, R is given as

R — [Rnn Rnc]
Ry R (19)
_ R(Ry + Ry5)
"R, 4 Ry + Ry (20)
R — 14Ry3R 5 + RjpRy3 + RisRy,
cC b
4 R, + Rys + Ry; (21)
R —nr — L Ro(Ris—Ry)
nc cn :
2R, + Rys + Ry; (22)
Here, E(¢) is expressed as
E= RIs: (23)
I — Via/Ri; — Vaal/2Ry5 + Vi3/2R5
S Vas/Rps + Vis/Ry5 (24)

As for the lumped-parameter part at x = L, the relations of the lumped-parameter part connecting the nodes
can be transformed into the NM and CM quantities in a similar manner.

V(x =L, t) = RI(L, t) + E(¢). (25)

Reflection coefficients. Ina manner usually used in the recursive solution for the MTL’, we use boundary
conditions that satisfy Eqs (10), (11), (18), and (25) at both edges (x=0, L), and obtain the time-domain expres-
sion for V:
V(0,1) = MyVy(?)
+(1 + LMV (t — Tp) + LM, Vi (t — 3Tp)
+oo o+ (ML)YMV(E — N + D))
+(1 4+ L)L [IM\V(t — 2Tp) + LMV, (t — 4Tp)
Fooe + (MIDYMV(t — 2(N + 1)Tp)] (26)

V(L, t) = M,V (t)
+(1 + LOIIM,V (t — 2T,) + LM, Vi (t — 4T})
+ee + (FLIZ))NMLVL(t = 2(N + DTp)]
+(1 + I)MVy(t — Tp) + LMV, (t — 3Tp)
+o o+ (MID MgVt — 2N + DTp)] 27)
Here, the subscripts for vectors and matrices 0 and L denote positions x =0 and x=L of the MTL, respectively.
In addition, T}, is the time for a signal to propagate from one end to the other. Although the amplitude of the

reflection wave depends on characteristic impedances and resistances, we introduce matrices M and I in Eqs (26)
and (27) in order to express the equations in the same form as the reflection of ordinary transmission line theory”.

M=ZR+2Z)" (28)

r=R-ZR+2Z" (29)

Here, Z is the impedance matrix in the NM-CM framework and is given as
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ZIII] nc
7= [ ] = P/c = Lc.

(30)

Note that the introduction of these matrices allows us to discuss wave reflection in the NM-CM framework
in the standard way. Formulations of these matrices are similar to those defined in the standard MTL theory”*:
Here, M and I correspond to the voltage division coeflicient and the reflection coefficient. Matrix elements of the

voltage division M and the reflection I" are given as follows:

M — [Mnn Mnc]
MCI] MCC
1'\ — [an FHC]
FCH I‘CC

These elements are derived from Eqgs (28) and (29):

1
Mnn = Z[Znn(Rcc + ch) - ch(ch + ch)]’

M =Ltz RrR —zRr],

nc 4 [neton nn"*nc
1
Mcn = X[chRcc - chch]’

1
MCC = Z[_ZCH(RHC + ZHC) + ch(Rnn + Znn)]’

1

an = X[(Rnn - Znn)(Rcc + ch) - (Rnc - ch)(ch + ch)]’

r =2[ZR —ZR.]

nc A nn""'nc nc' "nn

ccen cn” "cc

2
Lo = SZRan = ZaRed,

1

1_‘cc = Z[_(ch - ch)(Rnc + ch) + (Rcc - ch)(Rnn + Znn)]’

where

A = (Rnn + Znn)(Rcc + ZCC) - (Rnc + ch)(ch + ch)’

(31)

(33)

(34)

35)

(36)

(37)

(38)

(39)

(40)

(41)

Both M and I depend on R, which is determined by the lumped-parameter circuit connected to MTL at the

boundary, and on Z, which is determined by the structure of the distributed-parameter circuit.

Discussion on the Reduction of Electromagnetic Noise

The derivation of the above formulae provides insight for understanding CM noise generation in the MTL. There
are two origins of CM noise generation. First, signal propagation induces CM noise in the MTL. The wave equa-
tions (Eqs (10) and (11)) show that the NM and CM current and voltage are not coupled with each other in
appearance, even if the non-diagonal elements of P and L are not zero. Telegraph equations (Eqs (5) through (8)),
however, exhibit NM-CM coupling. Note that coupling occurs between current and voltage in each mode. This
means that, in CM noise generation, voltage-to-voltage or current-to-current coupling may not be so strong. The
voltage-to-current (or current-to-voltage) conversion complicates understanding of the EM noise phenomena.
Next, CM noise generation occurs at the boundaries. The second term of I, , indicates that NM-CM coupling
also occurs at the boundaries. Common mode noise is always generated when the signal arrives at the bounda-
ries, unless the coupling terms are zero. Although the condition of R, — Z,. =0 can decouple the two modes, it is

actually almost impossible to adjust R,. and Z . to be equal so as to satisfy these conditions.

One practical solution for NM-CM decoupling is to simultaneously satisfy R,.=0 and Z,. =0, which is satis-
fied by a symmetrical arrangement of the MTL and lumped elements, as shown in Fig. 3. Line 3—3’ is positioned
symmetrically at the center between lines 1—1" and 2—2' (d;3=d,/2). The lumped-parameter parts should also

be connected symmetrically to the MTL.
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Figure 3. Three-line MTL circuit without NM and CM mode coupling.
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Figure 4. Matrix elements of 'y (x=0) and I'; (x=L) as functions of the distance d,; between lines 1 — 1’ and
3 — 3'. Two different circuits equivalent to symmetrical (Fig. 3) and asymmetrical (Fig. 1) circuits are used. The
distance between lines 1 — 1’ and 2 — 2 is d}, = 0.02 m in each circuit. The length and radius of the three lines
are L=2m and 0.5 mm, respectively. The values of the resistances are R, =50 Q, R;3=5 Q, R;;=Ry; =300 Q,
and R, =349.715 Q, which is equivalent to the characteristic impedance between lines 1 — 1’ and 2 — 2'(=Z2,,).

The matrix elements of M and T at both ends can be obtained by setting V,;=V,;=0 and R,3=R,; on the
source side, and V,,= V3= V,;=0, R;5, R;3 — 00 and R',, to be the characteristic impedance between lines 1—1’
and 2—2’ on the load side.

— Znn/(Rnn + Znn) 0

M
0 0 0 (42)
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L = (Rnn - Znn)/(Rnn + Znn) 0
0 0 (Rcc - ch)/(Rcc + ch) ’ (43)
Z Z
ML = [ nn/(Rn(r; + nn) g]) (44)
_ (0 0
I = (o 1)- (45)

Since the symmetrical arrangement of MTL and lumped elements is satisfied, the non-diagonal (coupling)
elements of R and Z are zero on both sides, which also results in zero values in the non-diagonal elements of M
and T

We explicitly calculate the reflection coefficients I'y and I'; using the formula developed herein for various
circuit configurations. The results are shown in Fig. 4, where the matrix elements of 'y (x=0) and I'; (x=L) are
shown by changing the distance d,; between lines 1—1’ and 3—3'. As shown in Fig. 4(a,b) for the symmetric cir-
cuit of Fig. 3, the coupling elements of I'; and I'; simultaneously become zero at d,; =0.01 m, which is the central
position of lines 1—1" and 2—2'. This means that the CM noise is not generated for this case on both sides because
the coupling elements are simultaneously zero. On the other hand, as shown in Fig. 4(c,d) for the asymmetric
circuit of Fig. 1, the coupling elements of I'; never become zero. This means that CM noise is always generated
on the source side because the coupling terms of resistance matrix R, always have finite values due to the asym-
metric lumped-circuit connection with respect to the ground line of line 3—3’ on the source side, as shown in
Fig. 1. Here, I'; has the same behavior as the circuit in Fig. 3 because both circuits have the same condition on the
load side. Only I' ,, is dependent on d,5; and becomes zero at d;; =0.01 m. On the other hand, I', is always zero
because R becomes infinite on the load side, because line 3-3 is not connected to other lines. This means that
only NM is converted to CM, and not vice versa, on the load side. The above results confirm that the symmetrical
configuration in both lumped- and distributed-parameter circuits is the only way to eliminate CM generation.

Summary
We studied the mechanism of electromagnetic noise generation in symmetric and asymmetric three-line circuits.
Telegraph equations, wave equations, and reflection coeflicients were derived in the framework of the normal and
common modes. The formulation with normal and common mode provides interpretation of the CM noise. We
showed that there are two origins of the generation of the electromagnetic noise: (1) coupling during signal prop-
agation in the MTL and (2) coupling at the boundaries of the MTL connected to the lumped-parameter elements.
Although we can discuss CM noise generation in one-dimension (multi-conductor transmission line) prob-
lems analytically, this becomes impossible for two or three dimensions. In this case, we are not able to mathemat-
ically define the common mode, because the two- or three-dimensional conductors introduce wave propagations
in two- and three-dimensional directions, respectively. Hence, we are developing numerical methods by extend-
ing the MTL formulation® to two- or three-dimensional circuits for noise analysis of a plane circuit?.
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