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Optimal crosstalk suppression in 
multicore fibers
B. Jaramillo Ávila1*, J. M. Torres2, R. de J. León-Montiel3 & B. M. Rodríguez-Lara4,5

We study propagation in a cyclic symmetric multicore fiber where the core radii randomly fluctuate 
along the propagation direction. We propose a hybrid analytic-numerical method to optimize the 
amplitude and frequency of the fluctuations that suppress power transfer between outer and inner 
cores. This framework allows us to analytically find noise amplitude parameters that optimally suppress 
crosstalk. Our predictions are confirmed by numerical experiments using finite difference beam 
propagation methods for realistic C-band fibers. The analytic part of our method is general, provides 
the optimum fluctuation amplitude independent of the array geometry, as long as normal modes can 
be calculated. It works for both correlated and uncorrelated fluctuations allowing its use for any given 
optical system described by coupled mode theory.

Multi-core fibers provide high-capacity optical transmission but dense packing induces crosstalk between cores 
affecting space division multiplexing1–4. Quasi-homogeneous structures induce crosstalk suppression via fluc-
tuations in parameters and materials5,6. Transverse random fluctuations, constant along the propagation axis, 
produce transverse Anderson localization of light in otherwise periodic structures7–10. In contrast, introducing 
fluctuations that vary in the propagation direction produces faster than ballistic beam expansion, in a process 
similar to the so-called hyper-transport of light11 or environment-assisted quantum transport12–17.

We provide a theoretical description of experimental crosstalk suppression in a cyclic array of homogene-
ous cores with independent random fluctuations in core radii along the propagation direction. We focus on 
two experimental platforms, multicore fibers5,6 and laser inscribed waveguide arrays16,18. Random fluctuations 
are described by their statistical distribution, amplitude and frequency, that is, the strength and the number of 
variations per unit of length. Our aim is to optimize these parameters using hybrid analytic-numerical methods 
to gain insight of the underlying processes. In the following, we provide an analytic framework to find the fluc-
tuation amplitude that produces optimal crosstalk suppression. Our approach is based on coupled mode theory 
and first-order perturbation theory. This allows us to find moderate-noise regions that produce optimal crosstalk 
suppression. There, increasing the noise amplitude does not increase crosstalk suppression. As an example, we use 
uniform random fluctuations which allow us to neglect all but the second moment of the random distribution. 
Then, we numerically calculate the optimal variation frequency for these fluctuation amplitudes. We compare 
our results with a numerical experiment using finite difference beam propagation methods with parameters from 
experimental devices in either multicore fibers or laser inscribed waveguide arrays.

Results
Model.  Our subject is a cyclic, multicore fiber composed by n + 1 single-mode cores whose radii randomly 
varies along the propagation direction, rj(z) = ρj + δρj(z) with j = 1, …, n, c. All external cores have the same 
reference radii, ρ1 = … = ρn; the central core may have a different one, ρc, Fig. 1. These fluctuations are inevitable 
during fabrication. They are usually kept well below the 2% mark and they can be introduced in a controlled 
manner above this threshold6. Small, smooth, and well-behaved variations induce slight deformations on the 
localized LP01 field modes at each core, as well as negligible back-propagation and power loss, and we can use 
coupled mode theory,
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with bj ≡ bj(z) = βj + δβj(z), with j = 1, …, n, c. Here, all the external cores have the same reference propaga-
tion constant, β1 = … = βn, and the central core may have a different one, βc. The coupling constants are inde-
pendent of the propagation direction, z. In the following, our numerics will refer to telecomm C-band, 1550 
nm, with standard silica fibers, nc = 1.4479 and ncl = 1.4440. The reference radii and center-to-center separation 
are r1,…,n,c = 4.5 μm and R = 15 μm, in that order. They yield approximated single-mode propagation constant 
β = 5.85975 × 106 rad/m and intercore couplings g = 256.636 rad/m. This model also describes laser inscribed 
waveguide arrays where variations in the propagation constants are related to the radii and refractive index of 
individual waveguides, which can be controlled by the spot size and writing speed of the system. Reported con-
trolled random radii variations are in the 5% range for multicore fibers5,6 and for femtosecond laser written 
photonic circuits the half-maximum reported variation in the refraction index is 3 × 10−4 18. It is important to 
mention that fluctuation in multicore fibers are inherently not independent from core to core, while in laser 
inscribed waveguides the control over the refractive index of individual cores allows independent fluctuations. 
Our treatment is valid for both cases.

The crux of our approach relies on two fundamental assumptions arising from the small, smooth, and 
well-behaved variations in the effective propagation constants. First, we model the fiber as a sequence of infin-
itesimal segments where the supermodes of each segment are provided by first-order perturbation theory on 
the supermodes of an homogeneous fiber. Second, we treat propagation through the whole fiber as an averaging 
process for the initial impinging field independently propagating through each of these infinitesimal segments.

In order to calculate the perturbed supermodes, we need to rewrite the coupled mode matrix,

= +M z M M z( ) ( ), (3)I0

in terms of a constant matrix, M0, and a diagonal perturbation matrix, M1 = diag(δβ1(z), …, δβn(z), δβc(z)). The 
constant coupling matrix M0 has a total of n + 1 supermodes19. Among these, n − 1 supermodes have zero field 
component in the central core,
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Figure 1.  (a) Cyclic symmetric multi-core fiber cross-section and (b) sketch for independent random 
variations in core radii.
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where êj is the (n + 1)-dimensional vector with 1 in its j-th component and zero everywhere else. The correspond-
ing n − 1 propagation constants are
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The two additional supermodes are provided by
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with propagation constants,
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The difference between these constants yields the Rabi frequency
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Additionally, the mixing angle,
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parametrizes the whole homogeneous fiber; each different realization of the multicore fiber can be described by 
its mixing angle. In absence of coupling to the inner core, gc = 0, these two supermodes are given by the central 
core mode, Ŝn|θ=0 =  +ên 1 with propagation constant βc and the mode | =θ+ =

ˆ ˆS Sn 1 0 0 with propagation constant λ0. 
The (n + 1)-dimensional vector Ŝ0 and the constant λ0 are defined using Eqs (4) and (5), respectively, with j = 0.

Fluctuation optimization.  Now, we include the effects of the small propagation-dependent variations pro-
vided by MI(z). We use first-order perturbation theory to calculate the unnormalized supermodes for the infini-
tesimal segment at the propagation distance z,
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where j = 1, …, n, n + 1. We aim for isolation between central and external cores after a given propagation dis-
tance. For this, we use a target state with equal field amplitude in the external cores and zero in the central core; 
the uncoupled supermode Ŝ0 is chosen as initial condition. We look for maximum overlap between our target 
state and the output after propagation through the fiber. This overlap is quantified by the inverse participation 
ratio (IPR) between the target mode and the propagation-dependent supermodes,
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where Âj denotes the j-th normalized propagation-dependent supermode. A maximum IPR of one is reached 
when the target state overlaps with a single state of the basis and a minimum of 1/(n + 1) when the target state 
overlaps with all states homogeneously. It is worth noting that the IPR was introduced in the context of localiza-
tion in disordered quantum system20,21. Here, we employ it to quantify the closeness of a preferred mode to an 
eigenmode of the perturbed system where light localization is feasible. It is cumbersome to calculate the IPR of 
our target with the propagation-dependent basis as it involves integration over all infinitesimal segments. Instead, 
we argue that propagation through each infinitesimal segment will induce small changes on the initial field distri-
bution. Thus, instead of calculating the z-dependent propagation of an initial field distribution, we calculate the 
average of the output of that initial distribution through each infinitesimal segment. This allows us to substitute 
any power of the local variations by the statistical moment of the corresponding power, δβm → 〈δβm〉. For the sake 
of simplicity, we assume small random variations evenly distributed around zero and keep the leading 
non-vanishing moment 〈δβ2〉 to look for ideal crosstalk suppression, IPR[Ŝ0, Â] = 1. In principle, this leads to a 
relation between the second moment and the fiber parameters, that we can use to determine the optimal fluctua-
tion amplitude that maximally suppresses crosstalk for a given fiber,
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For example, random fluctuations with a uniform probability distribution in the range [−δβmax, δβmax] have a second 
moment 〈δβ2〉 = δβmax

2 /12 and those with a Gaussian probability distribution have 〈δβ2〉 = σ2δβmax
2 , where σ gives 

the width of the Gaussian distribution and δβmax is given by the fluctuation size allowed by the experimental system. 
Depending on the characteristics of the fiber, sometimes there is a feasible solution for ideal crosstalk suppression; 
i.e., there are positive noise amplitudes producing IPR[Ŝ0, Â] = 1. Figure 2(a) shows the relation between the scaled 
second moment and the mixing angle for a two core system, n = 1, where viable fluctuation amplitudes for ideal 
suppression, IPR[Ŝ0, Â] = 1, are given by the positive branch of the equation. The noise amplitudes that produce ideal 
crosstalk suppression, IPR = 1, are moderate-noise solutions in the sense that, there, increasing the second momenta 
of the noise distribution would not lead to more crosstalk suppression. Figure 2(b) shows the result for a seven-core 
system where ideal suppression is not feasible. We present results for partial suppression, IPR[Ŝ0, Â] < 1. In this case, 
our seven-core system, Fig. 3, with mixing angle θ = 0.59 rad is shown as a vertical solid line. In the cases where ideal 
crosstalk suppression is not possible, the inverse participation ratio can still be a useful parameter to find noise 
parameters that optimize the feasible crosstalk suppression.

Once the maximum feasible crosstalk suppression and corresponding fluctuation amplitude are assessed, we 
can use coupled mode theory to run a statistical numerical analysis to find the optimal number of variations per 
length unit that will produce the maximum available crosstalk suppression in a given propagation length, zc. For 
the sake of simplicity, we focus on crosstalk suppression between the external and inner core. Our figure of merit 
will be the localization of the field in the external cores given by the ratio between the total irradiance in the exter-
nal cores with respect to that in all cores,

Figure 2.  Optimal fluctuation size divided by the Rabi frequency as a function of the mixing angle, θ, for a (a) 
two- and (b) seven-core system. The vertical solid line marks the mixing core angle for our seven-core system.

Figure 3.  Average and dispersion of irradiance localization in the external cores as a function of the number 
of random variations per unit length. The vertical gray lines mark the variation frequencies used in our 
simulations.
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Complete localization occurs for η = 1, complete transfer to the central core at η = 0, and complete delocaliza-
tion in all cores for η = n/(n + 1). Figure 3 shows our rate of localization in the external cores for a seven-core 
fiber, n = 6, with an uniform random fluctuation distribution with maximum effective propagation constant 
δβmax ≈ 880 rad/m corresponding to a radii variation of 8.5% or a refractive index variation of 3 × 10−4. We chose 
as total propagation distance zc = 27 × π/Ω; an odd integer multiple of the distance providing maximum power 
transfer to the central core. Figure 3 shows the average (solid black line) and the mean dispersion (light red area) 
of 5000 independent realizations for up to 10000 variations per meter using coupled mode theory.

Numerical experiment.  We use finite difference beam propagation methods to conduct a numerical experi-
ment to try and confirm our predictions. Figure 4 shows the localization parameter versus the propagation distance 
in terms of the complete delocalization distance, π/Ω, for 1000 and 5000 repetitions per meter, in that order, in our 
seven-core fiber. The coupled mode theory approach and the finite difference methods display slightly different delo-
calization distances, π/Ω = 2323.41 μm and π/Ω = 2155.80 μm, respectively. We show the average of 5000 independ-
ent exact numerical realizations using coupled mode theory in red. In blue, we show the average of 5 independent 
realizations propagated using finite difference beam propagation methods. We want to emphasize that the 5000 cou-
pled mode and the 5 finite difference realizations take an average of 3 and 15 hours to compute, in that order. Note 
that the numerically-predicted optimal number of random variations per unit length, Fig. 4(a), stabilizes in a shorter 
propagation distance than the sub-optimal value, Fig. 4(b), to similar values of the average irradiance localization.

Conclusions
We have shown that assuming small, smooth, well-behaved random variations in the core radii of a symmetric 
multicore fiber allows us to predict, in analytic form, the maximum variation amplitude that will produce cross-
talk suppression between its supermodes. We find moderate-noise regions that lead to optimal crosstalk suppres-
sion. These are regions where increasing the noise amplitude does not lead to more crosstalk suppression. The 
analytic maximum variation amplitude, then, helps us numerically define an optimal number of variations per 
length unit that will produce a stable target suppression at a given propagation length. Our treatment is a simple, 
low computational resource, design method that is in good agreement with more resource intensive numerical 
methods and experimental results5,6. To the best of our knowledge, this is the first analytic approach to estimate 
noise parameters in waveguide design.

We find it important to remark that our method is general and valid for any device described by coupled 
mode theory, independent of the system geometry, nature of the fluctuations or their level of correlation. As 
long as the supermodes are available, our method provides an analytic optimal fluctuation amplitude for a given 
level of crosstalk suppression that reduces a stochastic optimization problem in two-parameters into a simple 
single-parameter exercise.
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