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Interannual to decadal variability 
within and across the major Eastern 
Boundary Upwelling Systems
Giulia Bonino1,2*, Emanuele Di Lorenzo3, Simona Masina1 & Doroteaciro Iovino1

Climate variability and climate change in Eastern Boundary Upwelling Systems (EBUS) affect global 
marine ecosystems services. We use passive tracers in a global ocean model hindcast at eddy-permitting 
resolution to diagnose EBUS low-frequency variability over 1958–2015 period. The results highlight 
the uniqueness of each EBUS in terms of drivers and climate variability. The wind forcing and the 
thermocline depth, which are potentially competitive or complementary upwelling drivers under 
climate change, control EBUS low-frequency variability with different contributions. Moreover, Atlantic 
and Pacific upwelling systems are independent. In the Pacific, the only coherent variability between 
California and Humboldt Systems is associated with El Niño Southern Oscillation. The remaining low-
frequency variance is partially explained by the North and South Pacific expressions of the Meridional 
Modes. In the Atlantic, coherent variability between Canary and Benguela Systems is associated with 
upwelling trends, which are not dynamically linked and represent different processes. In the Canary, a 
negative upwelling trend is connected to the Atlantic Multi-decadal Oscillation, while in the Benguela, 
a positive upwelling trend is forced by a global sea level pressure trend, which is consistent with the 
climate response to anthropogenic forcing. The residual variability is forced by localized offshore high 
sea level pressure variability.

The Eastern Boundary Upwelling Systems (EBUS), such as the California Current System (CalCS), the Canary 
Current System (CanCS), the Humboldt Current System (HCS), and the Benguela Current System (BenCS), 
are among the most productive marine ecosystems, supplying up to 20% of the global fish catches, although 
they only cover approximately 1% of the total ocean1–3. Surface alongshore winds, together with the Coriolis 
effect, force the offshore water transport and the divergence of the surface flow, through Ekman Transport and 
Ekman suction, respectively, thereby lifting nutrient-rich deep waters into the euphotic layer. The nutrient-rich 
upwelled water, in addition to the sunlight, sustains the blooms of phytoplankton that are the foundation of the 
aquatic food web2,4. Recent studies have documented trends3,5,6 and decadal scale changes in the EBUS eco-
system structure7,8. Thus, understanding the low-frequency drivers and monitoring changes across EBUS is 
important. Bakun (1990) hypothesized an increase in upwelling-favourable winds (e.g. equatorward alongshore 
winds) due to the intensification of the continental-oceanic pressure gradient under global warming9. A more 
recent hypothesis suggests an alternative mechanism, whereby a poleward shift of the oceanic high-pressure sys-
tem would stimulate latitude-dependent changes in the magnitude and timing of the upwelling winds6,10. Many 
studies demonstrate that the upwelling-favourable winds over EBUS intensify2,3,9,11–13 both in the past records 
and in the future projections although the driving mechanism is still debated, and conflicting results have been 
reported. Narayan et al. (2010) depicted decreasing trends for California14; Dewitte et al. (2012) and Tim et al. 
(2015) reported no significant trends in the Peru and Benguela systems5,15 and Pardo et al. (2011) and Sydeman 
et al. (2014a) showed a decreasing upwelling in the Canary systems, particularly along the Iberian coast3,16. As 
Garcia-Reyes et al. (2015) discussed in details in their review paper2, this lack of agreement about the future 
changes of the upwelling-favourable winds associated with the expected coastal warming makes any assessment 
of future of coastal temperatures and biogeochemistry challenging3,17–25. Coastal warming increases the water 
stratification and it can limit the effectiveness of upwelling to bring nutrient-rich deep waters up to the euphotic 
zone2,26,27. Increasing or decreasing of the upwelling-favourable winds can also mitigate or amplify the action of 
coastal warming. Therefore, the future changes in upwelling-favourable winds and stratification can be either 
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complementary or competitive. Moreover, coastal trapped waves may also influence the water column stratifi-
cation28,29, modulating coastal biogeochemical conditions30 and triggering vertical displacements of the thermo-
cline31, which controls subsurface anomalies (e.g., salinity) and thus the impact on EBUS productivity32,33. The 
dataset used, the temporal coverage, and the upwelling index variable significantly influence the trend analysis 
results2,3,34.

From a broader climatic perspective, the evaluation of long-term trends from observations and model 
experiments is potentially complicated by climate modes, which likely exert some control on the upwelling 
low-frequency variability2,4,13,34. Many of the most significant upwelling modifications in EBUS - particularly 
in the Pacific Ocean - have been attributed to large-scale ocean-atmosphere processes4. Usually, ENSO is the 
leading mode of variability of the HCS35 and CalCS, and decadal oscillations like the Pacific Decadal Oscillation 
(PDO), and the North Pacific Gyre Oscillation (NPGO) are usually linked to California Current System var-
iability4,36,37. In the Atlantic sector, however, the BenCS appears to not be affected by basin-scale thermocline 
perturbations (Atlantic El Niño), but highly influenced by small-scale local physical variability38. Nevertheless, 
Hagen et al. (2001) reported a potential influence of the Quasi-Biennial Oscillation (QBO)39, and the Antarctic 
Oscillation (AAO), and others (e.g., Dufois and Rouault (2012)) have suggested that the ENSO signal may be 
of great importance40. Several studies report a large influence of the North Atlantic Oscillation (NAO) and the 
Atlantic Multidecadal Oscillation (AMO) on upwelling magnitudes and interannual to decadal variability in 
the Canary/Iberian Current System14,16,41. In addition to the backdrop of these competing findings, there are no 
studies that report a interannual-to-decadal shared variability across all the EBUS, despite the well-known shared 
low-frequency variability between the northern and the southern Pacific Ocean, which is mainly due to ENSO.

In this context, the focus of this study is to understand the coherent and non-coherent low frequency varia-
bility across the EBUS, and to explore how it is linked to large-scale climate modes. The aims are to: (1) quantify 
the forcing dynamics (e.g., alongshore winds, wind stress curl, thermocline depth) that controls low-frequency 
modulations in each EBUS, (2) identify how the forcing is linked to large-scale climate dynamics, and finally (3) 
understand the extent to which large-scale climate dynamics imprint a coherent signal across EBUS. To conduct 
our analysis, we modelled ocean dynamics in upwelling areas using a global eddy-permitting configuration of 
the NEMO model42 from 1958 to 2015. In our simulation, the ocean in the EBUS domains is driven by a new 
wind product, obtained through a statistical downscaling and merging of the large-scale wind structures from 
JRA55do-v1.143 with the high resolution QuikSCAT winds. In the ocean model, passive tracers were released at 
the subsurface (150–250 m) in order to identify a proxy for coastal upwelling strength. This approach enables 
the cumulative effects of the different upwelling drivers to be measured using a proxy of nutrient fluxes (e.g. the 
passive tracer), which integrates the upwelling variability (e.g. vertical ocean currents). In terms of understanding 
the low-frequency variability of productivity in upwelling systems, this approach is more effective with respect 
to the analyses of the individual forcing (e.g., alongshore winds, wind stress curl, etc). However, there are short-
comings associated with the changes over time in subsurface nutrient concentrations38, which can generate a 
low-frequency signal from the modulation of the upwelling source waters. Nevertheless, this approach does allow 
a direct quantification of the extent to which upwelling efficiency, which is linked to vertical velocities, can raise 
the deep parcel to the euphotic zone.

Data and Methods
Model configuration.  The low-frequency variability of EBUS is investigated in a numerical study based on 
the state-of-the-art modelling system NEMO (version 3.6). This is a three-dimensional, free-surface, hydrostatic, 
primitive-equation global ocean general circulation model44 coupled to the Louvain-la-Neuve Sea Ice Model, 
LIM245. Our configuration employs a global ORCA025 tripolar grid42 with °1

4
 horizontal resolution: ~27.75 km at 

the Equator, ~14  m at 60°N or 60°S. The vertical grid consists of 75 levels, spaced from 1 m near the surface to 
~200 m at the bottom, with partial steps representing the bottom topography46. To study the EBUS variability, we 
performed an ocean-only simulation (hereafter TRD55) covering the period from 1958 to 2015, with initial con-
ditions for December 1957 provided by December 2015 of an existing NEMO ORCA025 ocean simulation (i.e., 
same code and resolution as TRD55) forced by JRA55dov1.1 reanalysis43 (hereafter JRA55). The extreme sensi-
tivity of EBUS to the precise structure of the wind, as reported in several studies47–51 encouraged us to develop a 
new high-resolution dataset of wind based on observations, which was then used to force TRD55. We computed 
a statistical downscaling of the JRA55 wind over EBUS using QuickSCAT wind retrievals, following the method 
developed and reported by Goubanova et al. (2011)52. The statistical relationship, which is required to perform 
the statistical downscaling, is based on a multilinear regression between the near-surface winds retrieved by the 
QuikSCAT scatterometer (predictand, gridded product from IFREMER: 0.25° × 0.25° spatial resolution, 1-day 
temporal resolution from 2000 to 2008) and the large-scale sea level pressure (SLP) and near-surface wind fields 
from JRA55 data (predictors) for the period where predictand is available, which is from 2000 to 2008. This sta-
tistical relation between predictand and predictors is then used to downscale the JRA55 surface winds throughout 
the entire 1958–2015 period, to obtain a new high resolution dataset (with the same resolution of predictand, 
25 km), corrected by observations. This technique allows for the correction of coastal wind patterns off EBUS, due 
to the accuracy of QuikSCAT53,54. In JRA55, although significantly improving on ERAInterim55, the representa-
tion of wind drop off is still an open issue that can effect Ekman pumping, coastal upwelling9 and alongshore 
transport56. In addition, the resolution of the Japanese reanalysis (~55 km) is still too coarse to resolve upwelling 
dynamics, which are typically confined to within 30 km from the coast. The remaining turbulent variables (tem-
perature and specific humidity at 2 m), the radiative fluxes and precipitation are provided by the JRA55dov1.1 
reanalysis, as 3 h mean values.

Passive tracer set up.  Here, we aim to identify the water masses originating at the subsurface (usually 
rich in nutrients) in each EBUS (see the black squares in Fig. 1) that can reach the surface through vertical 
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advection. Thus, following the approach of Combes et al. (2013 and 2015)57,58, who investigated the upwelling 
and cross-shore transport variability in the California Current System and Humboldt Current System, we 
introduce passive tracers at subsurface in each EBUS. These are calculated in the model by a passive tracer 
advection-diffusion equation with a damping term:
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where Tr is the passive tracer concentration, AH is the horizontal diffusivity, AV is the vertical diffusivity, →u  is the 
velocity field, T0 is the damping term that controls the continuous source of tracer at sub-surface and τ is the 
damping timescale set to 6 months (required to avoid an infinite growth of passive tracer concentrations within 
the model domain). To address the upwelling of the subsurface water, we prescribed the damping term (T0) so 
that the passive tracer (Tr) is set to 1 in the coastal areas, as illustrated by the white rectangles in Figs. 2 and 3 
(from the coast to 50 km offshore), and in the subsurface from 150 m to 250 m in depth.

EBUS provide a temporally and spatially heterogeneous environment59 and they are usually latitudinally 
divided in different upwelling regimes38, so we divide each EBUS into a northern and a southern part and we 
inject two independent tracers in each domain. We divide the Benguela System into two areas separated to the 
north of Lüderitz (at 26°S, see white square Figs. 2 and 3), hereinafter Northern Benguela (15°S–25°S, NBenCS) 
and Southern Benguela (26°S–34°S, SBenCS). The California domain is instead partitioned at Cape Mendocino 
(34°S) in the Northern California System (34°S–41°S, NCalCS) and Baja California (34°S-27°S, SCalCS). The 
subdivision is even more obvious for the Canary and Peru Systems, and in the former we inject the tracer over the 
Iberian Peninsula (40°N–44°N, WIP or NCanCS) and over the Moroccan sector (20°N–28°N, SCanCS), and in 
the latter along the Peruvian coast (5°S–15°S, NHCS) and along the Chilean coast (25°S–35°S, SHCS).

Figure 1.  SSHa standard deviation (shaded areas) and mean SSHa (contour) for AVISO (top panel) and model 
solution (bottom panel) during 1993–2015 period; subplots: normalized SSHa from AVISO data (AVISO, red 
lines) and model solution (TRD55, black lines) during 1993–2015 period for each EBUS. Black squares indicate 
areas over which SSHa timeseries are calculated. “Corr” in the subplots indicate correlation coefficients between 
AVISO and TRD55 timeseries. This figure was plotted using MATLAB R2017a (https://www.mathworks.com/
products/new_products/release2017a.html).
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Figure 2.  For (a) BenCS and (b) CanCS: Long-term mean (1958–2015) of surface passive tracers 
concentration released at subsurface at surface (left panels); low-frequency modulation of upwelling (UIslw, 
black line), alongshore wind stress (WS, purple line), wind stress curl (WSC, blue line) and RFI (RFI, green line) 
seasonal cycle and the reconstructed times series of upwelling (Trec, red line) (right panels). In cyan monthly 
timeseries of tracer anomaly (UI). Corr indicates the correlation between predictand and reconstructed 
timeseries; ρ indicates the isopycnal and D its mean depth. White boxes indicate the regions where the tracers 
have been released in the subsurface. UIslw, WSC, WS, UI time series are calculated at surface, while RFI is 
computed along the reference isopycnal ρ. All the times-series are normalized by their standard deviation. To 
distinguish time series they are stacked by a 4std vertical offset. This figure was plotted using MATLAB R2017a 
(https://www.mathworks.com/products/new_products/release2017a.html).

Figure 3.  As Fig. 2 but for (a) CalCS and (b) HCS. This figure was plotted using MATLAB R2017a (https://
www.mathworks.com/products/new_products/release2017a.html).
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Upwelling indices.  In this work, we use the concentration of each subsurface tracer found at the surface as a 
measure of the upwelling efficiency. In particular, we define:

•	 The monthly upwelling efficiency index (UI): the monthly tracer concentration at the surface, from the coast 
to 150 km offshore and along the latitude band where the tracer is released (see white boxes in Figs. 2 and 3);

•	 The annual upwelling efficiency index (UIa): computed as UI but in annual mean;
•	 The low-frequency modulation of the upwelling efficiency seasonal cycle (UIslw): obtained by projecting the 

seasonal tracer concentration at the surface (from the coast to 50 km offshore and along the latitude where 
the tracer is released) onto the mean seasonal tracer spatial patterns. Upwelling intensity is considered in the 
selection of the season (see Supplementary Figure S1): in the Northern Hemisphere, May-June-July (MJJ) for 
NCalCS and SCalCS and April-May-June (AMJ) for SCanCS and SCanCS systems; in the Southern Hem-
isphere, upwelling December-January-February (DJF) in SBenCS, October-November-December (NDJ) 
along SHCS, and September-October-November (SON) in NBenCS and along NHCS.

Hereinafter, throughout the text and the figures, the term “upwelling” identifies the upwelling efficiency.

Drivers indices.  To investigate the drivers of upwelling, we examine wind forcing (alongshore wind stress 
and wind stress curl) and thermocline depth as forcing. Specifically:

•	 Alongshore wind stress index (WS): obtained by projecting the seasonal alongshore wind stress (from the 
coast to 50 km offshore and along the latitude where the tracer is released) onto the mean seasonal wind stress 
spatial patterns. Alongshore wind stress is calculated by rotating the u and v components of wind stress to the 
shoreline direction;

•	 Wind stress curl index (WSC): obtained by projecting the seasonal wind stress curl (from the coast to 150 km 
offshore and along the latitude where the tracer is released) onto the mean seasonal wind stress curl spatial 
patterns.

•	 Thermocline depth or Remote Forcing Index (RFI): the seasonal depth variation of a representative isopycnal 
below the mix layer depth (usually around 10 m) in time (see Figs. 2 and 3 for isopycnals definitions). RFI is a 
measure of the relative change of thermocline depth, which is also linked to stratification, and to the passage 
of coastal trapped waves. Therefore RFI is influenced by both the remote forcing (e.g., waves) and the local 
forcing (e.g., winds, surface heating). The thermocline depth and the stratification, which are lumped together 
in the RFI index, can modify upwelling differently: the former by modifying the availability of nutrients to 
upwelling, and the latter by modifying the source depth of upwelled waters. Moreover, the remote signal 
captured by the RFI index is influenced either by waves generated at the equator (e.g., generated during El 
Niño events60) or by those produced by localized wind events along the coastal current systems (e.g., along 
CalCS61,62). We first analysed the net heat flux (Qnet). Unlikely, due to the nature of these areas and the com-
plex air-sea feedback, Qnet results to be intensified toward the ocean during upwelling4.

The time series obtained by the projection method capture temporal modulations of the mean field, and have a 
positive sign, even though for example the sign of the wind stress field is negative (e.g., NH systems). The seasons 
considered when computing the drivers indices are the same as those used to compute the UIslw index.

Gridded observational data.  Sea Level Pressure (SLP) fields are obtained as monthly means from the 
National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis product63 
and are provided on a 2.5° × 2.5° horizontal grid (hereinafter NCEP SLP). In addition, we use the SST data set 
from the National Climatic Data Center (NCDC): the National Oceanic and Atmospheric Administration 
Extended Reconstruction SST, version 3b, at 2° × 2° resolution product (hereinafter NOAA SST)64, which consists 
of monthly mean values from 1854 to the present. We restrict the period of record to 1958–2015 to match the 
model results. In addiction, for validation purposes we also use a 23-year time series of satellite altimetry, namely 
from 1993 to 2015, at ×° °1

3
1
3

 resolution provided by Collect Localisation Satellites (CLS, Toulose, France; here-
inafter AVISO).

Climate indices.  The connection between upwelling variability and the large-scale climate is explored 
using correlation analyses with the following climate modes: the Multivariate ENSO Index (MEI65), the Pacific 
Meridional Mode (PMM66, the Atlantic Meridional Oscillation (AMO67), the South Pacific Meridional Mode 
(SPMM68) and the Tropical Pacific Decadal Variability (TPDV69) are investigated. The SPMM index is calculated 
from the data sets of NOAA SST anomalies (hereinafter NOAA SSTa) calculated with respect to 1958–2015 
climatology. Following Zhang et al. (2014)68, the SPMM index is inferred by the regression of NOAA SSTa onto 
normalized NOAA SSTa time series averaged over the southeast Pacific (15°S–19°S, 103°W–107°W).

The significance of correlations is estimated based on the probability density function (PDF) of the 
cross-correlation coefficients betweenthe 2 time series y1 and y2. The PDF is built by computing the correlation 
of 5000 random pairs of time series that have the same autocorrelation of y1 and y2. The trend significance is 
evaluated based on the PDF of the trend coefficients.

Results
Model validation.  We first use observed datasets to evaluate the performance of ocean hindcast TRD55 to 
simulate ocean variability. In Fig. 1, we compare modelled sea surface height anomaly (SSHa) standard deviation 
(shaded areas) and mean (contours) against the satellite altimetry AVISO SSHa data for the 1993–2015 period. In 
general, the standard deviation of the observed SSHa is slightly underestimated by TRD55 over BenCS, nevertheless, 
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the amplitude and spatial structure of the model mean SSHa compares relatively well with AVISO. Maxima are 
located over the Indian Ocean and along the western boundaries of the ocean, while minima are over the Southern 
Ocean and along the eastern boundaries. The time series of the modelled SSHa variability along the coastal bound-
aries of each EBUS (subplots in Fig. 1), are also significantly correlated with the observations (black squares in 
Fig. 1). The modelled coastal SSHa explains a significant proportion of the sea level anomaly in all the EBUS. Major 
discrepancies are reported over the Atlantic basin. Off Benguela, and in particular off the Iberian coast, TDR55 
exhibits some discrepancies from observations, likely reflecting the model’s inability to capture the internal variabil-
ity induced by the Agulhas current in BenCS38 and by the Gibraltar Strait and the extension of the Gulf stream in the 
Western Iberian Peninsula70. In contrast, over the Pacific Ocean, the correlation between the modelled and observed 
variability is highly significant with R values between 0.88–0.93. For example, the strong positive anomalies during 
the warm ENSO events in 1998 and 2015 (El Nino years) are clearly evident in both the CalCS and HCS EBUS.

Drivers and trends of low frequency modulation of upwelling efficiency.  To assess the drivers of 
low-frequency upwelling variability, we first examine the low-frequency modulations of the upwelling seasonal 
cycle. We set up a linear regression model between the extracted seasonal timeseries of the tracer (UIslw) as pre-
dictand and the timesseries of forcing (e.g., alongshore wind stress, wind stress curl and RFI) as predictors (see 
the Data and Methods section for definitions of the indices). Figures 2 and 3 displays the regression results, while 
Table 1 reports the linear regression coefficients (Coeff) of each forcing and their contribution in percentage (%). 
Table 1 also displays the upwelling variance explained (R2) by each forcing. The coefficients (Coeff) from the 
multiple linear regression approach are identified using standard least square inversions, which are not sensitive 
to the order of the forcing term. The approach allows us to easily find the combination of forcing/weights that 
maximizes our ability to reconstruct the upwelling indices. In contrast, the upwelling variances explained (R2) 
by the forcing are identified as the square of the correlation between each forcing and the upwelling index. The 
reconstructed tracer signals (Trec, red lines), which are the time-series obtained as a result of the linear regres-
sion, are significantly correlated with UIslw, explaining about 70% of the variance in all the domains (see “Corr” 
correlation coefficient in each subplot). Thus, UIslw is the result of low-frequency modulations of the forcing 
seasonal cycle, and high correlations of UIslw with annual variation of tracers in all domains (e.g., UIa, third row of 
Table 1) indicate that the modulation of the upwelling seasonal cycle dominates the upwelling interannual varia-
bility. The low-frequency variability of the upwelling seasonal cycle in the Benguela systems is dominated by fluc-
tuations in the wind forcing (Fig. 2a), accounting for 72% in the north and 66% in the south (Table 1, R2 column). 
The stratification and coastal-trapped waves are the major drivers in the other regions, modulating the intensity 
of the subsurface upwelled water at interannual timescale. In particular, as the negative correlation coefficients 
in Table 1 indicate, the deeper the isopycnal the weaker the upwelling intensity. RFI explains about 65% of the 
modelled upwelling modulation in HCS, about 70% in NCalCS and up to 73% in CanCs, while the wind forcing 
are minor contributors (see Table 1, R2 column). The simple regression model has significant ability to reconstruct 
the upwelling low-frequency variability. However, in the SCalCS the overall correlation (R = 0.69, Fig. 3a) and 
the variance explained by the forcing are lower (RFI R2 = 0.37, Table 1, R2 column). In fact, the residual variabil-
ities not explained by the forcing, may be related to other mechanisms that could potentially impact upwelling 
efficiency. These, for example, are (1) long-term changes in the properties of upwelling source waters33, and (2) 
eddies transport and cross-shore geostrophic transport, which can suppress or enhance coastal upwelling71,72 and 
may mitigate future upwelling changes73. Horizontal advection and eddy activities are strong and unpredictable 
in this region57,74. Finally, the Benguela and Canary systems show significant trends: positive for Benguela and 
negative for Canary (Table 1, last row, and Fig. 2). In BenCS, the trends track changes in the wind (e.g., curl and 
alongshore components), while the trends seem to be driven by stratification changes in CanCS. Although histor-
ical records may not be indicative of climate change response, it is important to report that the positive upwelling 
trends in the BenCS may appear consistent with the findings by Bakun (1990), while there is not supportive 
evidences in the other regions, particularly with the negative trend in the CanCS (Fig. 2b). In addition, the trends 
coherency between the northern and the southern domains of Benguela system appears to not support either 
the theory on the poleward displacement of high pressure-systems, which should favour upwelling poleward10. 
Collectively, these results suggest that changes in upwelling are dominated by the interannual to multi-decadal 
variability of the forcing functions, which have different expressions in the different EBUS.

NBenCS SBenCS NCanCS SCanCS NCalCS SCalCS NHCS SHCS
Coeff % R2 Coeff % R2 Coeff % R2 Coeff % R2 Coeff % R2 Coeff % R2 Coeff % R2 Coeff % R2

WS 0.93 72.6 0.72 0.63 70.3 0.66 0.58 28.5 0.22 0.36 30.4 0.41 0.31 29.2 0.37 0.25 26.0 0.14 0.06 6.4 0.01 0.34 34.2 0.36
WSC −0.18 14.5 0.43 0.09 11.0 0.31 0.30 20.2 0.06 0.15 11.8 0.14 −0.04 0.27 0.04 0.15 16.0 0.06 0.17 16.7 0.04 0.01 4.0 0.33
RFI −0.16 12.8 0.24 0.17 18.8 0.35 −0.63 51.2 0.52 −0.69 57.8 0.73 −0.71 66.5 0.70 −0.57 58.1 0.37 −0.82 76.9 0.64 −0.62 61.8 0.65
UIslw–UIa 0.94 0.78 0.91 0.88 0.94 0.95 0.87 0.79
UIslw–-Trend 0.05* 0.05* −0.04* −0.04* 0.0004 0.01 −0.01 −0.01

Table 1.  Multi-linear regression coefficients (Coeff), contribution in percentage of predictors (WS, WSC, RFI) 
(%) and percentage of UI variance explained by the predictors (R2), from first to third rows. Correlation between 
low frequency modulation of upwelling seasonal cycle (UIslw) and long-term modulation of upwelling (e.g. 
annual mean, UIa). Last row reported upwelling index UIslw trends in [std/year]. Stars (*) indicate significant 
values.
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Shared climate variability across EBUS.  The low-frequency variability of upwelling in each EBUS likely 
reflects the local expression of the large-scale modes of climate variability that modulates the local forcing func-
tions (e.g., wind stress, curl, thermocline anomalies, etc.), and the response to local drivers that are not connected 
to large-scale climate variability. Here, we explore the relation between upwelling indices and large-scale climate 
dynamics to quantify the extent to which climate modes contribute to coherent signals across EBUS. To explore 
the coherent variability across EBUS, we first computed a cross-correlation matrix of the upwelling indices 
(Fig. 4a). This initial analysis reveals that the EBUS upwelling climate variability is in the first order not coherent 
between the Pacific and Atlantic basin. The upwelling systems correlate only with the systems located in the same 
basin, despite weak correlations between CalCS and CanCS. Specifically, the northern and the southern upwelling 
of each domain are coherent, BenCS and CanCS correlate negatively, and CalCS and HCS correlate positively 
with a maximum value of 0.5. The Atlantic systems anticorrelation is, as expected, linked to the trends (Fig. 4b), 
the negative upwelling trend in the Canary opposes the positive upwelling trend in the Benguela (hereinafter the 
UI are the sum of the northern and southern part, due to the coherency resulted in Fig. 4). In contrast, the Pacific 
basin coherent variability is connected to ENSO. The dominant mode of variability (PC1-P, see Figure S2 for the 
spatial pattern), obtained by performing EOF analyses of the UI of the Pacific, explains 50% of the California 
and Peru total variance with correlations of ~0.65 and ~0.6 with MEI and TPDV indices, respectively (Fig. 4d). 
The remaining low-frequency variance, after removing the trends from Atlantic systems and ENSO from the 
Pacific systems, reveals little coherence across EBUS (Fig. 4b). In the Atlantic, the trends in the EBUS appear to 
be linked to different processes. As discussed in Section 3.1, the BenCS trend is driven by wind changes while 

Figure 4.  (a) Cross-correlation matrix of UI; (b) Cross-correlation matrix of detrended UI for CanCS and 
BenCS and UI without MEI signal for CanCS and HCS. N and S in (a,b) indicate the Northen and the Southern 
UI of each domain. (c) UI of BenCS and -CanCS timeseries. The BenCS and -CanCS timeseries are the sum 
of the northern and southern UI, (d) PC1 of Pacific UI with MEI index. R in (c,d) identifies correlation 
coefficients. The correlation coefficients are calculated considering the unchanged UI (e.g. CanCS not -CanCS). 
This figure was plotted using MATLAB R2017a (https://www.mathworks.com/products/new_products/
release2017a.html).
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CanCS trends are sensitive to local (e.g., thermocline depth and stratification) and remote (e.g., coastal trapped 
waves) forcing. The spatial structures of the trends, inferred by correlating the BenCS with NCEP SLPa (Fig. 5a) 
and CanCS with NOAA SSTa (Fig. 5e), confirm their different nature. The BenCS pattern (Fig. 5a) resembles 
the climate change trend in global sea level pressure found in the reanalysis and in the observations by Gillet  
et al. (2013)75 (see their Fig. 1, top panels). To further confirm the role of climate change in the BenCS trend, we 
perform a correlation map between the global average temperature index (e.g. climate change proxy) from NOAA 
reanalyses with NCEP SLPa during the experiment period (Fig. 5b). The resulting map almost exactly tracks the 
trend structure in the SLPa (compare Fig. 5a,b). The high-pressure system over the African continent, character-
istic of this pattern, leads to enhanced upwelling winds, consistent with the finding by Bakun (1990) of increased 
upwelling-favourable winds in a warming climate. Nevertheless, it is important to stress that the mechanism pro-
posed by Bakun (1990), known as the Bakun Hypothesis, is not consistent with our results. The SLP climate trend 
does not show an intensification of the continental-oceanic pressure gradient9. The temporal relation between the 
SLPa climate change pattern and the BenCS upwelling was explored by correlating an index that tracks the tem-
poral variability of the SLPa trend pattern with the BenCS UI. The SLPa index is obtained by projecting SLPa onto 
the Fig. 5b correlation pattern (e.g., the climate change signature in the global sea level pressure). The correlation 
analyses reveal that BenCS trends and variability (e.g., detrended signal) are both connected to the SLP trend 
pattern and its interannual to decadal modulations with correlations of ~0.78 and ~0.30 (Fig. 5c,d). An analysis of 

Figure 5.  (a) Correlation pattern between BenCS UI and NCEP SLPa; (b) Correlation patterns between NOAA 
global average temperature (1958–2015) and NCEP SLPa; (c) BenCS UI and SLPa index; (d) detrended BenCS 
and detrended SLPa index. -d identifies detrended indices, R identifies significant correlation coefficients; 
(e) Correlation patterns between -CanCS UI and NOAA SSTa; (f) Correlation pattern between AMO index 
and NOAA SSTa; (g) -CanCS UI and AMO index; (h) detrended -CanCS UI and detrended AMO index. -d 
identifies detrended indices, R identifies significant correlation coefficients. The correlation coefficients are 
calculated considering the unchanged UI (e.g. CanCS not -CanCS). This figure was plotted using MATLAB 
R2017a (https://www.mathworks.com/products/new_products/release2017a.html).
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the CanCS trends spatial pattern in Fig. 5e, instead, reveals an AMO type pattern in both space and time (Fig. 5f). 
A correlation analysis with the climate mode confirms that CanCS trends and variability (e.g., a detrended signal) 
is significantly linked to the AMO with correlations of ~−0.61 and ~−0.52 (Fig. 5g,h). The AMO modulates the 
inter-hemispheric meridional gradient of SST and, in turn, of SLP over the Atlantic basin67. Thus, during its pos-
itive phase, atmospheric surface pressure differences between North and South Atlantic lead to a south-westerly 
wind anomaly in Northern Hemiphere76–78, which tends to weaken upwelling favourable winds along the Canary 
systems. In addition, during this phase, the warm SST over the north Atlantic enhances stratification, and thus 
weakens upwelling in the Canary systems. These variations of the surface forcing, induced by the global warm-
ing over BenCS and by AMO over CanCS, are consistent with trends and drivers described in Section 3.1. After 
removing the signals that lead to coherent variability in the EBUS of each basin through linear regressions, we 
examine the variability that is not connected to ENSO for CalCS and HCS, to the AMO for CanCS, and to the 
global climate change trend for BenCS. Upwelling indices of the residual low-frequency variability in each EBUS 
are then correlated with large-scale SSTa and SLPa to examine the spatial coherence of the upwelling drivers. We 
found that the residual upwelling variability is linked to atmospheric local forcing structures in both the Pacific 
and in the Atlantic, which are characterized by an offshore system of high sea level pressure in the offshore (Fig. 6 
for CalCS and HCS, 7 for BenCS and CanCS). In the Pacific Ocean (Fig. 6), a correlation map of the UI residual 
indices with SSTa revealed structures that resemble the negative phase of the North and South Pacific Meridional 
Modes (see Chiang and Vimont (2004)66; Zhang et al.68), which are known to act independently79,80. This is not 
surprising given that the pressure systems driving the residual upwelling variability (Fig. 6, middle panels) pro-
ject onto the excitation patterns of the Meridional Modes (MMs) by altering the strength of the off-equatorial 
trade winds. The modulation of the winds trigger the MMs over the Pacific through the wind-evaporation-SST 

Figure 6.  (a) Correlation patterns between CalCS UI without MEI signal and NOAA SSTa (top panel) and 
with NCEP SLPa (middle panel); (b) Correlation patterns between HCS UI without MEI signal and NOAA 
SSTa (top panel) and with NCEP SLPa (middle panel); (c) -CanCS UI without MEI signal and PMM index. (d) 
-HCS UI without MEI signal and SPMM index. R identifies significant correlation coefficients. The correlation 
coefficients are calculated considering the unchanged UI (e.g. HCS not -HCS). This figure was plotted using 
MATLAB R2017a (https://www.mathworks.com/products/new_products/release2017a.html).
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feedback (Xie and Philander (1994)). In their negative phase, the MMs are characterized by upwelling favourable 
winds and strong cooling. The link to the MMs variability is further confirmed by correlating the North and South 
MM indices against the residual variability of the CalCS (~−0.44) and HCS (~−0.32) (Fig. 6c,d). Although the 
correlations pass the significance test for a 95% confidence level, there is an important proportion of non-shared 
variance between the MM indices and the UIs, which may results from the definition of the indices. However, 
the spatial structure in SSTa and SLPa are very consistent with the footprint of the MMs. For the Atlantic basin 
(Fig. 7), the residual variability inprint in the SLPa and SSTa is not associated with any known mode of climate 
variability. The local atmospheric modulation, characterized by the high sea level pressure in the offshore region 
(Fig. 7, bottom panels), is very localized for the CanCS and shows some related variability over the Antarctic for 
the BenCS. However, the projection of the BenCS onto the Antarctic SLPa does not appear connected to annular 
modes or other related Antarctic variability.

Conclusions
In this work, we performed an ocean hindcast simulation for the period 1958 to 2015 using a global 
eddy-permitting ORCA025 configuration ( °1

4
 of horizontal resolution) of the NEMO framework, with the aim of 

modelling and studying the interannual to decadal variability of the major Eastern Boundary Upwelling Systems. 
The numerical simulation is forced by the recent JRA55-dov.1.1 surface-atmospheric dataset (at 55 km of resolu-
tion) for driving ocean sea-ice models. Specifically, the winds from the large-scale wind structures of 
JRA55dov.1.1 have been statistically downscaled to 25 km of resolution using the high resolution QuikSCAT 
winds. To quantify the upwelling, we introduced an ensemble of passive tracers in the simulation, which are con-
tinuously released in the subsurface layer (150–250 m) in each EBUS over a region from the coast to 50 km off-
shore. The statistics of the concentration of these passive tracers at the surface (e.g. UI, UIslw indices), which 
correspond to upwelled coastal water masses and ocean tracers (e.g., nutrients), enabling us to study the local and 
large-scale climate drivers of upwelling low-frequency variability and trends.

We first analysed the local drivers and trends of the low-frequency variability of the upwelling efficiency. We 
found that the common pattern favouring upwelling (e.g., equatorward wind stress, cyclonic wind stress curl and 
thermocline depth variation) explains the low frequency modulation of upwelling. The linear regression analysis 
showed that the wind forcing contribution to upwelling variability is dominant over the Benguela systems, while 
remote forcing of the thermocline and stratification forcing plays a crucial role in regulating upwelling fluctua-
tions on the Canary, California and Humboldt systems (Figs. 2 and 3). The analysis also revealed upwelling trends 
in the Atlantic systems: the Benguela systems are characterized by positive trends, and the opposite occurs in the 
Canary systems. The Northern Canary upwelling negative trend is in line with previous studies (such as Pardo et 
al.16, Pérez et al.81 and Gómez-Gesteira et al.82), where negative trends are detected both in SST-based index and 
in wind stress. The interpretation of the Benguela positive trends are more complex, as the previous published 
results are conflicting. Depending on the period chosen for the analysis and the data set used, previous studies 
suggest no trend20, positive14,41,83 or negative trends14,16,84 for the upwelling in the Benguela systems. In the Pacific 
Ocean, our analysis showed no significant trends either in the upwelling and or in its drivers, in agreement with 
Combes et al.57, and Combes et al.58. Importantly, our results are in partially disagreement with the hypothesis 

Figure 7.  (a) Correlation patterns between BenCS UI without climate change signal (SLPa index) and NOAA 
SSTa (top panel) and NCEP SLPa (bottom panel); (b) Correlation patterns between CanCS UI without AMO 
index and NOAA SSTa (top panel) and NCEP SLPa (bottom panel). This figure was plotted using MATLAB 
R2017a (https://www.mathworks.com/products/new_products/release2017a.html).
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of Bakun (1990) suggesting an increased upwelling due to increased wind stress induced by the intensification 
of the continental-oceanic pressure gradient under climate change conditions. Indeed, except over the Benguela 
systems, the wind stress forcing in the reanalysis product does not show significant positive trends. Furthermore, 
the wind trends coherency between the northern and southern domains of Benguela does not support either the 
hypothesis about the poleward displacement of high pressure-systems that should favour upwelling poleward10. 
Nevertheless, it should be mentioned that the presence or the absence of upwelling trends in the domains could 
be related to the dominance of the natural and internal variability in the historical records, but the likelihood of 
significant or non-significant greenhouse gas-related interactions cannot be completely dismissed. In summary, 
this statistical analysis on upwelling low-frequency variability suggests that the local (e.g., wind forcing, strati-
fication and thermocline depth) and the remote (e.g., passage of coastal trapped waves) forcing, with different 
contribution in each EBUS, control the interannual upwelling variability. Thus, in order to predict and to propose 
hypotheses on the long-term variations in upwelling, identifying a proper index of upwelling in relation to the 
major drivers of the each domain is essential. In particular, both the coastal wind variations9 and the stratifica-
tion have to be considered4,26 as potentially competitive or complementary drivers of upwelling variability under 
climate change (e.g., enhanced coastal temperature and stratification associated with stronger or weaker coastal 
winds). However, our analysis only considers the main mechanisms that drive the upwelling and no others pos-
sible processes that could impact the upwelling efficiency, such as the cross-shore transport via eddies and the 
geostrophic horizontal advection. Additional analyses, which include identifying other upwelling drivers, are the 
subjects of future work.

The second important issue addressed is the influence of the large-scale climate variability on long-term 
upwelling and the degree to which there is coherent low-frequency variability across EBUS. The variability asso-
ciated with climate modes could be of importance to predict future perturbations at interannual to decadal time 
scales. Cross-correlation analyses among upwelling indices showed that the Atlantic and Pacific upwelling vari-
abilities are mainly independent, while intra-basin domains variabilities present some coherency (Fig. 4). In the 
Pacific Ocean, the only coherent variability between the California and Humboldt systems is associated with the 
El Niño-Southern Oscillation (Fig. 4), while the remaining low-frequency variance is partially explained by the 
independent expressions of the North and South Pacific Meridional Modes (Fig. 6), which are characterized in 
their negative phases by strong cooling and alongshore wind stresses in the California and Humboldt systems. 
In contrast, in the Atlantic, the coherent variability between the Canary and Benguela systems is associated with 
trends in upwelling (Fig. 4). However, consistent with the previous analysis, these trends are not dynamically 
linked and represent different processes. In the Benguela, the positive upwelling trend is forced by the climate 
change trend in global sea level pressure75, which is characterized by a strong high-pressure system over the 
African continent that leads to enhanced upwelling winds. In the Canary systems, the negative trend in upwelling 
is closely connected with the low-frequency variability of the Atlantic Multi-decadal Oscillation, as previously 
suggested in the literature14,16,41(Fig. 5). Aside from the trend components, the Canary and Benguela systems 
showed no coherent variations and their residual variability is forced by local atmospheric variability, namely a 
system of high pressure in the offshore regions (Fig. 7). However, as García-Reyes et al.2 argued in their study, 
the extraction of long-term trends from observational records and model simulations over the Pacific could have 
been complicated by the influence of climate modes (e.g., ENSO). Thus, our results highlight the uniqueness of 
each EBUS in terms of drivers and climate variability. Signs of global warming, characterized by strong upwelling 
winds in a changing climate, are evident only over Benguela systems and, from a broader climate prospective, 
EBUS do not share variability, except from the well-known influence of ENSO on Pacific systems. The question 
of whether the variabilities observed here are indicative of interannual to multidecadal upwelling fluctuations 
is obscured by the length of the time series, by the variable used to evaluate upwelling and by the use of an 
ocean-only simulation. Extending the current analysis to a longer period, with coupled models and with the same 
passive tracers approach, will help to clarify these issues, enabling the results to be compared, and to confirm any 
unexpected teleconnections between upwelling systems.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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