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Local Ancestry Inference in Large 
Pedigrees
Heming Wang   1,2,3*, Tamar Sofer   1,2, Xiang Zhang4, Robert C. Elston3, Susan Redline1,5 & 
Xiaofeng Zhu3

Local ancestry, defined as the genetic ancestry at a genomic location of an admixed individual, is widely 
used as a genetic marker in genetic association and evolutionary genetics studies. Many methods 
have been developed to infer the local ancestries in a set of unrelated individuals, a few of them have 
been extended to small nuclear families, but none can be applied to large (e.g. three-generation) 
pedigrees. In this study, we developed a method, FamANC, that can improve the accuracy of local 
ancestry inference in large pedigrees by: (1) using an existing algorithm to infer local ancestries for all 
individuals in a family, assuming (contrary to fact) they are unrelated, and (2) improving its accuracy by 
correcting inference errors using pedigree structure. Applied on African-American pedigrees from the 
Cleveland Family Study, FamANC was able to correct all identified Mendelian errors and most of double 
crossovers.

There has been an increasing interest in studying the ancestral spectrum of admixed individuals, such as African 
Americans and Latino Americans1–3. Investigating the different ancestral proportions across an individual’s 
genome, i.e. the local ancestries, is useful for estimating population-specific genetic effects via admixture mapping 
studies4–6, capturing natural selection signals1,2,7–9, understanding population migration history10, and correcting 
for local population structure in genome-wide association studies11,12.

Many methods have been developed to infer the local ancestries in unrelated admixed individuals from a 
given study sample using dense genotype data. In particular, Hidden Markov Model (HMM)-based methods, 
including SABER+13, HAPMIX14, LAMP-LD15, and PCAdmix3, are widely used because of their high accuracy 
and resolution. In brief, these methods model the observed genotypes of admixed individuals conditioning on the 
hidden states of their ancestral reference alleles or haplotypes, which are assumed to follow a Markov process. All 
the above methods can be applied to phased haplotypes or diploid genotypes using a joint HMM applied to the 
two haplotypes in an admixed individual.

Family data have multiple advantages in genetic studies compared to population-based data, both by increas-
ing the statistical power to identify risk variants through better control of environmental confounding effects and 
by more precise modeling of heritability. Genomics data in large admixed pedigrees (e.g. the Cleveland Family 
Study16 [CFS] and the San Antonio Family Heart Study17 [SAFHS]) are available for family-based admixture 
mapping and association analyses. However, existing local ancestry inference methods for family data are limited. 
LAMP-HAP15 and PCAdmix3 were extended to small nuclear families by fitting joint HMMs on shared haplo-
types among family members. For example, in a parent-offspring pair, the parent and child share one common 
haplotype. The family-wise local ancestries can be estimated from a joint HMM of the three independent hap-
lotypes. In a parent-offspring trio, the child inherited one haplotype from each of the parents. The family-wise 
local ancestries can be estimated from the joint HMM of the four independent haplotypes. However, this design 
requires a complex computationally intensive process to phase the family members. The model complexity 
increases quadratically with the number of founders. Therefore, it can be hard to apply to large pedigrees. The 
common approach for inferring local ancestries in large pedigrees is currently to incorrectly assume individuals 
are unrelated. This approach may result in multiple Mendelian errors that violate the assumption of family-based 
genetic analyses.

In this study, we developed a method which estimates local ancestries in large pedigrees by: (1) using exist-
ing software (e.g. SABER+ and HAPMIX) to infer local ancestries for all individuals in a family, temporarily 
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assuming they are unrelated, and then (2) using FamANC to improve the local ancestry inference accuracy by 
using the known pedigree structure to correct inference errors

Methods
FamANC was developed for admixed pedigrees with two genetic ancestors, such as African-Americans, who 
were admixed from West-African and European ancestral populations. The general flow of the FamANC algo-
rithm is described in Fig. 1.

Notation.  Let τ be the number of generations since admixture occurred. Without loss of generality, we use 1 
for an African (true/inferred) allele and 0 for a European (true/inferred) allele at locus t of individual i. Let λ and 
1 − λ be the admixture proportions of African and European ancestry in the population. In a pedigree of n indi-
viduals and L  dense markers on a chromosome, let X X X X( , , , )t t t n t1, 2, ,= …  be the true and 
Y Y Y Y( , , , )t t t n t1, 2, ,= …  be the inferred (using existing software) diploid local ancestries at the tth locus; Ai t,

[1] and 
Ai t,

[2] be the two ancestry alleles of Xi t, , and Bi t,
[1] and Bi t,

[2] be the two alleles of Yi t, , so that = +X A Ai t i t i t, ,
[1]

,
[2] and 

Y B Bi t i t i t, ,
[1]

,
[2]= + . ~A B Binom, (1, )i t i t, , λ  and ~ λX Y Binom, (2, )i t i t, , . Let Ped be the set of all possible Xt at any 

t in a pedigree satisfying Mendelian inheritance. For example, in a nuclear family with two parents and one off-
spring (n = 3), the set of all possible X X X X( , , )t t t t1, 2, 3,=  corresponding to (Father, Mother, Child) is Ped = {(0, 
0, 0), (0, 1, 0), (0, 1, 1), (0, 2, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 0, 1), (2, 1, 1), (2, 
1, 2), (2, 2, 2)}.

Figure 1.  FamANC algorithm flow in a two-way admixed population.
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In this study, the accuracy of the local ancestry inference is evaluated by the dosage error rate, defined as 
the average difference between the inferred and true local ancestries across all individuals and all loci in a given 
sample:

err
Y X

n L
i
n

t
L

i t i t1 1 , ,=
∑ ∑ −

⋅
= =

Let ε be the average allelic local ancestry inference error rate,

ε
ε

= | = = − =
≠{P B l A k l k

l k
( ) 1 ,

(1)i t i t, ,

where l k, {0, 1} . Under this model, we can compute the inference probabilities of Ti,t given the true local ances-
try Xi,t as shown in Supplementary Table 1, and then the dosage error rate is estimated in terms of ε and λ as 
follows:

err 2 (1 ) [ (1 ) ] (2)2 2 2ε ε ε λ λ= − + + −

Local ancestry inference error detection.  After applying existing software, FamANC firstly scans local 
ancestry errors that arise from: (1) Mendelian inconsistencies identified from the pedigree structure; (2) double 
crossovers occurring within 2 cM, described as follows. We assume that the number of crossover events R in an 
interval of d Morgans follows a Poisson distribution, τ−~R Pois d( ), where τ is the number of generations since 
original admixture. Letting τ = 8, the average number of generations since admixture in African-Americans, in a 
region of 2 cM the probability of observing two or more recombination events is low: ≥ = − =P(R 2) 1 P(R 0)
P(R 1) 0 0066− = = . . Therefore, we treat double crossovers within 2 cM as errors. We screen and take care of loci 

presenting either of these two types of errors or with low local ancestry estimation quality (<90%) based on out-
put of existing software.

Statistical model.  FamANC corrects identified local ancestry errors using the known pedigree structure. 
Suppose that local ancestry is inferred at loci t L1, ,= …. , where the loci are ordered but are not necessarily 
adjacent. For any estimated local ancestry Yt at position = … −t n2, , 1, we correct potential error by borrowing 
information from the true local ancestries Yt 1−  and Yt 1+ , which are assumed to be inferred without errors so that 
X Yt t1 1=− −  and X Yt t1 1=+ + , using the following probability model:

P X Y X X P X Y X X( , , ) C ( , , , ), (3)t t t t t t t t t1 1 1 1| =− + − +

where = =
− + − +

Ct P Y X X P Y Y Y
1

( , , )
1

( , , )t t t t t t1 1 1 1
 is a constant. Therefore, we want to identify the optimal ∈X Pedt , 

having the largest joint probability − +P X Y X X( , , , )t t t t1 1 . We assume that X X,t t1− , and +Xt 1 satisfy the Markov 
property: P X X X P X X( , , ) ( )t t t t1 1 1| … = |− − . P X( )t 1−  is a constant.

=

= | | |

= | | | .
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If an error is observed at the first locus of a chromosome, i.e. when t = 1, then

P X Y X P Y X P X X( , , ) ( ) ( )1 1 2 1 1 2 1= | | .

If an error occurs at the last locus of a chromosome, i.e. when t = L, then,

= | | .− − −P X Y X P Y X P X X( , , ) ( ) ( )L L L L L L L1 1 1

Notably, the accuracy of correcting the inference errors for loci at the boundaries of a chromosome will be 
worse compared with the interior, because we can collect less information at the boundaries.

The joint probability in Eq. (4) can be decomposed into two parts: the inference probability |P Y X( )t t  and the 
transition probability |+P X X( )t t1 . We first estimate the transition probability. We assume that the distance 
between Xt and +Xt 1 is small enough that, in a family member i, the status of Xi t, 1+  depends on Xi t,  but not on 
other family members. Therefore, the joint transition probability in a pedigree can be written as the product of the 
individual transition probabilities:

∏

∏
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= | …

= | .
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P X X X X
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The transition probabilities are estimated from the recombination events, which are the same as those used in 
HMMs13,18. For haploid data,
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where l k, (0, 1)  corresponding to European ancestry and African ancestry in African Americans; τ is the num-
ber of generations since admixture occurred; and dt is the genetic distance (in Morgans) between the tth and t + 1th 
loci, which is usually small enough that for current GWAS array data at most one recombination event can occur. 
The diploid transition probability matrix is thus

We next estimate the inference probability |P Y X( )t t , which can be written as the product of the individual 
inference probabilities:

∏
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= | …

= | .

P Y X P Y Y Y X X X
P Y X X X

P Y X

( ) ( , , , , , , )
( , , , )

( )
(7)

t t t t n t t t n t

i
i t t t n t

i
i t i t

1, 2, , 1, 2, ,

, 1, 2, ,

, ,

P Y X( )i t i t, ,|  is given in Supplementary Table 1 with parameters ε and λ.

Parameter estimation.  λ is estimated as the average African ancestry proportion of an individual in the 
admixed population. Next, we estimate ε from the local inferred ancestries using existing software that incor-
rectly assumes all individuals are unrelated. Here we modified the method of estimating genotyping errors from 
Mendelian inconsistency in nuclear families proposed by Saunders et al.19. Some of the local ancestry inference 
errors will lead to Mendelian errors and others will not. From the observed number of Mendelian errors in 
the data, we can estimate ε. We first divide a large pedigree into smaller non-overlapping nuclear families. For 
simplicity, we assume only one member in a nuclear family can have an error at a particular position. We list all 
possible patterns of true and inferred local ancestries in the family members and count the number of Mendelian 
errors for each corresponding pattern (Supplementary Appendix 1, Supplementary Tables 2–7). Let NME be the 
number of Mendelian errors in a nuclear family. For a nuclear family with two parents and m children,
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The mathematical details are shown in Supplementary Appendix 1. With NME observed from the data and λ 
assumed known, we can estimate ε by solving Eqs. (8) and (9).

Simulation.  We constructed a large pedigree (N = 20; Fig. 2A), a medium-size pedigree (N = 10; Fig. 2B), and 
a small pedigree (N = 4; Fig. 2C) as representatives to investigate the performance of our method. The genotype 
data of 18,210 markers on chromosome 22 were simulated from the HapMap phase 3 data. We first simulated the 
founders in the three pedigrees using the phased haplotypes from HapMap Yoruba in Ibdan, Nigeria (YRI), and 
Utah residents with Northern and Western European ancestry from the CEPH collection (CEU). For the first 
locus on this chromosome, we randomly sampled a YRI or CEU haplotype with probability given by the admix-
ture rates (80%/20%). Moving along the chromosome, the recombination events were modeled with a Poisson 
distribution. Assuming at most one recombination event could occur between two adjacent loci, a recombination 
event was sampled with probability e(1 )d− τ− , where d is the genetic distance (in Morgans) and τ is the number 
of generations since admixture. We set τ = 8 for all founders. If a recombination event occurs, a new haplotype 
would be sampled. In the second step, we simulated the offspring given their parents’ haplotypes. The offspring 
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inherits one chromosome from each of the parents. A crossover event in the parent was generated with probabil-
ity e(1 )d− − , i.e. τ = 1.

In practice, we do not know the true ancestral populations. To add more uncertainty in inferring local ances-
try, we also inferred the local ancestries using HapMap phase 3 Luhya in Webuye, Kenya (LWK) and Toscani in 
Italy (TSI) as the reference panel. We used SABER+13 and HAPMIX14 to infer the local ancestries assuming all 
individuals are unrelated.

We estimated the allelic error rate ε from all markers on chromosome 22 using Eq. (8). Since a local ancestry 
block is often several cM long, to save computational time we could work on an ancestry block instead of on each 
single marker.

Application: local ancestry inference in the cleveland family study.  We applied FamANC on the 
African Americans from the Cleveland Family Study (CFS). The CFS is a family-based longitudinal study con-
sisting of laboratory-diagnosed sleep apnea patients, their family members, and neighborhood control families, 
as described previously16. The de-identified genotype data were analyzed at Case Western Reserve University. 
The CFS study protocol was approved by the Partners Human Research Committee/IRB. The CFS includes 754 
African Americans from 148 large families. Among those, 632 were genotyped with the Affymetrix 6.0 array and 
122 were genotyped with the Illumina OmniExpress array. We merged the genotype data from the two different 
platforms and checked for Mendelian errors using PLINK20. Individuals with more than 5% Mendelian errors or 
SNPs with more than 10% Mendelian errors were removed. The remaining errors were set to be missing values. 
We phased the haplotypes in the CFS using BEAGLE software21 and inferred the local ancestries using HapMap 
phase 3 CEU and YRI as reference panels in SABER+ software, assuming all individuals are unrelated. We then 
applied FamANC on the SABER+ inferred local ancestries.

Results
Simulation.  We used SABER+ and HAPMIX to infer the local ancestries on chromosome 22 in the three 
simulated families. The true dosage error rate for SABER+ and HAPMIX were similar (err = 0.011 vs 0.014). We 
divided the three families into 10 small nuclear families and estimated the allelic error rate ε from the observed 
Mendelian errors using Eq. (8) in those nuclear families. From Eq. (2), the estimated dosage error rate is 0.0096, 
which is consistent with the true inference error rate.

The ancestry inference error rates of SABER+ and HAPMIX for our simulated data are low. We modeled the 
probabilities of observing different numbers of individuals with ancestry inference errors at one locus in a family 
using a binomial distribution with inference error probability 0.01 (Supplementary Fig. 1). The probabilities of 
observing three or more individuals with ancestry error at the same locus were small in all three simulated pedi-
grees. Therefore, in a family with size no larger than 20, we do not have to search all possible X Pedt ∈ . To save 
computation time we only considered a smaller set of Ped with at most two values different from the observed Yt.

Figure 2.  The structures of three simulated pedigrees.

https://doi.org/10.1038/s41598-019-57039-w


6Scientific Reports |          (2020) 10:189  | https://doi.org/10.1038/s41598-019-57039-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

By applying FamANC on the simulated data, we were able to correct local ancestry estimation errors at 195 
loci per individual for SABER+ and at 90 loci per individual for HAPMIX (Table 1). The average dosage error 
rate of SABER+ was reduced from 0.011 to 0.0086, and the dosage error rate of HAPMIX was reduced from 0.014 
to 0.0076.

Local ancestries in CFS.  We applied FamANC to the CFS African Americans. We checked Mendelian errors 
using PLINK20. No individual failed the 5% Mendelian filter threshold and no SNP failed the 10% Mendelian fil-
ter threshold. The genotypes with Mendelian errors across the genome were set as missing. We used SABER+ 
to estimate the local ancestries on phased chromosomes in the CFS assuming all individuals are unrelated. The 
local ancestry error rate, estimated from 50 nuclear families, was 0.0278, higher than that in the simulated data.

For some pedigrees with missing first-generation genotype, we removed the first generation and divided them 
into smaller pedigrees (as seen in each dashed rectangle in Supplementary Fig. 2). A function for pedigree divi-
sion is provided within the FamANC software. This resulted in 142 pedigrees with sizes ranging from 2 to 13. 124 
individuals without any relatives collected in this dataset were further removed. The distribution of analyzed 
family size is presented in Supplementary Fig. 3A. We found the probability of observing three or more individu-
als with ancestry inference errors at the same locus for any family, given error rate = 0.03, to be small 
(Supplementary Fig. 3B). Therefore, to save computation time, we only searched for ∈X Pedt  with at most two 
values differing from the observed Yt in a pedigree. Finally, we applied FamANC on the 142 families. Figure 3 
shows the local ancestry estimates on chromosome 22 in an 11-individual family before and after applying 
FamANC. Our method was able to correct all identified Mendelian errors and most double crossovers. Having 
the local ancestries in the CFS with improved accuracy will be useful when using family-based admixture map-
ping to identify novel ancestry specific genetic risk factors for complex diseases such as sleep apnea. This approach 
may help to understand population differences of diseases and design personized treatment.

FamANC source code is available on GitHub (https://github.com/heming-wang/FamANC).

Discussion
We have developed an efficient method, FamANC, that uses known pedigree structure to improve local ancestry 
inference in recently admixed populations, where local ancestry inference is first obtained by existing methods 
that (potentially falsely) assume study individuals are unrelated. Specifically, pedigree structure is used to iden-
tify and correct Mendelian errors and double crossovers. When applied on family data, this method reduces the 
systematic errors in local ancestry inference, thus having the potential to improve the performance of disease 
mapping studies and population genetics inference in recently admixed populations.

We have also provided a method to estimate the local ancestry inference error rate for existing software using 
the observed number of Mendelian errors in nuclear families while falsely assuming the individuals are unrelated. 
In this method, we assumed that in any small nuclear family only one member can have a local ancestry inference 
error at a locus. This assumption may be violated for an extremely large nuclear family with two parents and mul-
tiple children and lead to underestimation of the error rate.

We estimated a higher local ancestry inference error rate in real data than in simulated data. This could be 
due to genotyping errors in the real data. However, it is also possible that our simulation strategy may only reflect 
an ideal mixture of ancestral haplotype segments, which may not represent the complex admixture process of 
ancestral populations in evolutionary history. This simulation method has been commonly used in many genetic 
studies, so this possibility raises a concern about the performance of many local ancestry inference methods. 
Developing mathematical models that mimic a complex and historically accurate admixture history is a topic for 
future research.

Our method has some limitations. FamANC performs well when the local ancestries inferred in the sample at 
the first step, assuming independence, are estimated with sufficient accuracy (err < 0.1). It may not be suitable for 
poorly inferred data. At a given locus, our method works by detecting either a Mendelian or a cross-over error, 
and correcting it using local ancestry inference from neighboring loci, namely X X,t t1 1− + . Doing so, we assume 
that the inferred local ancestries in these positions are correct, i.e. X Yt t1 1=− −  and X Yt t1 1=+ + . Clearly, this is 
not always true. For example, in our simulation we observed a type of local ancestry inference error introduced 
by shifting recombination points (Supplementary Fig. 4), which results in incorrect inference along an interval, 

N
Software used 
in Step 1

Dosage error Number of loci with errors

Step 1 Step 2 Step 1 Step 2

Family 1 20
SABER+ 4456.3 3643 7217 3643

HAPMIX 5543.5 3160 4723 3160

Family 2 10
SABER+ 2305.4 1671 4623 1671

HAPMIX 3993.7 2019 3451 2019

Family 3 4
SABER+ 43.6 24 136 24

HAPMIX 57.6 14 64 14

Total 34
SABER+ 6805.3 5338 11976 5338

HAPMIX 9594.8 5193 8238 5193

Table 1.  Performance of FamANC in simulated families. Step 1: local ancestry inferences using SABER+/
HAPMIX while assuming individuals are unrelated. Step 2: Appling FamANC on top of the local ancestry 
results from Step 1.
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and this may overlap multiple loci. However, none of the existing methods appropriately handles such an error. 
Detecting and correcting for such a shifting recombination point error is a topic for future research. Other poten-
tial improvements to FamANC can also be gained by incorporating more markers around each locus for error 
correction, and by using genotypes. In this study, we only evaluated the performance of FamANC on local ances-
tries inferred by SABER+ and HAPMIX, which were commonly used in two-way admixed population and 
showed high accuracy22. The performance of FamANC when used following other recently released ancestry 
inference software such as RFMix23 should be evaluated in the future.

In summary, we developed a novel method, FamANC, which can improve the accuracy of local ancestry infer-
ence in large pedigrees and will benefit future family-based genetic studies.
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