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P -symmetry from Lindblad
dynamics in a linearized
optomechanical system
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B. M. Rodriguez-Lara*®

We analyze a lossy linearized optomechanical system in the red-detuned regime under the rotating
wave approximation. This so-called optomechanical state transfer protocol provides effective lossy
frequency converter (quantum beam-splitter-like) dynamics where the strength of the coupling
between the electromagnetic and mechanical modes is controlled by the optical steady-state
amplitude. By restricting to a subspace with no losses, we argue that the transition from mode-
hybridization in the strong coupling regime to the damped-dynamics in the weak coupling regime, is a
signature of the passive parity-time (#.7°) symmetry breaking transition in the underlying non-
Hermitian quantum dimer. We compare the dynamics generated by the quantum open system
(Langevin or Lindblad) approach to that of the .7 -symmetric Hamiltonian, to characterize the cases
where the two are identical. Additionally, we numerically explore the evolution of separable and
correlated number states at zero temperature as well as thermal initial state evolution at room
temperature. Our results provide a pathway for realizing non-Hermitian Hamiltonians in
optomechanical systems at a quantum level.

Photonics provides a fertile ground for the classical simulation of non-Hermitian systems with gain, loss, or both,
including systems with balanced gain and loss, i.e. parity-time (#.7") symmetric systems'. In such a simulation
with classical light, the complex potentials in the 2.7 -symmetric Hamiltonian of a quantum system translate into
complex refractive media that represent localized amplification or absorption. These parity-time symmetric
structures are described by a Schrddinger-like differential equation, where the renormalized paraxial propagation
mimics quantum dynamics of a non-relativistic particle in the presence of complex optical potentials>*. A key
feature of the 2.7 -symmetric Hamiltonian is that at small gain-loss strength, its spectrum remains purely real, its
linearly independent eigenfunctions are no longer orthogonal, but continue to remain simultaneous eigenfunc-
tions of the combined .7 operator. When the gain-loss strength is large, the spectrum renders into complex
conjugate eigenvalue pairs, and the associated eigenfunctions transform into the other under the .7~ operation®.
This transition from the 2.7 -symmetric phase to the 2.7 -symmetry broken phase occurs at an exceptional point
(EP) where the algebraic multiplicity of the Hamiltonian differs from its geometric multiplicity®. The dynamics of
non-Hermitian systems across and in the neighborhood of the transition point have been extensively investigated
in recent years in mostly classical, optical realizations.

On a fundamental level, the effective, non-Hermitian Hamiltonian model ignores the thermal fluctuations
attendant with the loss (due to fluctuation-dissipation theorem’) and zero-temperature quantum fluctuations
attendant with the gain (due to the vacuum noise in linear quantum amplifiers®). Therefore, non-Hermitian
dynamics has been realized in mode-selective lossy systems, including heralded single photons®, ultracold
atoms'’, and superconducting transmons'!, where the thermal fluctuations can be safely ignored. Such lossy sys-
tems are also a promising candidate for observing 2.7 -symmetric quantum optics across EPs of arbitrary order
with appropriate post-selection’?. In systems with both gain and loss, the inclusion of non-classical light'* requires
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the introduction of (quantum) fluctuations induced by the linear media either by Langevin equation'*'¢ or

Lindblad master equation'’~* formalism. Indeed, the trace-preserving, steady-state generating Lindblad
approach allows us to understand, in a more realistic way, the dynamics of optomechanical systems and, at the
same time, the emergence of a non-Hermitian Hamiltonian in this approach. Although the relation between the
Lindblad and non-Hermitian approaches has been explored in the past?, there is renewed interest in the excep-
tional point structures?! of the two approaches, in part due to the recent realization of non-Hermitian
Hamiltonian dynamics in a single qubit!!.

In this paper, we provide a thorough analysis of both approaches and present the main differences between
them. As model system, we consider a standard, first red-sideband, strongly-driven optomechanical system,
where the optomechanical coupling leads to the hybridization of the electromagnetic and mechanical modes?.
This protocol generates an effective, linearized quantum-fluctuation Hamiltonian for the electromagnetic and
mechanical modes that is equivalent to that of a lossy, quantum beam-splitter for the two modes®.

The plan for the paper is as follows. First, we introduce the basic model and its Lindblad dynamics, recall the
corresponding Langevin equation treatment, and obtain the mode-selective lossy Hamiltonian. We show that
coupling to a thermal reservoir leads to a passive 2.7 -symmetric dimer dynamics where the electromagnetic
driving controls the 2.7 -symmetric or #.7 -symmetric broken phases of the dimer. Next, we present numerical
results that compare the non-Hermitian Hamiltonian evolution of the density matrix with the evolution under a
zero-temperature Lindblad master equation for product initial states and correlated NOON initial states. Then, we
present finite temperature results for the transition from strong to weak coupling regimes in state transfer proto-
col at finite temperature to relate it with the .7 -symmetry transition. We conclude the paper with a brief
discussion.

Results
Optomechanical state-transfer protocol. The Hamiltonian for the standard optomechanical system?*2,
in a frame rotating at the pump frequency w, and units of 77,

n AF A rTa siacnt p A
Hy = (w, — wp)afa +wb b +ga'alb +b) + Q@'+ a2, (1)

models the interaction of an electromagnetic mode, with frequency w, and annihilation operator d, and a
mechanical mode, with frequency w;, and annihilation operator b. The bare optomechanical coupling, g, indicates
the coupling between the dimensionless intensity of the electromagnetic mode, provided by the number operator
O . . . . At .

d'a, and the dimensionless mechanical displacement, (b + b). The parameter Q gives the strength of the electro-
magnetic pump. Hereafter, we will use subscripts a and b to label electromagnetic and mechanical modes, respec-
tively. Strong driving allows us to split the mode dynamics into semi-classical and quantum fluctuation parts,
d=a+ ¢andb = 3 + d**¥. In the presence of a thermal bath, which introduces dissipation for both modes,
the semi-classical part shows a steady state with electromagnetic coherent amplitude o = —i€/[2(w, — w,) — i,
and mechanical coherent amplitude 5 = — g0|o¢|2 /[w, — iv,/2). Here y, and -, are the phenomenological decay
rates for the electromagnetic and mechanical mode-occupation numbers, respectively. Under red-sideband driv-
ing,w, = w, — wj, + 2g,R(3), and the rotating-wave approximation, a quantum beam-splitter Hamiltonian pro-
vides the dynamics for the quantum fluctuation,

A =w@e+dd +ge'd+ed), @)
where the steady-state electromagnetic coherent amplitude enhances the bare optomechanical coupling,

&=l

In this scenario, the Lindblad master equation®-,

N A At A _ AT A _ At _ Al A
0,0 = ilp, H] + 'yanaQZ[cT]p + (7, + DZICE1p + v, 21d 19 + (7, + 1)2[d]p, (3)

governs the dynamics of the optomechanical density matrix, 5 = g (t), coupled to a thermal bath defined by the
action of the zero-trace superoperator

4

where the average thermal mode-occupation numbers, /i, = 1/ (e“x/ kT _ 1) with x={a, b}, are given in terms of
Boltzmann constant k; and the bath temperature T. The anti-commutator term in Eq. (4) can be interpreted as a
purely imaginary gain or loss potential in an effective, non-Hermitian Hamiltonian. At zero temperature, the

Lindblad approach leads to the following equations for the average excitation numbers (¢'¢) and (cfﬁ},

0,(&7¢), = +2¢ Im(¢'d), — ~,(é"¢),, (5)

0d'd), = —2g Im(e'd), — ,(d'd),. ©)

The quantum Langevin equations of motion for the annihilation operators®,
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provide an equivalent approach to the open quantum evolution. Here, the dimensionful operators 5 with zero

mean and correlation funct1ons<§ (t)f (8)) = ~,7m,6(t — s)and (5 (t)§ (5)) = (7, + Dt — s), withx={a, b},
model the quantum noise for the electromagnetlc and mechanical modes respectively. A Hamiltonian with spe-
cific mode losses,

N N At

Hyy=H — i(y¢'¢ + y,d d)/2, (8)
generates the first term on the right-hand side of Eq. (7). When confined to a subspace with a fixed total excitation
number N = ¢'¢ + d'd, Eq. (8) becomes 5, = (w, — il + /AN + (&1 d)H, (¢ &) with

Hy; = go, — il'g, 9)

where o,, 0, are standard Pauli matrices and I = (y, — ,)/4. It follows that the decay rates of the two eigenmodes
of H,, are equal (27 -symmetric phase) for |I'| < g, they reach the maximum at |I'| =g, and a slowly decaying
eigenmode emerges for |['| > g'®1232-34,

The dynamics generated by Egs. (3) and (7) are completely equivalent®'. However, we want to identify and
elucidate the cases where they are equivalent to the non-unitary time evolution generated by the non-Hermitian
Hamiltonian, i.e. Eq. (8). In the absence of the quantum noise terms, the Hamiltonian approach gives the follow-
ing equations of motion for the mode occupation numbers,

~ . AT A
(e e)y = +2gTm(ed), g — (ETe(Ee + 3yd D)y (10)

o At A At a
0(d )y = —2gIm(¢'d),y — (d d(7,E"¢ + 7 d D))y (11)

In the following, we compare the numerical results obtained by solving Egs. (5) and (6) with those from Eqs. (10)
and (11). We explore both zero and finite temperatures with initial states that are either product states or correlated
NOON states.

Numerical results.  For our simulations, we make use of optomechanical parameters from an experimental state
transfer protocol {w,, wy, Y, Y} = {1.02 X 10, 1.59 x 107, 3.26 x 10°, 3.00 x 10°} Hz*. The experimental
enhanced optomechanical coupling g = 1.33 x 10 *w, provides dynamics in the 2.7 -symmetric regime.
We calculate the required value to reach the exceptional point, g = (7, — 7,)/4 = 5.12 x 10w, = 8.14 x 10*Hz.
For the broken symmetry regime, we take an order of magnitude less than the reported experimental value,
g = 1.33 x 10w, without further consideration regarding the validity of the mean-field approximation. For the
sake of simplicity, we start our numerical experiments for Lindblad master equation carried at zero temperature and
the initial states are given in terms of Fock states. It is important to remark that, even though zero-temperature condi-
tions are ideal for optomechanical experiments, simulations assuming such condition can help elucidate the difference
in the dynamics of both approaches, namely the full quantum analysis and the non-Hermitian Hamiltonian approach.
For simulations at zero temperature, we use bosonic subspaces of dimension equal to the maximum number of excita-
tions plus two to unfold and reduce the complex differential equations into a set of real differential equations solved
using standard Livermore Solver for Ordinary Differential Equations (LSODA) methods. At finite temperature, the
solutions to the Langevin equations are obtained exactly by means of an adaptive integrator®'.

We start with the single-excitation subspace. In this limit, the Lindblad master equation dynamics and the
non-Hermitian Hamiltonian dynamics are identical,

068y = 04e'e)y = +2¢ Im(e'd) — 5 (c"e),
04d'd), = 0d By = —2g (') — 7,(d'd), (12)

>
s
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because (£'££'%) = (£%) for x={a, b}, and <€+55Allﬁ> = 0 in the single-excitation subspace. Figure 1 shows the
occupation numbers for the electromagnetic mode n,(t) and the mechanical mode #,(f) obtained via the Lindblad
master equation (solid lines), and the non-Hermitian Hamiltonian evolution (dashed lines). The initial state is
separable (first row), and a correlated NOON state (second row). The first, second, and third columns correspond
to the system in the 2.7 -symmetric region (g = 1.33 x 10" *w,), at the exceptional point (g = 5.12 x 10 >w,),
and in the 2.7 -symmetry broken region (g = 1.33 x 10 >w,) respectively.

To explore the dynamics beyond the single-excitation subspace, we define instantaneously renormalized
excitation numbers and first order correlation or coherence,

n,(t) = (€78 /(N), (13)
ny(t) = (d Ay, (14)
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Figure 1. Time-dependent occupation numbers #,(t) (blue) and n,(t) (red) for an initial (a-c) separable,
[4(0)) = |1, 0), and (d-f) correlated, |{(0)) = (|1, 0) + |0, 1))/~/2, single-excitation state. Solid and dashed
lines correspond to Lindblad master equation and non-Hermitian Hamiltonian evolution, in that order.
Columns show dynamics in the 2.7 -symmetric region, at the exceptional point, and in the 2.7 -symmetry
broken region from left to right.
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Figure 2. Time dependent occupation numbers 7,(¢) (blue) and n,(t) (red) for initial separable states (a-c)
[1(0)) = |N, 0) with N=5and (d-f) |¢(0)) = [N — m, m) with N=5 and m = 2. Columns show dynamics in
the .7 -symmetric region, at the exceptional point, and in the .7 -symmetry broken region from left to right.
Solid and dashed lines correspond to Lindblad master equation and non-Hermitian Hamiltonian evolution, in
that order. The full Lindblad result differs from the Hamiltonian evolution, but has clear signatures of the 2.7
-symmetry breaking transition.

gV = &'dy (). (15)
We note that the process of instantaneous renormalization is equivalent to restricting to a fixed excitation number

(N) sector. In this sector, the Hamiltonian (¢'d r)H;Wﬁ(cAﬁ )" is an N+ 1 matrix in the photon-phonon number basis
and post-selecting to this sector is equivalent to measuring the quantities 7,(t), n,(¢) and g ()12,

The top row in Fig. 2 shows occupation numbers n,(t), n,(f) for an initial state |¢/(0)) = |N, 0) with N=>5 obtained
from the Lindblad (solid lines) and Hamiltonian (dashed lines) dynamics. The bottom row, on the other hand, shows
results for [¢)(0)) = |[N — m, m) with m =2 and N=5. We observe the three well defined dynamical regimes: the
anharmonic oscillations in n,(f) have a slightly different period in the .7 -symmetric region, but converge asymptot-
ically at the exceptional point and in 2.7 -symmetry broken region. This surprising result, where Lindblad dynamics
does not rise to a steady-state behavior, is solely due to the post-selection scheme we have discussed.

Figure 3 shows the real (blue) and imaginary (blue) parts of the optomechanical coherence g(l)(t) for separable
states |N, 0) (top row) and|N — m, m) (bottom row) respectively. The difference between the Lindblad master
equation dynamics (solid lines) and the non-Hermitian Hamiltonian evolution (dashed lines) is again manifest
only for product states where both modes are excited.
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Figure 3. Time-dependent coherence g'(¢) for initial separable states (a-c) [1/(0)) = |N, 0) and (d-f)

|1(0)) = [N — m, m) with N=>5 and m =2. Blue and red show the real and imaginary part of the
optomechanical coherence g(f) respectively. Solid and dashed lines correspond to Lindblad master equation
and non-Hermitian Hamiltonian evolution, in that order. Columns show dynamics in the .7 -symmetric
region, at the exceptional point, and in the 2.7 -symmetry broken region from left to right.
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Figure 4. Time dependent occupation numbers 7,(t) (blue) and 7,(t) (red) for correlated NOON state,
[4(0)) = (|N, 0) + |0, N))/~/2, with (a-c) N=2 and (d-f) N=5. Solid and dashed lines correspond to
Lindblad master equation and non-Hermitian Hamiltonian evolution, in that order. The full Lindblad result
differs from the Hamiltonian evolution, but has clear signatures of the .7 -symmetry breaking transition.

Next, we consider the zero-temperature evolution with highly correlated initial states, such as the so-called
NOON states, with different values of N. Figure 4 shows that the Lindblad master equation results (solid lines) for
the scaled occupation numbers 7,(t) and n,(t) are independent of N, while the Hamiltonian evolution results
(dashed line) show deviations that increase with N. Again, the characteristic dynamics for the .7 -symmetric
phase, exceptional point, and 2.7 -symmetry broken phase appear. The anharmonic oscillation period is the
same for both approaches in the 2.7 -symmetric region, but the interference in the Hamiltonian evolution differ-
entiates them apart. In the exceptional and broken regimes both dynamics converge asymptotically.

Figure 5 shows qualitatively similar results for the optomechanical coherence g"(¢) with NOON initial states.
We find it remarkable that asymptotic value of gV at the exceptional point is a maximum in any each case. This is
a fascinating effect that could prove useful for preserving coherence in the implementation of quantum informa-
tion protocols.

Finally, we consider the finite-temperature case that is most relevant to current optomechanical experiments,
where the states of the modes are thermal coherent states. In this case, the full quantum dynamics asymptotically
provides a thermal steady-state, and the interplay between decay ratios and the enhanced optomechanical cou-
pling provides the dynamics before stabilization??. Figure 6 shows these dynamics for finite temperature T = 293
K where the initial state of the fluctuations given by thermal states with mean excitation numbers
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Figure 5. Time-dependent coherence g(#) for correlated NOON state,|1/(0)) = (|N, 0) + |0, N))//2, with
(a-c) N=2 and (d-f) N=5. Blue and red show the real and imaginary part of the optomechanical coherence
g9(t) respectively. Solid and dashed lines correspond to Lindblad master equation and non-Hermitian
Hamiltonian evolution, in that order. Surprisingly, the coherence is maximum at the exceptional point.
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Figure 6. Time dependent occupation numbers 7,(t) (blue) and n,(t) (red) obtained by solving the Langevin
equation at room temperature for initial thermal states. The dynamics has clear signatures of the 2.7 -symmetry
breaking transition displaying (a) the .7 -symmetry regime, (b) the EP and (c) the broken-symmetry regime.

(¢'¢) = 3.76 x 10%and (zfﬁ} = 2.41 x 10° For a strong optomechanical coupling, g > |T'|, the electromagnetic
and mechanical modes hybridize and this standard mode-splitting results in oscillatory behavior that provides
state transfer, Fig. 6(a), similar to dynamics in the 2.7 -symmetry region. The transition point from strong to
weak coupling occurs at what in non-Hermitian Hamiltonian systems is the exceptional point ¢ = |I"| where
power-law approach to steady-state arises and there is no state transfer anymore, Fig. 6(b). For weak coupling,
g < |T'|, the electromagnetic mode decays according to its damping rate but the mechanical mode shows an effec-
tive decay rate that includes the effect of the electromagnetic mode on the mechanical oscillator equivalent to the
broken symmetry regime, Fig. 6(c). These results are obtained via the full Langevin equation for the same exper-
imental system®, but now at room temperature.

Conclusion

We revisited the optomechanical state transfer protocol from a non-Hermitian-Hamiltonian point of view. After
the mean-field approximation, the linearized quantum fluctuation beam-splitter-like Hamiltonian provides us
with a theoretical testing ground to compare the results from Lindblad master equation and non-Hermitian
Hamiltonian evolution for a realization of the standard quantum 27 -symmetric dimer.

We have shown that Lindblad dynamics and the Hamiltonian evolution at zero temperature provide identi-
cal dynamics for separable initial states where one of the modes is a number state and the other is the vacuum.
However, for Fock initial states with non-zero mode numbers, the dynamics are not identical, but continue to be
qualitatively similar. The same trend holds for correlated NOON states. Although the zero-temperature bath and
Fock initial states cannot be explored in the present-day experimental optomechanical setting, they point to the
fact that these regimes are differentiable in systems with engineered losses, such as coupled photonic waveguides.

Finally, at finite temperature, we find that the presence or absence of state transfer is a signature of the 2.7
-symmetric or .7 -symmetry broken phases, although the dynamics are described by the full, finite-temperature
Langevin equation. These results are accessible in a single device through control of the driving strength.
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