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Deep learning for irregularly
and regularly missing data
reconstruction

Xintao Chail, Hanming Gu'*, Feng Li2, Hongyou Duan3, Xiaobo Hu? & Kai Lin?

Deep learning (DL) is a powerful tool for mining features from data, which can theoretically avoid
assumptions (e.g., linear events) constraining conventional interpolation methods. Motivated by

this and inspired by image-to-image translation, we applied DL to irregularly and regularly missing
data reconstruction with the aim of transforming incomplete data into corresponding complete

data. To accomplish this, we established a model architecture with randomly sampled data as input
and corresponding complete data as output, which was based on an encoder-decoder-style U-Net
convolutional neural network. We carefully prepared the training data using synthetic and field seismic
data. We used a mean-squared-error loss function and an Adam optimizer to train the network. We
displayed the feature maps for a randomly sampled data set going through the trained model with the
aim of explaining how the missing data are reconstructed. We benchmarked the method on several
typical datasets for irregularly missing data reconstruction, which achieved better performances
compared with a peer-reviewed Fourier transform interpolation method, verifying the effectiveness,
superiority, and generalization capability of our approach. Because regularly missing is a special case
of irreqgularly missing, we successfully applied the model to regularly missing data reconstruction,
although it was trained with irregularly sampled data only.

Deep learning (DL)! is a branch of machine learning (ML) that addresses the question of how to build computers
that intelligently improve through experience®. Recently, DL or ML, in general, enjoyed an explosive growth and
showed great promise in various areas, e.g., biology>*, image reconstruction®, and solid earth geoscience’. DL
is powerful for mining features or relationships from data, which is invaluable in the context of big data, as it
extracts high-level information from huge volumes of data. Please refer to Goodfellow et al.® for a good textbook
of DL. One of the most popular DL technologies is the convolutional neural network (CNN), which is at the core
of most state-of-the-art DL solutions for numerous tasks’. In recent years, deep CNNs have had stunning suc-
cesses, surpassing human accuracy for hard problems such as visual recognition®.

In exploration seismology, DL or ML has been widely used in fault detection, structural interpretation'?,
inversion'?, and data interpolation'*-'%, to name a few. A more tremendous trend of developments has recently
come about through the use of DL not for image analysis but for image transformation. In these cases, CNNs are
trained to transform one type of image into another. Many geophysical problems can be posed as transforming
an input profile into a corresponding output profile (e.g., denoising: transforming noisy data to noise-free data).
Inspired by Isola et al.'®, where DL is investigated as a general-purpose solution to image-to-image translation
problems, we apply DL to missing data reconstruction with the aim of transforming an input incomplete data set
into a corresponding complete data set, which is an important ongoing research topic in exploration seismology.

Physical (e.g., the presence of obstacles, no-permit areas, and hardware problems with geophones/hydro-
phones/air-guns) and economic constraints lead seismic data to be incomplete or sparsely sampled during
data acquisition'’. However, many important techniques cannot adequately handle irregular sampling and
rely on uniformly and densely sampled, unaliased input data (e.g., 2D/3D surface-related multiple elimination,
amplitude-variation-with-offset analysis, and reservoir characterization). The performance of multichannel data
processing depends heavily on the spatial sampling intervals. Too large an interval leads to aliasing, adversely
resulting in poor resolution. Therefore, the missing data should be reconstructed'®.
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Figure 1. Network architecture at an example of Ny N—;V pixels in the lowest resolution. N, N,,, and N, are the

4
height, width, and the number of channels of the iznput cfata, respectively. Blocks show the calculated feature

hierarchy. Each green box denotes multiple feature maps, and the number of feature maps (i.e., F;;c(, 5)) is
marked on the right of the box. The height-width-size of a feature map is given around the box. The boxes with
the same height have the same number of feature maps. The boxes with the same width indicate the same
height-width-size of feature maps. The arrows and the right curly brace denote different operations. Numbers in
[[-]] are labelled according to Table 1, which are in line with those shown in Fig. 2.

The missing data problem can be classified into two categories: regularly missing and irregularly missing.
Regularly missing means the data are equidistantly or periodically missing at a constant rate in uniform grids.
Irregularly missing means the data are randomly missing on uniform grids". Seismic data are often irregularly
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Layer Layer
number | name Number of trainable parameters

2 Conv0l | (K,K,, x N, + 1) X F, = 1664
4 Conv02 | (KK, x F, + 1) x F, = 102464
7 Conv03 | (K,K,, x F, + 1) X F,=204928
9 Conv04 | (K,K,, x F,+ 1) x F,=409728
12 Conv05 | (K,K,, x F, + 1) X F; = 819456
14 Conv06 (K K,, x F3+ 1) x F; = 1638656
17 Conv07 | (K,K,, % F3+ 1) x F, = 3277312
19 Conv08 | (K,K,, x F,+ 1) X F,=6554112
22 Conv09 (K,K,, x F;+ 1) x F;=13108224
24 Convl10 (K » X Fs+ 1) x F5=26215424
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28 Convll x (Fs+ F,) + 1) x F, = 19661312
30 Convl2
34 Convl3
36 Convl14
40 Convl5
42 Convl6é
46 Convl7
48 Conv18
50 Convl9

x Fy+ 1) x F, = 6554112

KK,

KK, % (F, + F3) + 1) x F; = 4915456
KK, x Fy + 1) x F, = 1638656
KK,
KK,

X (F;+F,) + 1) x F, = 1228928
X F, 4+ 1) x F, = 409728
KK, % (F,+ F)) + 1) x F, = 307264
KhK x Fy +1) x F, = 102464
1X1xF +1)XxN,=65

Table 1. Model summary for the model architecture shown in Fig. 1, where N, = 1, F, = 64, F, = 128, F; = 256,
F, =512, F; = 1024, and K;,K,, = K}, X K,,. K, = K,, = 5 denote the height and width of the convolution kernel,
respectively. The first layer is an input layer. The layers numbered 3, 5, 8, 10, 13, 15, 18, 20, 23, 25, 29, 31, 35, 37,
41, 43, 47, and 49 are (18) activation layers. The layers numbered 6, 11, 16, and 21 are (4) max-pooling layers.
The layers numbered 26, 32, 38, and 44 are (4) up-sampling layers. The layers numbered 27, 33, 39, and 45 are
(4) concatenate layers. The total trainable parameters are 87,149,953.

and sparsely sampled along the spatial coordinates, leading to suboptimal processing and imaging results. This
work primarily concentrates on solving the irregularly missing data problem. Solving the regularly missing data
reconstruction problem is an unexpected harvest.

Based on a variety of principles and assumptions, important advances have been made in seismic data recon-
struction. Some of them addressed interpolating regularly sampled data'*-!>?°, while some of them attacked
non-uniformly sampled interpolation?!. There are techniques developed for both irregularly and regularly miss-
ing data reconstruction®’. A complete and detailed discussion of previous publications is beyond the scope of this
work. We only review some key viewpoints and literature closely related to the subject of this work. The methods
based on classical signal-processing principles use specific properties of seismic data as a priori information
for interpolation. Signal-processing reconstruction techniques via transforming the data to other domains and
prediction-error filtering generally assume that the data are composed of a superposition of a few plane waves.
The sparseness, band limitation, and low-rank assumptions also underlie some of these methods.

Naghizadeh and Innanen?® addressed seismic data interpolation using a fast-generalized Fourier transform
(FGFT). They utilized the FGFT to identify the space-wavenumber evolution of spatial signals at each tempo-
ral frequency, and a least-squares fitting scheme to retrieve the optimal FGFT coefficients representative of the
desired interpolated data. For randomly sampled data, they sought a sparse representation of FGFT coeflicients
to retrieve the missing pixels. To interpolate the regularly sampled data at a given frequency, they used a mask
function derived from the FGFT coefficients of the low frequencies. This makes the FGFT interpolation method
a good competitor, which is used for comparison in our work.

Of the multitudinous methods for seismic data interpolation, few take advantage of recent developments
in DL or ML. Jia and Ma®® proposed a method for reconstructing seismic data from regularly under-sampled
traces based on a classic ML method of support vector regression. Jia et al.'* proposed an intelligent interpolation
method for regularly sampled data by Monte Carlo ML. Wang et al.'* proposed a DL-based approach for regu-
larly sampled seismic data antialiasing interpolation. Based on CNNs, Wang et al.'® designed eight-layer residual
networks (ResNets) with a better back-propagation property for interpolation, which extract feature maps of the
training data in a non-linear way. For the methods of Jia and Ma'?, Jia et al.'*, and Wang et al.'®, in the training
process, to generate the input of the designed network, calculation of the initial pre-interpolation data using a
bicubic method is required, which affects the final performance of their methods.

With the DL theory described in Goodfellow et al.?, we applied DL to both irregularly and regularly missing
data reconstruction, where we defined intelligent data-to-data translation as the task of translating incomplete
data into complete data (without pre-interpolation). DL allows trainable models composed of multiple layers to
learn representations of data with multiple levels of abstraction’. DL is a representation-learning method with
multiple levels of representation obtained by composing non-linear modules, in which each transforms the rep-
resentation at one level into a representation at a higher, slightly more abstract level®. With the composition
of enough such layers, and given sufficient training data, very complicated functions/relations can be learned.
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Figure 2. Feature maps for a randomly sampled data set going through the trained model. Numbers in [[-]]
are labelled according to Table 1, which are consistent with those shown in Fig. 1. The symbol “.” implies the
omitted feature maps.

Moreover, as a motivation, DL can theoretically avoid some assumptions restricting conventional interpolation
methods (e.g., assumptions of linear events, sparsity, band limitation, and low-rank).

The rest of the paper is organized as follows. In the “Methods” section, first, we briefly transcribe some basic
DL theory; next, with the incomplete data as the model input and the corresponding complete data as the model
output, we elaborate the established model architecture in detail, which is based on an U-Net convolutional
network®; then, we provide detailed training analysis including the loss function definition, optimizer used, eval-
uation metrics, training data preparation, and parameter setup. In the “Results” section, to make the results more
convincing and to validate the generalization capacity of the trained model, we test the model’s performance
using several typical data sets (i.e., a synthetic training data set, a synthetic test data set, a physical modelling data
set, the Mobil Viking graben line 12 data set, the F3 data set, a fault data set from the GeoFrame software, and
a data set from the North Sea). The trained model is used to accomplish both irregularly and regularly missing
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Figure 3. Velocity models used to generate the synthetic data. Each velocity model has its own density model.
(a) Adapted Pluto 1.5 model. (b) Down-sampled Marmousi2 model. The lateral spacing dx and the depth
spacing dz are 5 m.

data reconstruction. After discussing some practical aspects and extensions of this work, we summarize some
concluding remarks.

Methods

Basic theory. For the sake of brevity, we refer the reader to Goodfellow et al.® for a detailed description of the
DL terminologies. DL is a computational tool to learn complex motifs from data. DL uses multiple processing
layers to discover patterns and structures in the data. Each layer learns features from the data that subsequent
layers build on. Non-linear parameterized processing layers are combined to progressively transform an input X
into the desired output Y, typically attaining only approximations Y, .. Deep artificial neural networks (ANNs)
are black-box models whose operation is opaque and difficult to interpret. The adjective “deep” refers to the large
number of stacked layers required for building a universal function approximator fas follows:

Yore = f(X50), (1)

where 6 denotes the parameters (including but not limited to, weights W and biases b of the convolution kernels)
in the CNNG.

We regard ANNGs as bridges connecting the input X and the desired output Y,.. ANNs with a sufficient number
of parameters can theoretically approximate any function. For fitting the desired mapping, the model needs to go
through a training process, which begins with a random choice for 6. The training process can be considered as
an optimization problem composed by finding a set of the internal parameters 6 through the minimization of the
discrepancy between Y, . and Y, (quantified by the loss function ¢, which will be explained later) for all the
samples fed into the model'?.

The parameters 6 are iteratively updated to minimize the loss using gradient descent and to improve the accu-
racy of the model prediction. Each layer of the model is differentiable, meaning that it is known how changes in 6
cause changes in output values. The back-propagation (BP) algorithm?* uses the chain rule to efficiently compute
all partial derivatives, or gradients, with just one forward pass through the model followed by a backward pass.
The training process is accomplished if the loss function achieves an acceptable level. The optimizer for the loss
function is an important requirement for training a model.

Model architecture. There is no hard and fast rule for how many layers are needed to constitute ANNs, but
most researchers agree that no less than three are required. Figure 1 shows a schematic of the established model
architecture, which belongs to a specific family of neural network (NN) architectures known as U-Net, a generic
DL solution for various tasks*. Specific to our mission, the model input data include one horizontal (spatial)
dimension and one vertical (temporal) dimension. In seismic terminology, N, and N,, denote the sampling points
of the input data along the time and space axes, respectively. The number of channels N, equals 1 for seismic
data. A data sample with N, channels is fed into the model on the top. The model input data X are randomly
missing in accordance with a certain percentage (e.g., 40% — 95%) in the space direction. Please note that no
pre-interpolation process is involved. The model output Y, (at the bottom) is the corresponding complete data.

The model architecture (Fig. 1) is an encoder-decoder-style NN solving the missing data reconstruction task
end-to-end, which is logically composed of a contracting path (upper-side, interpreted as an encoder) and a
more or less symmetric expanding path (lower-side, interpreted as a decoder). The encoder takes an incomplete
data sample as input and gradually calculates feature maps at multiple scales and abstraction levels resulting in a
multi-level, multi-resolution feature representation. Layers in the decoder successively synthesize the complete
data starting at low-resolution feature maps (denoting large scale structures) up to high-resolution feature maps
(representing fine scale structures)®. Please see Fig. 2 for a better understanding.

The contracting path/encoder follows a typical CNN, consisting of the repeated application of two padded
convolutions (padding avoids the loss of border pixels in every convolution), each followed by an activation oper-
ation (black-arrow) and a pooling operation (red-arrow) with stride two halving the resolution of the resulting
feature map. Convolutions directly following down-sampling steps double the number of feature maps*. Each
step in the expansive path/decoder consists of a bed-of-nails up-sampling of the feature maps by a factor of two
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Figure 4. Results on a synthetic training data set. (a) True data (a common-shot-point, CSP, gather). (b)
Irregularly sampled data with 90% missing. (c) DL reconstruction result. (d) Difference between (a,c).

(blue-arrow) followed by a concatenation (right curly brace) with the copied encoder feature maps at the cor-
responding resolution (purple-arrow), and two convolutions, each followed by an activation. The feature maps
from the contracting path are combined with the up-sampled output. Successive convolution layers then learn to
assemble a more precise output based on this. Skip connections have been shown to help train deeper networks by
preventing vanishing gradients®. At the final layer, a 1 x 1 convolution (green-arrow) is utilized to map multiple
feature maps to the desired output Y,

A widely used non-linear activation function is the rectified linear unit (ReLU), which returns element-wise
max(x, 0) with x being an input tensor. The ReLU activation was adopted in the constructed model. For the pool-
ing operation, we employed the max-pooling layer. Note that the number of output filters in the convolution (i.e.,
F,;cq1,5) increases (e.g., from 64 to 128, 256, 512, and 1024) as we go deep in the model. At each down-sampling
step, we generally double the number of feature maps.
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Table 1 provides a specified model summary. There are fifty layers (including 19 convolution layers). The
trainable parameters focus on convolution layers. No trainable parameters exist in the input, ReLU activation,
max-pooling, up-sampling, and concatenate layers. The trainable parameters in a convolution layer are computed
by the following:

(K, x K,, x E_;+ 1) X F, 2)

where K, x K,, is the convolution kernel size, F;,_, and F; denote the number of feature maps in the previous and
current layers, respectively. +1 means a bias is added. Figure 2 shows the feature maps for a randomly missing
data sample going through a trained model. Once trained, it is capable of filling in the gaps in corrupted data by
going through encoding and decoding steps.

Loss function. For our problem, we used a mean-squared-error (MSE) training loss function, which meas-
ures the average of the squares of the errors. Given the reference solution Y, and the model prediction Yo t the
MSE is computed as follows:

1 2 1
MSE = ZHYref - YpreHFm = ZHYref _f X 0)||Fro (3)

where L is the number of elements in Y,.5|| - | | , being the Frobenius norm. The MSE loss function is widely used
in statistics. Because we will work in a batch-wis¢ fashion in the training process, the loss function is composed of
a sum of subfunctions evaluated at different mini-batches of data. The loss function is accordingly stochastic.

Optimization algorithm. We employed an Adam (derived from adaptive moment estimation) algorithm
to optimize our stochastic loss function. Adam is a simple and computationally efficient algorithm for first-order
gradient-based optimization?®. Please see algorithm 1 for the pseudo-code of the employed Adam algorithm
$(0) denotes the stochastic scalar loss function, which is differentiable with respect to parameters 6. g, = \/ ¢,(0)
represents the gradient, i.e., the vector of partial derivatives of ¢, with respect to # evaluated at time step ¢. Adarn
updates exponential moving averages of the gradient m, and the squared gradient v, where the hyper-parameters
B B, € [0, 1) control the exponential decay rates of these moving averages. The moving averages themselves are
estimates of the first moment (the mean) and the second moment (the uncentred variance) of the gradient®.

Algorithm 1 shows that Adam only requires first-order gradients, which is straightforward to implement with
little memory requirement. Adam is designed to combine the advantages of two previously popular optimization
algorithms: AdaGrad®, which deals with sparse gradients well, and RMSProp, which works well in on-line and
non-stationary objectives®®. Adam is based on adaptive estimates of lower-order moments. Kingma and Ba%
analysed the theoretical convergence properties of the Adam algorithm. Adam is a versatile algorithm for DL
problems with big data and/or high-dimensional parameter spaces. Using large ANNs and data sets, Kingma
and Ba?® found Adam to be efficient, robust and well-suited to a wide range of practical non-convex optimization
problems in the DL field.

Evaluation metrics. As mentioned above, MSE is a measure of the quality of a predictor, which is always
non-negative. With our experience in the seismic data reconstruction field, we also utilized the signal-to-noise
ratio (SNR) as follows:

||Yref - Ypre| |2

SNR(dB) = — 20log ,
10 | |Yref| |2 (4)

to assess the result’s quality. Moreover, we used two other metrics that are widely used in the computer vision
super-resolution field: peak signal-to-noise ratio (PSNR) and structural similarity index method (SSIM)*. PSNR
is computed in the following way:

Algorithm 1. Adam, employed optimization algorithm for stochastic loss function.

1. Requirements: o Step size, aka learning rate. i, 3, € [0,1): Exponential decay rates for the moment estimates. ¢(6):
Stochastic loss function with parameters 6.

2. Initialization: All the following operations on vectors are element-wise. 6p: Initial parameter vector. Initialize first
moment vector mg = 0, second moment vector vo = 0, time step ¢ = 0.

3. while 6, not converged do

4. t=t+1

5. g =e¢(6,_1). Get gradients with respect to stochastic loss at time step .
6. m; = f; xm,_;+(1— ;) xg. Update biased first moment estimate.
7. vi =Py x v, 1+ (1 —B2) x g2. Update biased second moment estimate. g’ indicates the element-wise square g; © g;.
8. M, = 1'7'# Compute bias-corrected first moment estimate. 8] denotes B to the power ¢.
1

9. %= # Compute bias-corrected second moment estimate. 33 denotes f3; to the power ¢.

2

10. 6,=6,_,— Update parameters.

\/>+E
11. end while

12. Output: Resulting parameters 6;.
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Figure 5. Results on the Mobil Viking graben line 12 data set. (a) Reference data. (b) Irregularly sampled data
with 60% missing. (c) Interpolated data using the FGFT interpolation method®. (d) DL reconstruction result.

2
PSNR(dB) = 10log lo[l],

(5)
where M is the maximum value of elements in Y, The SSIM is defined as follows:

(ZLLY By + Cl) (20Y vy + Cz)
SSIM(Yref, Pre) _ ref  ‘pre % ref *pre

2 2 2 2 ?
(“Y,ef o+ cl) (0%, + 0%, + )

(6)
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Figure 6. Model input-output pairs, which are randomly selected from the training data set. Each pair
is composed of irregularly missing incomplete data (in the odd column, i.e., the model input X) and the
corresponding complete data (in the even column, i.e., the model output Y,¢). The size of each panel is
112 x 112.
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Figure 7. During training, variation of log | (normalized loss) with epoch.
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Figure 8. Results on a test data set generated with the Marmousi2 model. (a) True data. (b) Irregularly sampled
data with 70% missing. (c) DL reconstruction result. (d) Difference between (a,c).

where My and lL denote the mean of Y,,;and Y ore> respectively; oy, and oy . represent the variance of Y,.cand

Ypre, respectively, cY X is covariance between Y,.cand Y. The constant C, is included to avoid instability when

”Y + p, is very close to zero. Similarly, the constant C, is developed to avoid instability if o2 oy, + GY is very
close to zereo
The metrics MSE, SNR, PSNR, and SSIM can be used in the training and test processes to quantify the per-

formance of the result. The MSE values closer to zero are better. Generally, the higher the SNR, PSNR, and SSIM
values are, the better the result.

Training preparation and setup. Training data. The training data are vital for DL. We prepared the
training data utilizing not only the synthetic data but also the field seismic data, to let the model learn the features
of seismic data by being given as many instances as possible.
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Figure 9. Results on a physical modelling data set®’. (a) Reference data. (b) Irregularly sampled data with

70% missing. (c) Interpolated data using a fast-generalized Fourier transform (FGFT) method®. (d) DL
reconstruction result.

The synthetic training data are modelled with a forward-modelling code? based on some well-designed earth
models (e.g., Fig. 3a). The model in Fig. 3b is used to generate the test data that are completely unseen in the train-
ing process. The sources and receivers are equally distributed from 0 to 2550 m with 10 m spacing. The source is
shifted from the location of the first shot to the last one. The source and receiver depths are changed for different
earth models and experiments. The simulated data include 2048 shots (8 simulations, 256 shots per simulation),
and 256 traces per shot. There are 2048 samples along the time axis with a time interval dt of 0.5 ms. Because dt =
0.5 ms is barely used in industry, we revised the data of size 2048 x 256 x 2048 (arranged in the order of time axis,
receiver axis, and shot axis) to three data sets: 1024 x 256 x 2048 (dt = 1 ms), 512 x 256 x 2048 (dt = 2 ms), and
256 x 256 x 2048 (dt = 4 ms), composing the synthetic training data. Figure 4 shows a sample.

We exploited the Mobil Viking graben line 12 data set to generate the field training data. This data set is com-
posed of 1001 shot gathers. Each gather is of size 1024 x 120: 1024 rows represent the time domain, sampled
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Figure 10. Results on a data set from the GeoFrame software. (a) Reference data. (b) Irregularly sampled data
with 40% missing. (c) Interpolated data using the FGFT interpolation method?. (d) DL reconstruction result.

every 4 ms; 120 columns are in the spatial domain with 25 m of sampling. We randomly choose 200 shots as the
field training data set (see Fig. 5 for a sample).

Before being fed into the model, each shot gather is normalized by dividing the maximum value of the abso-
lute value of the corresponding shot gathers. Consequently, the amplitudes of the model input and output are
finally in the range [—1, 1]. To ensure a sufficiently large number of data samples for learning, we work in a
patch-wise fashion. The shot gathers are divided into small patches with a specified size. The training data in
terms of patches is much larger than the number of training shot gathers.

Training setup.  There is a trade-off between the patch size (determining the receptive field) and the model depth.
A larger patch size demands more down- and up-sampling layers, while small patches allow the model to see only
local features. In addition, we should select the patch size such that all 2 x 2 down-sampling operations can be
applied to a layer with an even height and width size. The patch size and the batch size are primarily limited by the

SCIENTIFIC REPORTS |

(2020) 10:3302 | https://doi.org/10.1038/s41598-020-59801-x


https://doi.org/10.1038/s41598-020-59801-x

www.nature.com/scientificreports/

Distance (m) Distance (m)
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

-0.2 -0.1 .0 1 0.2 -0.2 -0.1 .0 1 0.2
Amplitude Amplitude
(a) (b)
Distance (m) Distance (m)
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
0 e T - - = =

0 0
Amplitude Amplitude

(c) (d)

Figure 11. Results on the F3 data set. (a) Reference data. (b) Irregularly sampled data with 45% missing. (c)
Interpolated data using the FGFT interpolation method?. (d) DL reconstruction result.

graphics processing unit (GPU) memory. To minimize the overhead and make full use of the GPU memory, we
prefer a large patch size over a large batch size.

Our available computing resources are summarized as follows: a workstation with Windows 7, two Intel Xeon
E5-2620 processors, 2.10 GHz CPU, 176 GB of RAM, and an NVIDIA GeForce RTX 2080 Ti GPU (11 GB).
Our codes are written in Python based on Keras (a Python DL library). After trial and error, the patch size is set
as 112 x 112, which allows four times of down-sampling operations for the field training shot gather with 120
traces. To overlap adjacent patches, the patch-stride is 23 pixels for the synthetic training data sets, and 10 pixels
for the field training data set. Patches with a smaller mean absolute value (e.g., <0.001) indicate that there are few
events located within the patch or these amplitude values are nearly zeros. The patches below a threshold value
are removed from the training data. Then, we paid special attention to the first-arrival areas as their samples
are fewer in comparison to other areas. As a result, we augment the proportion of the samples belonging to the
shallow first-arrival areas to some degree. The training process finally involves 1,132,800 (more than 1 million)
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Figure 12. Results on a data set from the North Sea. (a) Reference data. (b) Irregularly sampled data with 50%
missing. (c) Interpolated data using the FGFT interpolation method®. (d) DL reconstruction result.

patches. We set the batch size as 128. The steps-per-epoch is set as 8850, which denotes the total number of steps
(batches of samples) before declaring one epoch finished and starting the next epoch. The steps-per-epoch is typ-
ically equal to the number of samples of the training data set (1,132,800) divided by the batch size (128). Figure 6
demonstrates fifty model input-output training pairs.

The speed provided by computation of the updates on small batches of data, in parallel, on specialized hard-
ware (e.g., GPU) allows one to fit networks with millions of parameters on data sets with millions of observations.
Good default settings of Adam for the tested DL problems are 5, = 0.9, 8, = 0.999, and € = 10~8. The learning
rate « is initialized at 0.0001, which is a critical parameter. Nevertheless, determining how to obtain optimal val-
ues of the learning rate is still an open issue. The number of epochs should be specified to train the model. Too few
epochs generate a poor under-fitting DL result, and too many epochs waste running time and possibly produce
over-fitting results. With our experience, 50 epochs obtain sufficiently good results. Moreover, the indexes of the
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Figure 13. Regularly missing data reconstruction. (a) Regularly sampled data from the synthetic training

data set with a decimation factor of 10 in the space direction (90% missing). (b) DL result for (a). (c) Regularly
sampled data from the Mobil Viking graben line 12 data set with a decimation factor of 3 in the space direction
(66% missing). (d) DL result for (c).

input-output pairs are shuffled before starting the next epoch. In the end, to ensure the original available data
remain unaltered, the live data from the original input are reinserted into their original positions in the DL result.

Results

In the training process, the model input is restricted in a specified patch size (112 x 112). However, for the model
test, the input data need not to be divided into small patches. That is, a profile can be directly fed into the model.
One of the most important issues is convergence of the training process. The training log shown in Fig. 7 indicates
convergence, which is successively going down with the increasing epoch numbers. For a well-trained model,
it should produce reasonable output for new input that is never seen in the training process (aka the model’s
generalization capability). We exploit several typical data sets (e.g., those shown in Figures 5, 8-13) to test the
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generalization capacity. Because we work in a local patch-wise fashion in the training process, the complete fea-
ture of a shot gather belonging to the training data (e.g., Fig. 4) is not completely seen. Application of the trained
model to irregularly missing data reconstruction is first on the agenda; then, regularly missing data reconstruc-
tion follows.

Irregularly missing data reconstruction.  Examples in Figs. 4, 5, 8 and 9 validate that the trained model
can reconstruct irregularly missing data with high accuracy. The model output, seen in Figs. 4 and 8, shows
negligible difference between the true data and the DL result. To check the superiority of the new method over
conventional methods, we compare it with a peer-reviewed FGFT interpolation method?. The code of the FGFT
method is open-source. We made no change to the code of the FGFT method. There are few adjustable parame-
ters of the FGFT method. The results of the FGFT method are correspondingly shown in Figs. 5, 9-12. Though
the parameter may be not the optimal one, Figs. 5, 9-12 can show the drawbacks of the FGFT method to some
degree. By comparing the FGFT interpolation results with those of DL, DL achieves smaller MSE values and
higher SNR, PSNR, SSIM values. These results verify the feasibility, effectiveness, superiority, and generalization
capacity of the evaluated method.

Comparing Figs. 4, 5, 8 and 9 (pre-stack data applications) with Figs. 10-12 (post-stack data applications)
reveals that reduced precision emerges (reflected in the relatively lower SNR values in Figs. 10-12) if the features
of the test data are significantly different from those of the training data. Note that the model is trained with
pre-stack data only. The bias increases as the differences increase. Even though the performance decreases with
the increasing feature difference between training and test data, the model still generates acceptable results in
comparison to the FGFT results (see Figs. 10-12). We think different types of "reliable” data should be added to
the training data to further improve the model’s generalization capability.

Regularly missing data reconstruction. Our primitive goal is to accomplish the irregularly missing data
reconstruction. We did not realize that the trained model is suitable for the regularly missing case. Excited by
successful tests (two of them are shown in Fig. 13), we found that the evaluated framework is also competent
in regularly missing data reconstruction. The reason is that regularly missing can be seen as a special case of
irregularly missing. The model trained with irregularly sampled data can be applied to regularly missing data
reconstruction. However, the model trained with regularly sampled data cannot be applied to irregularly missing
data reconstruction.

Discussion

DL is a promising data-driven approach for solving inverse problems and, by extension, data reconstruction
tasks. The model as established in this work may have tens to hundreds of millions of trainable parameters (see
Table 1, approximately 87 million), giving rise to a large GPU memory requirement. The key computational cost
of DL rests in the training process. However, it occurs once up front. The computational cost of model prediction
is inexpensive. For example, the prediction of a 1024 x 112 shot gather costs less than 2 s on a computer without
using the GPU. Hence, the overall computational cost is efficient.

Although we have concentrated on 2D, our method can be generalized to 3D/5D cases. A generalization to 3D
demands substituting the 2D convolution/pooling/up-sampling layers with 3D versions, which is supported by
numerous DL frameworks (e.g., Keras, TensorFlow, and PyTorch). We are moving towards 3D/5D reconstruction
with the hope of obtaining superior results by using more spatial constraints. In this work, we have focused on
missing data reconstruction, but the framework presented here also suggests similar potentials of DL in other
fields (e.g., super-resolution reconstruction of photos and maps, signal processing, and imaging). Once a general
model architecture is ready, the same idea can be applied to many problems.

Conclusions

We assessed a deep-learning-based framework for both irregularly and regularly missing data reconstruction,
which is aimed at transforming incomplete data into their corresponding complete data. For achieving this goal,
we first build a network architecture with the randomly sampled incomplete data as the model input and the cor-
responding complete data as the model output, which is based on an encoder-decoder-style end-to-end U-Net
CNN. Then, we use a mean-squared-error loss function and an Adam optimization algorithm to train the model.
Next, we prepare the training data utilizing both synthetic and field seismic data. We describe the established
model architecture, the used loss function, the employed Adam optimization algorithm, the training data and
the training setups in detail. We demonstrate the feature maps for a randomly sampled data set going through
the trained model, with the aim of trying to explain how the missing data are reconstructed. We test the trained
model with several typical data sets for irregularly missing data reconstruction, which achieves better perfor-
mances compared with the FGFT interpolation method, verifying the feasibility, effectiveness, superiority, and
generalization capability of the evaluated framework. Because regularly missing data can be considered as one
special case of irregularly missing data, the trained model is also successfully applied to regularly missing data
reconstruction. This work supports that DL can avoid some assumptions limiting conventional interpolation
methods (e.g., assumptions of linear events, sparseness, and low-rank) and possesses great potential in advanced
intelligent applications over traditional techniques.
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