
1Scientific Reports | (2020) 10:3302 | https://doi.org/10.1038/s41598-020-59801-x

www.nature.com/scientificreports

Deep learning for irregularly
and regularly missing data
reconstruction
Xintao Chai1, Hanming Gu1*, Feng Li2, Hongyou Duan3, Xiaobo Hu3 & Kai Lin1

Deep learning (DL) is a powerful tool for mining features from data, which can theoretically avoid
assumptions (e.g., linear events) constraining conventional interpolation methods. Motivated by
this and inspired by image-to-image translation, we applied DL to irregularly and regularly missing
data reconstruction with the aim of transforming incomplete data into corresponding complete
data. To accomplish this, we established a model architecture with randomly sampled data as input
and corresponding complete data as output, which was based on an encoder-decoder-style U-Net
convolutional neural network. We carefully prepared the training data using synthetic and field seismic
data. We used a mean-squared-error loss function and an Adam optimizer to train the network. We
displayed the feature maps for a randomly sampled data set going through the trained model with the
aim of explaining how the missing data are reconstructed. We benchmarked the method on several
typical datasets for irregularly missing data reconstruction, which achieved better performances
compared with a peer-reviewed Fourier transform interpolation method, verifying the effectiveness,
superiority, and generalization capability of our approach. Because regularly missing is a special case
of irregularly missing, we successfully applied the model to regularly missing data reconstruction,
although it was trained with irregularly sampled data only.

Deep learning (DL)1 is a branch of machine learning (ML) that addresses the question of how to build computers
that intelligently improve through experience2. Recently, DL or ML, in general, enjoyed an explosive growth and
showed great promise in various areas, e.g., biology3,4, image reconstruction5,6, and solid earth geoscience7. DL
is powerful for mining features or relationships from data, which is invaluable in the context of big data, as it
extracts high-level information from huge volumes of data. Please refer to Goodfellow et al.8 for a good textbook
of DL. One of the most popular DL technologies is the convolutional neural network (CNN), which is at the core
of most state-of-the-art DL solutions for numerous tasks9. In recent years, deep CNNs have had stunning suc-
cesses, surpassing human accuracy for hard problems such as visual recognition6.

In exploration seismology, DL or ML has been widely used in fault detection10, structural interpretation11,
inversion12, and data interpolation13–15, to name a few. A more tremendous trend of developments has recently
come about through the use of DL not for image analysis but for image transformation. In these cases, CNNs are
trained to transform one type of image into another. Many geophysical problems can be posed as transforming
an input profile into a corresponding output profile (e.g., denoising: transforming noisy data to noise-free data).
Inspired by Isola et al.16, where DL is investigated as a general-purpose solution to image-to-image translation
problems, we apply DL to missing data reconstruction with the aim of transforming an input incomplete data set
into a corresponding complete data set, which is an important ongoing research topic in exploration seismology.

Physical (e.g., the presence of obstacles, no-permit areas, and hardware problems with geophones/hydro-
phones/air-guns) and economic constraints lead seismic data to be incomplete or sparsely sampled during
data acquisition17. However, many important techniques cannot adequately handle irregular sampling and
rely on uniformly and densely sampled, unaliased input data (e.g., 2D/3D surface-related multiple elimination,
amplitude-variation-with-offset analysis, and reservoir characterization). The performance of multichannel data
processing depends heavily on the spatial sampling intervals. Too large an interval leads to aliasing, adversely
resulting in poor resolution. Therefore, the missing data should be reconstructed18.

1China University of Geosciences (Wuhan), Institute of Geophysics and Geomatics, DeepResearch Group, Center for Wave
Propagation and Imaging, Wuhan, Hubei, China. 2Sinopec Henan Oilfield Branch Company, Nanyang, Henan, China.
3Henan Oilfield Exploration and Development Research Institute, Zhengzhou, Henan, China. *email: hmgu@cug.edu.cn

OPEN

https://doi.org/10.1038/s41598-020-59801-x
mailto:hmgu@cug.edu.cn

2Scientific Reports | (2020) 10:3302 | https://doi.org/10.1038/s41598-020-59801-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

The missing data problem can be classified into two categories: regularly missing and irregularly missing.
Regularly missing means the data are equidistantly or periodically missing at a constant rate in uniform grids.
Irregularly missing means the data are randomly missing on uniform grids19. Seismic data are often irregularly

Figure 1.  Network architecture at an example of ×N N

2 2
h w
4 4 pixels in the lowest resolution. Nh, Nw, and Nc are the

height, width, and the number of channels of the input data, respectively. Blocks show the calculated feature
hierarchy. Each green box denotes multiple feature maps, and the number of feature maps (i.e., Fi,i∈[1, 5]) is
marked on the right of the box. The height-width-size of a feature map is given around the box. The boxes with
the same height have the same number of feature maps. The boxes with the same width indicate the same
height-width-size of feature maps. The arrows and the right curly brace denote different operations. Numbers in
[[⋅]] are labelled according to Table 1, which are in line with those shown in Fig. 2.

https://doi.org/10.1038/s41598-020-59801-x

3Scientific Reports | (2020) 10:3302 | https://doi.org/10.1038/s41598-020-59801-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

and sparsely sampled along the spatial coordinates, leading to suboptimal processing and imaging results. This
work primarily concentrates on solving the irregularly missing data problem. Solving the regularly missing data
reconstruction problem is an unexpected harvest.

Based on a variety of principles and assumptions, important advances have been made in seismic data recon-
struction. Some of them addressed interpolating regularly sampled data13–15,20, while some of them attacked
non-uniformly sampled interpolation21. There are techniques developed for both irregularly and regularly miss-
ing data reconstruction22. A complete and detailed discussion of previous publications is beyond the scope of this
work. We only review some key viewpoints and literature closely related to the subject of this work. The methods
based on classical signal-processing principles use specific properties of seismic data as a priori information
for interpolation. Signal-processing reconstruction techniques via transforming the data to other domains and
prediction-error filtering generally assume that the data are composed of a superposition of a few plane waves.
The sparseness, band limitation, and low-rank assumptions also underlie some of these methods.

Naghizadeh and Innanen23 addressed seismic data interpolation using a fast-generalized Fourier transform
(FGFT). They utilized the FGFT to identify the space-wavenumber evolution of spatial signals at each tempo-
ral frequency, and a least-squares fitting scheme to retrieve the optimal FGFT coefficients representative of the
desired interpolated data. For randomly sampled data, they sought a sparse representation of FGFT coefficients
to retrieve the missing pixels. To interpolate the regularly sampled data at a given frequency, they used a mask
function derived from the FGFT coefficients of the low frequencies. This makes the FGFT interpolation method
a good competitor, which is used for comparison in our work.

Of the multitudinous methods for seismic data interpolation, few take advantage of recent developments
in DL or ML. Jia and Ma13 proposed a method for reconstructing seismic data from regularly under-sampled
traces based on a classic ML method of support vector regression. Jia et al.14 proposed an intelligent interpolation
method for regularly sampled data by Monte Carlo ML. Wang et al.15 proposed a DL-based approach for regu-
larly sampled seismic data antialiasing interpolation. Based on CNNs, Wang et al.15 designed eight-layer residual
networks (ResNets) with a better back-propagation property for interpolation, which extract feature maps of the
training data in a non-linear way. For the methods of Jia and Ma13, Jia et al.14, and Wang et al.15, in the training
process, to generate the input of the designed network, calculation of the initial pre-interpolation data using a
bicubic method is required, which affects the final performance of their methods.

With the DL theory described in Goodfellow et al.8, we applied DL to both irregularly and regularly missing
data reconstruction, where we defined intelligent data-to-data translation as the task of translating incomplete
data into complete data (without pre-interpolation). DL allows trainable models composed of multiple layers to
learn representations of data with multiple levels of abstraction1. DL is a representation-learning method with
multiple levels of representation obtained by composing non-linear modules, in which each transforms the rep-
resentation at one level into a representation at a higher, slightly more abstract level8. With the composition
of enough such layers, and given sufficient training data, very complicated functions/relations can be learned.

Layer
number

Layer
name Number of trainable parameters

2 Conv01 (KhKw × Nc + 1) × F1 = 1664

4 Conv02 (KhKw × F1 + 1) × F1 = 102464

7 Conv03 (KhKw × F1 + 1) × F2 = 204928

9 Conv04 (KhKw × F2 + 1) × F2 = 409728

12 Conv05 (KhKw × F2 + 1) × F3 = 819456

14 Conv06 (KhKw × F3 + 1) × F3 = 1638656

17 Conv07 (KhKw × F3 + 1) × F4 = 3277312

19 Conv08 (KhKw × F4 + 1) × F4 = 6554112

22 Conv09 (KhKw × F4 + 1) × F5 = 13108224

24 Conv10 (KhKw × F5 + 1) × F5 = 26215424

28 Conv11 (KhKw × (F5 + F4) + 1) × F4 = 19661312

30 Conv12 (KhKw × F4 + 1) × F4 = 6554112

34 Conv13 (KhKw × (F4 + F3) + 1) × F3 = 4915456

36 Conv14 (KhKw × F3 + 1) × F3 = 1638656

40 Conv15 (KhKw × (F3 + F2) + 1) × F2 = 1228928

42 Conv16 (KhKw × F2 + 1) × F2 = 409728

46 Conv17 (KhKw × (F2 + F1) + 1) × F1 = 307264

48 Conv18 (KhKw × F1 + 1) × F1 = 102464

50 Conv19 (1 × 1 × F1 + 1) × Nc = 65

Table 1.  Model summary for the model architecture shown in Fig. 1, where Nc = 1, F1 = 64, F2 = 128, F3 = 256,
F4 = 512, F5 = 1024, and KhKw = Kh × Kw. Kh = Kw = 5 denote the height and width of the convolution kernel,
respectively. The first layer is an input layer. The layers numbered 3, 5, 8, 10, 13, 15, 18, 20, 23, 25, 29, 31, 35, 37,
41, 43, 47, and 49 are (18) activation layers. The layers numbered 6, 11, 16, and 21 are (4) max-pooling layers.
The layers numbered 26, 32, 38, and 44 are (4) up-sampling layers. The layers numbered 27, 33, 39, and 45 are
(4) concatenate layers. The total trainable parameters are 87,149,953.

https://doi.org/10.1038/s41598-020-59801-x

4Scientific Reports | (2020) 10:3302 | https://doi.org/10.1038/s41598-020-59801-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

Moreover, as a motivation, DL can theoretically avoid some assumptions restricting conventional interpolation
methods (e.g., assumptions of linear events, sparsity, band limitation, and low-rank).

The rest of the paper is organized as follows. In the “Methods” section, first, we briefly transcribe some basic
DL theory; next, with the incomplete data as the model input and the corresponding complete data as the model
output, we elaborate the established model architecture in detail, which is based on an U-Net convolutional
network4; then, we provide detailed training analysis including the loss function definition, optimizer used, eval-
uation metrics, training data preparation, and parameter setup. In the “Results” section, to make the results more
convincing and to validate the generalization capacity of the trained model, we test the model’s performance
using several typical data sets (i.e., a synthetic training data set, a synthetic test data set, a physical modelling data
set, the Mobil Viking graben line 12 data set, the F3 data set, a fault data set from the GeoFrame software, and
a data set from the North Sea). The trained model is used to accomplish both irregularly and regularly missing

Figure 2.  Feature maps for a randomly sampled data set going through the trained model. Numbers in [[⋅]]
are labelled according to Table 1, which are consistent with those shown in Fig. 1. The symbol “...” implies the
omitted feature maps.

https://doi.org/10.1038/s41598-020-59801-x

5Scientific Reports | (2020) 10:3302 | https://doi.org/10.1038/s41598-020-59801-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

data reconstruction. After discussing some practical aspects and extensions of this work, we summarize some
concluding remarks.

Methods
Basic theory.  For the sake of brevity, we refer the reader to Goodfellow et al.8 for a detailed description of the
DL terminologies. DL is a computational tool to learn complex motifs from data. DL uses multiple processing
layers to discover patterns and structures in the data. Each layer learns features from the data that subsequent
layers build on. Non-linear parameterized processing layers are combined to progressively transform an input X
into the desired output Yref, typically attaining only approximations Ypre. Deep artificial neural networks (ANNs)
are black-box models whose operation is opaque and difficult to interpret. The adjective “deep” refers to the large
number of stacked layers required for building a universal function approximator f as follows:

θ= fY X(;), (1)pre

where θ denotes the parameters (including but not limited to, weights W and biases b of the convolution kernels)
in the CNNs.

We regard ANNs as bridges connecting the input X and the desired output Yref. ANNs with a sufficient number
of parameters can theoretically approximate any function. For fitting the desired mapping, the model needs to go
through a training process, which begins with a random choice for θ. The training process can be considered as
an optimization problem composed by finding a set of the internal parameters θ through the minimization of the
discrepancy between Ypre and Yref (quantified by the loss function φ, which will be explained later) for all the
samples fed into the model12.

The parameters θ are iteratively updated to minimize the loss using gradient descent and to improve the accu-
racy of the model prediction. Each layer of the model is differentiable, meaning that it is known how changes in θ
cause changes in output values. The back-propagation (BP) algorithm24 uses the chain rule to efficiently compute
all partial derivatives, or gradients, with just one forward pass through the model followed by a backward pass.
The training process is accomplished if the loss function achieves an acceptable level. The optimizer for the loss
function is an important requirement for training a model.

Model architecture.  There is no hard and fast rule for how many layers are needed to constitute ANNs, but
most researchers agree that no less than three are required. Figure 1 shows a schematic of the established model
architecture, which belongs to a specific family of neural network (NN) architectures known as U-Net, a generic
DL solution for various tasks4. Specific to our mission, the model input data include one horizontal (spatial)
dimension and one vertical (temporal) dimension. In seismic terminology, Nh and Nw denote the sampling points
of the input data along the time and space axes, respectively. The number of channels Nc equals 1 for seismic
data. A data sample with Nc channels is fed into the model on the top. The model input data X are randomly
missing in accordance with a certain percentage (e.g., 40% → 95%) in the space direction. Please note that no
pre-interpolation process is involved. The model output Yref (at the bottom) is the corresponding complete data.

The model architecture (Fig. 1) is an encoder-decoder-style NN solving the missing data reconstruction task
end-to-end, which is logically composed of a contracting path (upper-side, interpreted as an encoder) and a
more or less symmetric expanding path (lower-side, interpreted as a decoder). The encoder takes an incomplete
data sample as input and gradually calculates feature maps at multiple scales and abstraction levels resulting in a
multi-level, multi-resolution feature representation. Layers in the decoder successively synthesize the complete
data starting at low-resolution feature maps (denoting large scale structures) up to high-resolution feature maps
(representing fine scale structures)4. Please see Fig. 2 for a better understanding.

The contracting path/encoder follows a typical CNN, consisting of the repeated application of two padded
convolutions (padding avoids the loss of border pixels in every convolution), each followed by an activation oper-
ation (black-arrow) and a pooling operation (red-arrow) with stride two halving the resolution of the resulting
feature map. Convolutions directly following down-sampling steps double the number of feature maps4. Each
step in the expansive path/decoder consists of a bed-of-nails up-sampling of the feature maps by a factor of two

Figure 3.  Velocity models used to generate the synthetic data. Each velocity model has its own density model.
(a) Adapted Pluto 1.5 model. (b) Down-sampled Marmousi2 model. The lateral spacing dx and the depth
spacing dz are 5 m.

https://doi.org/10.1038/s41598-020-59801-x

6Scientific Reports | (2020) 10:3302 | https://doi.org/10.1038/s41598-020-59801-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

(blue-arrow) followed by a concatenation (right curly brace) with the copied encoder feature maps at the cor-
responding resolution (purple-arrow), and two convolutions, each followed by an activation. The feature maps
from the contracting path are combined with the up-sampled output. Successive convolution layers then learn to
assemble a more precise output based on this. Skip connections have been shown to help train deeper networks by
preventing vanishing gradients25. At the final layer, a 1 × 1 convolution (green-arrow) is utilized to map multiple
feature maps to the desired output Yref.

A widely used non-linear activation function is the rectified linear unit (ReLU), which returns element-wise
xmax(, 0) with x being an input tensor. The ReLU activation was adopted in the constructed model. For the pool-

ing operation, we employed the max-pooling layer. Note that the number of output filters in the convolution (i.e.,
Fi,i∈[1, 5]) increases (e.g., from 64 to 128, 256, 512, and 1024) as we go deep in the model. At each down-sampling
step, we generally double the number of feature maps.

Figure 4.  Results on a synthetic training data set. (a) True data (a common-shot-point, CSP, gather). (b)
Irregularly sampled data with 90% missing. (c) DL reconstruction result. (d) Difference between (a,c).

https://doi.org/10.1038/s41598-020-59801-x

7Scientific Reports | (2020) 10:3302 | https://doi.org/10.1038/s41598-020-59801-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

Table 1 provides a specified model summary. There are fifty layers (including 19 convolution layers). The
trainable parameters focus on convolution layers. No trainable parameters exist in the input, ReLU activation,
max-pooling, up-sampling, and concatenate layers. The trainable parameters in a convolution layer are computed
by the following:

× × + ×−K K F F(1) , (2)h w i i1

where Kh × Kw is the convolution kernel size, Fi−1 and Fi denote the number of feature maps in the previous and
current layers, respectively. +1 means a bias is added. Figure 2 shows the feature maps for a randomly missing
data sample going through a trained model. Once trained, it is capable of filling in the gaps in corrupted data by
going through encoding and decoding steps.

Loss function.  For our problem, we used a mean-squared-error (MSE) training loss function, which meas-
ures the average of the squares of the errors. Given the reference solution Yref and the model prediction Ypre, the
MSE is computed as follows:

θ= || − || = || − ||
L L

fY Y Y XMSE 1 1 (;) , (3)ref pre Fro
2

ref Fro
2

where L is the number of elements in Yref, || ⋅ ||Fro being the Frobenius norm. The MSE loss function is widely used
in statistics. Because we will work in a batch-wise fashion in the training process, the loss function is composed of
a sum of subfunctions evaluated at different mini-batches of data. The loss function is accordingly stochastic.

Optimization algorithm.  We employed an Adam (derived from adaptive moment estimation) algorithm
to optimize our stochastic loss function. Adam is a simple and computationally efficient algorithm for first-order
gradient-based optimization26. Please see algorithm 1 for the pseudo-code of the employed Adam algorithm.
φ(θ) denotes the stochastic scalar loss function, which is differentiable with respect to parameters θ. gt = ▽θφt(θ)
represents the gradient, i.e., the vector of partial derivatives of φt with respect to θ evaluated at time step t. Adam
updates exponential moving averages of the gradient mt and the squared gradient vt where the hyper-parameters
β1, β2 ∈ [0, 1) control the exponential decay rates of these moving averages. The moving averages themselves are
estimates of the first moment (the mean) and the second moment (the uncentred variance) of the gradient26.

Algorithm 1 shows that Adam only requires first-order gradients, which is straightforward to implement with
little memory requirement. Adam is designed to combine the advantages of two previously popular optimization
algorithms: AdaGrad27, which deals with sparse gradients well, and RMSProp, which works well in on-line and
non-stationary objectives26. Adam is based on adaptive estimates of lower-order moments. Kingma and Ba26
analysed the theoretical convergence properties of the Adam algorithm. Adam is a versatile algorithm for DL
problems with big data and/or high-dimensional parameter spaces. Using large ANNs and data sets, Kingma
and Ba26 found Adam to be efficient, robust and well-suited to a wide range of practical non-convex optimization
problems in the DL field.

Evaluation metrics.  As mentioned above, MSE is a measure of the quality of a predictor, which is always
non-negative. With our experience in the seismic data reconstruction field, we also utilized the signal-to-noise
ratio (SNR) as follows:

Y Y

Y
SNR(dB) 20log ,

(4)
10

ref pre 2

ref 2

= −
|| − ||

|| ||

to assess the result’s quality. Moreover, we used two other metrics that are widely used in the computer vision
super-resolution field: peak signal-to-noise ratio (PSNR) and structural similarity index method (SSIM)28. PSNR
is computed in the following way:

Algorithm 1.  Adam, employed optimization algorithm for stochastic loss function.

https://doi.org/10.1038/s41598-020-59801-x

8Scientific Reports | (2020) 10:3302 | https://doi.org/10.1038/s41598-020-59801-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

=










PSNR(dB) 10log M
MSE

,
(5)10

2

where M is the maximum value of elements in Yref. The SSIM is defined as follows:

=
µ µ +

µ + µ +
×

σ +

σ + σ +

()
()

()
()()Y YSSIM ,

2 C

C

2 C

C
,

(6)

Y Y

Y Y

Y Y

Y Y
ref pre

1

2 2
1

2

2 2
2

ref pre

ref pre

ref pre

ref pre

Figure 5.  Results on the Mobil Viking graben line 12 data set. (a) Reference data. (b) Irregularly sampled data
with 60% missing. (c) Interpolated data using the FGFT interpolation method23. (d) DL reconstruction result.

https://doi.org/10.1038/s41598-020-59801-x

9Scientific Reports | (2020) 10:3302 | https://doi.org/10.1038/s41598-020-59801-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 6.  Model input-output pairs, which are randomly selected from the training data set. Each pair
is composed of irregularly missing incomplete data (in the odd column, i.e., the model input X) and the
corresponding complete data (in the even column, i.e., the model output Yref). The size of each panel is
112 × 112.

Figure 7.  During training, variation of log (normalized loss)10 with epoch.

https://doi.org/10.1038/s41598-020-59801-x

1 0Scientific Reports | (2020) 10:3302 | https://doi.org/10.1038/s41598-020-59801-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

where µYref
 and µYpre

 denote the mean of Yref and Ypre, respectively; σYref
 and σYpre

 represent the variance of Yref and
Ypre, respectively; σY Yref pre

 is covariance between Yref and Ypre. The constant C1 is included to avoid instability when
µ + µY Y

2 2
ref pre

 is very close to zero. Similarly, the constant C2 is developed to avoid instability if σ + σY Y
2 2

ref pre
 is very

close to zero.
The metrics MSE, SNR, PSNR, and SSIM can be used in the training and test processes to quantify the per-

formance of the result. The MSE values closer to zero are better. Generally, the higher the SNR, PSNR, and SSIM
values are, the better the result.

Training preparation and setup.  Training data.  The training data are vital for DL. We prepared the
training data utilizing not only the synthetic data but also the field seismic data, to let the model learn the features
of seismic data by being given as many instances as possible.

Figure 8.  Results on a test data set generated with the Marmousi2 model. (a) True data. (b) Irregularly sampled
data with 70% missing. (c) DL reconstruction result. (d) Difference between (a,c).

https://doi.org/10.1038/s41598-020-59801-x

1 1Scientific Reports | (2020) 10:3302 | https://doi.org/10.1038/s41598-020-59801-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

The synthetic training data are modelled with a forward-modelling code29 based on some well-designed earth
models (e.g., Fig. 3a). The model in Fig. 3b is used to generate the test data that are completely unseen in the train-
ing process. The sources and receivers are equally distributed from 0 to 2550 m with 10 m spacing. The source is
shifted from the location of the first shot to the last one. The source and receiver depths are changed for different
earth models and experiments. The simulated data include 2048 shots (8 simulations, 256 shots per simulation),
and 256 traces per shot. There are 2048 samples along the time axis with a time interval dt of 0.5 ms. Because dt =
0.5 ms is barely used in industry, we revised the data of size 2048 × 256 × 2048 (arranged in the order of time axis,
receiver axis, and shot axis) to three data sets: 1024 × 256 × 2048 (dt = 1 ms), 512 × 256 × 2048 (dt = 2 ms), and
256 × 256 × 2048 (dt = 4 ms), composing the synthetic training data. Figure 4 shows a sample.

We exploited the Mobil Viking graben line 12 data set to generate the field training data. This data set is com-
posed of 1001 shot gathers. Each gather is of size 1024 × 120: 1024 rows represent the time domain, sampled

Figure 9.  Results on a physical modelling data set30. (a) Reference data. (b) Irregularly sampled data with
70% missing. (c) Interpolated data using a fast-generalized Fourier transform (FGFT) method23. (d) DL
reconstruction result.

https://doi.org/10.1038/s41598-020-59801-x

1 2Scientific Reports | (2020) 10:3302 | https://doi.org/10.1038/s41598-020-59801-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

every 4 ms; 120 columns are in the spatial domain with 25 m of sampling. We randomly choose 200 shots as the
field training data set (see Fig. 5 for a sample).

Before being fed into the model, each shot gather is normalized by dividing the maximum value of the abso-
lute value of the corresponding shot gathers. Consequently, the amplitudes of the model input and output are
finally in the range [−1, 1]. To ensure a sufficiently large number of data samples for learning, we work in a
patch-wise fashion. The shot gathers are divided into small patches with a specified size. The training data in
terms of patches is much larger than the number of training shot gathers.

Training setup.  There is a trade-off between the patch size (determining the receptive field) and the model depth.
A larger patch size demands more down- and up-sampling layers, while small patches allow the model to see only
local features. In addition, we should select the patch size such that all 2 × 2 down-sampling operations can be
applied to a layer with an even height and width size. The patch size and the batch size are primarily limited by the

Figure 10.  Results on a data set from the GeoFrame software. (a) Reference data. (b) Irregularly sampled data
with 40% missing. (c) Interpolated data using the FGFT interpolation method23. (d) DL reconstruction result.

https://doi.org/10.1038/s41598-020-59801-x

13Scientific Reports | (2020) 10:3302 | https://doi.org/10.1038/s41598-020-59801-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

graphics processing unit (GPU) memory. To minimize the overhead and make full use of the GPU memory, we
prefer a large patch size over a large batch size.

Our available computing resources are summarized as follows: a workstation with Windows 7, two Intel Xeon
E5-2620 processors, 2.10 GHz CPU, 176 GB of RAM, and an NVIDIA GeForce RTX 2080 Ti GPU (11 GB).
Our codes are written in Python based on Keras (a Python DL library). After trial and error, the patch size is set
as 112 × 112, which allows four times of down-sampling operations for the field training shot gather with 120
traces. To overlap adjacent patches, the patch-stride is 23 pixels for the synthetic training data sets, and 10 pixels
for the field training data set. Patches with a smaller mean absolute value (e.g., ≤0.001) indicate that there are few
events located within the patch or these amplitude values are nearly zeros. The patches below a threshold value
are removed from the training data. Then, we paid special attention to the first-arrival areas as their samples
are fewer in comparison to other areas. As a result, we augment the proportion of the samples belonging to the
shallow first-arrival areas to some degree. The training process finally involves 1,132,800 (more than 1 million)

Figure 11.  Results on the F3 data set. (a) Reference data. (b) Irregularly sampled data with 45% missing. (c)
Interpolated data using the FGFT interpolation method23. (d) DL reconstruction result.

https://doi.org/10.1038/s41598-020-59801-x

1 4Scientific Reports | (2020) 10:3302 | https://doi.org/10.1038/s41598-020-59801-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

patches. We set the batch size as 128. The steps-per-epoch is set as 8850, which denotes the total number of steps
(batches of samples) before declaring one epoch finished and starting the next epoch. The steps-per-epoch is typ-
ically equal to the number of samples of the training data set (1,132,800) divided by the batch size (128). Figure 6
demonstrates fifty model input-output training pairs.

The speed provided by computation of the updates on small batches of data, in parallel, on specialized hard-
ware (e.g., GPU) allows one to fit networks with millions of parameters on data sets with millions of observations.
Good default settings of Adam for the tested DL problems are β1 = 0.9, β2 = 0.999, and ε = 10−8. The learning
rate α is initialized at 0.0001, which is a critical parameter. Nevertheless, determining how to obtain optimal val-
ues of the learning rate is still an open issue. The number of epochs should be specified to train the model. Too few
epochs generate a poor under-fitting DL result, and too many epochs waste running time and possibly produce
over-fitting results. With our experience, 50 epochs obtain sufficiently good results. Moreover, the indexes of the

Figure 12.  Results on a data set from the North Sea. (a) Reference data. (b) Irregularly sampled data with 50%
missing. (c) Interpolated data using the FGFT interpolation method23. (d) DL reconstruction result.

https://doi.org/10.1038/s41598-020-59801-x

1 5Scientific Reports | (2020) 10:3302 | https://doi.org/10.1038/s41598-020-59801-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

input-output pairs are shuffled before starting the next epoch. In the end, to ensure the original available data
remain unaltered, the live data from the original input are reinserted into their original positions in the DL result.

Results
In the training process, the model input is restricted in a specified patch size (112 × 112). However, for the model
test, the input data need not to be divided into small patches. That is, a profile can be directly fed into the model.
One of the most important issues is convergence of the training process. The training log shown in Fig. 7 indicates
convergence, which is successively going down with the increasing epoch numbers. For a well-trained model,
it should produce reasonable output for new input that is never seen in the training process (aka the model’s
generalization capability). We exploit several typical data sets (e.g., those shown in Figures 5, 8–13) to test the

Figure 13.  Regularly missing data reconstruction. (a) Regularly sampled data from the synthetic training
data set with a decimation factor of 10 in the space direction (90% missing). (b) DL result for (a). (c) Regularly
sampled data from the Mobil Viking graben line 12 data set with a decimation factor of 3 in the space direction
(66% missing). (d) DL result for (c).

https://doi.org/10.1038/s41598-020-59801-x

1 6Scientific Reports | (2020) 10:3302 | https://doi.org/10.1038/s41598-020-59801-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

generalization capacity. Because we work in a local patch-wise fashion in the training process, the complete fea-
ture of a shot gather belonging to the training data (e.g., Fig. 4) is not completely seen. Application of the trained
model to irregularly missing data reconstruction is first on the agenda; then, regularly missing data reconstruc-
tion follows.

Irregularly missing data reconstruction.  Examples in Figs. 4, 5, 8 and 9 validate that the trained model
can reconstruct irregularly missing data with high accuracy. The model output, seen in Figs. 4 and 8, shows
negligible difference between the true data and the DL result. To check the superiority of the new method over
conventional methods, we compare it with a peer-reviewed FGFT interpolation method23. The code of the FGFT
method is open-source. We made no change to the code of the FGFT method. There are few adjustable parame-
ters of the FGFT method. The results of the FGFT method are correspondingly shown in Figs. 5, 9–12. Though
the parameter may be not the optimal one, Figs. 5, 9–12 can show the drawbacks of the FGFT method to some
degree. By comparing the FGFT interpolation results with those of DL, DL achieves smaller MSE values and
higher SNR, PSNR, SSIM values. These results verify the feasibility, effectiveness, superiority, and generalization
capacity of the evaluated method.

Comparing Figs. 4, 5, 8 and 9 (pre-stack data applications) with Figs. 10–12 (post-stack data applications)
reveals that reduced precision emerges (reflected in the relatively lower SNR values in Figs. 10–12) if the features
of the test data are significantly different from those of the training data. Note that the model is trained with
pre-stack data only. The bias increases as the differences increase. Even though the performance decreases with
the increasing feature difference between training and test data, the model still generates acceptable results in
comparison to the FGFT results (see Figs. 10–12). We think different types of "reliable” data should be added to
the training data to further improve the model’s generalization capability.

Regularly missing data reconstruction.  Our primitive goal is to accomplish the irregularly missing data
reconstruction. We did not realize that the trained model is suitable for the regularly missing case. Excited by
successful tests (two of them are shown in Fig. 13), we found that the evaluated framework is also competent
in regularly missing data reconstruction. The reason is that regularly missing can be seen as a special case of
irregularly missing. The model trained with irregularly sampled data can be applied to regularly missing data
reconstruction. However, the model trained with regularly sampled data cannot be applied to irregularly missing
data reconstruction.

Discussion
DL is a promising data-driven approach for solving inverse problems and, by extension, data reconstruction
tasks. The model as established in this work may have tens to hundreds of millions of trainable parameters (see
Table 1, approximately 87 million), giving rise to a large GPU memory requirement. The key computational cost
of DL rests in the training process. However, it occurs once up front. The computational cost of model prediction
is inexpensive. For example, the prediction of a 1024 × 112 shot gather costs less than 2 s on a computer without
using the GPU. Hence, the overall computational cost is efficient.

Although we have concentrated on 2D, our method can be generalized to 3D/5D cases. A generalization to 3D
demands substituting the 2D convolution/pooling/up-sampling layers with 3D versions, which is supported by
numerous DL frameworks (e.g., Keras, TensorFlow, and PyTorch). We are moving towards 3D/5D reconstruction
with the hope of obtaining superior results by using more spatial constraints. In this work, we have focused on
missing data reconstruction, but the framework presented here also suggests similar potentials of DL in other
fields (e.g., super-resolution reconstruction of photos and maps, signal processing, and imaging). Once a general
model architecture is ready, the same idea can be applied to many problems.

Conclusions
We assessed a deep-learning-based framework for both irregularly and regularly missing data reconstruction,
which is aimed at transforming incomplete data into their corresponding complete data. For achieving this goal,
we first build a network architecture with the randomly sampled incomplete data as the model input and the cor-
responding complete data as the model output, which is based on an encoder-decoder-style end-to-end U-Net
CNN. Then, we use a mean-squared-error loss function and an Adam optimization algorithm to train the model.
Next, we prepare the training data utilizing both synthetic and field seismic data. We describe the established
model architecture, the used loss function, the employed Adam optimization algorithm, the training data and
the training setups in detail. We demonstrate the feature maps for a randomly sampled data set going through
the trained model, with the aim of trying to explain how the missing data are reconstructed. We test the trained
model with several typical data sets for irregularly missing data reconstruction, which achieves better perfor-
mances compared with the FGFT interpolation method, verifying the feasibility, effectiveness, superiority, and
generalization capability of the evaluated framework. Because regularly missing data can be considered as one
special case of irregularly missing data, the trained model is also successfully applied to regularly missing data
reconstruction. This work supports that DL can avoid some assumptions limiting conventional interpolation
methods (e.g., assumptions of linear events, sparseness, and low-rank) and possesses great potential in advanced
intelligent applications over traditional techniques.

Received: 10 September 2019; Accepted: 4 February 2020;
Published: xx xx xxxx

https://doi.org/10.1038/s41598-020-59801-x

17Scientific Reports | (2020) 10:3302 | https://doi.org/10.1038/s41598-020-59801-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

References
	 1.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444, https://doi.org/10.1038/nature14539 (2015).
	 2.	 Jordan, M. I. & Mitchell, T. M. Machine learning: Trends, perspectives, and prospects. Science 349, 255–260, https://doi.

org/10.1126/science.aaa8415 https://science.sciencemag.org/content/349/6245/255.full.pdf (2015).
	 3.	 Sarah, W. Deep learning for biology. Nature 554, 555–557, https://doi.org/10.1038/d41586-018-02174-z (2018).
	 4.	 Falk, T. et al. U-Net: deep learning for cell counting, detection, and morphometry. Nature Methods 16, 67–70, https://doi.

org/10.1038/s41592-018-0261-2 (2019).
	 5.	 Zhu, B., Liu, J. Z., Cauley, S. F., Rosen, B. & Rosen, M. S. Image reconstruction by domain-transform manifold learning. Nature 555,

487–492, https://doi.org/10.1038/nature25988 (2018).
	 6.	 Belthangady, C. & Royer, L. A. Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. Nature

Methods 16, 1215–1225, https://doi.org/10.1038/s41592-019-0458-z (2019).
	 7.	 Bergen, K. J., Johnson, P. A., de Hoop, M. V. & Beroza, G. C. Machine learning for data-driven discovery in solid Earth geoscience.

Science 363, https://doi.org/10.1126/science.aau0323 (2019).
	 8.	 Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning http://www.deeplearningbook.org (MIT Press, 2016).
	 9.	 Schmidhuber, J. Deep learning in neural networks: An overview. Neural Networks 61, 85–117, 1016/j.neunet.2014.09.003 (2015).
	10.	 Wu, X., Liang, L., Shi, Y. & Fomel, S. FaultSeg3D: Using synthetic data sets to train an end-to-end convolutional neural network for

3D seismic fault segmentation. Geophysics 84, IM35–IM45, https://doi.org/10.1190/geo2018-0646.1 (2019).
	11.	 Wang, Z., Di, H., Shafiq, M. A., Alaudah, Y. & AlRegib, G. Successful leveraging of image processing and machine learning in seismic

structural interpretation: A review. The Leading Edge 37, 451–461, https://doi.org/10.1190/tle37060451.1 (2018).
	12.	 Röth, G. & Tarantola, A. Neural networks and inversion of seismic data. Journal of Geophysical Research: Solid Earth 99, 6753–6768,

https://doi.org/10.1029/93JB01563, https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/93JB01563 (1994).
	13.	 Jia, Y. & Ma, J. What can machine learning do for seismic data processing? An interpolation application. Geophysics 82, V163–V177,

https://doi.org/10.1190/geo2016-0300.1 (2017).
	14.	 Jia, Y., Yu, S. & Ma, J. Intelligent interpolation by Monte Carlomachine learning. Geophysics 83, V83–V97, https://doi.org/10.1190/

geo2017-0294.1 (2018).
	15.	 Wang, B., Zhang, N., Lu, W. & Wang, J. Deep-learning-based seismic data interpolation: A preliminary result. Geophysics 84,

V11–V20, https://doi.org/10.1190/geo2017-0495.1 (2019).
	16.	 Isola, P., Zhu, J., Zhou, T. & Efros, A. A. Image-to-image translation with conditional adversarial networks. In 2017 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 5967–5976, https://doi.org/10.1109/CVPR.2017.632 (2017).
	17.	 Abma, R. & Kabir, N. 3D interpolation of irregular data with a POCS algorithm. Geophysics 71, E91–E97, https://doi.

org/10.1190/1.2356088 (2006).
	18.	 Trad, D. Five-dimensional interpolation: Recovering from acquisition constraints. Geophysics 74, V123–V132 (2009).
	19.	 Ma, J. Three-dimensional irregular seismic data reconstruction via low-rank matrix completion. Geophysics 78, V181–V192, https://

doi.org/10.1190/geo2012-0465.1 (2013).
	20.	 Naghizadeh, M. & Sacchi, M. Multidimensional de-aliased Cadzow reconstruction of seismic records. Geophysics 78, A1–A5,

https://doi.org/10.1190/geo2012-0200.1 (2013).
	21.	 Wang, L. & Wang, Y. A joint matrix minimization approach for seismic wavefield recovery. Scientific Reports 8, 2188 (2018).
	22.	 Sacchi, M. D., Ulrych, T. J. & Walker, C. J. Interpolation and extrapolation using a high-resolution discrete Fourier transform. IEEE

Transactions on Signal Processing 46, 31–38 (1998).
	23.	 Naghizadeh, M. & Innanen, K. A. Seismic data interpolation using a fast generalized Fourier transform. Geophysics 76, V1–V10,

https://doi.org/10.1190/1.3511525 (2011).
	24.	 David, E., Rumelhart, R. J. W. & Geoffrey, E. H. Learning representations by back-propagating errors. Nature 323, 533–536, https://

doi.org/10.1038/323533a0 (1986).
	25.	 He, K., Zhang, X., Ren, S. & Jian, S. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 770–778 (2016).
	26.	 Kingma, D. & Ba, J. Adam: A method for stochastic optimization. Computer Science (2014).
	27.	 Duchi, J. C., Hazan, E. & Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. Journal of

Machine Learning Research 12, 2121–2159 (2011).
	28.	 Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. Image quality assessment: from error visibility to structural similarity. IEEE

Transactions on Image Processing 13, 600–612, https://doi.org/10.1109/TIP.2003.819861 (2004).
	29.	 Chen, H., Zhou, H., Zhang, Q., Xia, M. & Li, Q. A k-space operator-based least-squares staggered-grid finite-difference method for

modeling scalar wave propagation. Geophysics 81, T45–T61, https://doi.org/10.1190/geo2015-0090.1 (2016).
	30.	 Chai, X., Wang, S., Wei, J., Li, J. & Yin, H. Reflectivity inversion for attenuated seismic data: Physical modeling and field data

experiments. Geophysics 81, T11–T24, https://doi.org/10.1190/geo2015-0250.1 (2016).

Acknowledgements
This work was supported by the National Natural Science Foundation of China Program (Grant nos. 41774143,
11805166, 41974154) and the Great and Special Project (Grant no. 2016ZX05026001-01). We thank Prof. Jianxin
Wei at the China University of Petroleum (Beijing) for providing the physical modelling data. We thank the data
contributors of the Mobil Viking graben line 12 data set and the F3 data set, which are available at an open data
website (https://wiki.seg.org/wiki/Open_data). We thank Prof. Jianwei Ma for providing the data set from the
GeoFrame software and a section of the North Sea data set. We thank the authors of the FGFT interpolation
method for making their codes open-access (https://www.crewes.org/ResearchLinks/FreeSoftware/). We thank
SMAART JV for the used Sigsbee2B and Pluto 1.5 earth models. We thank the authors of the Marmousi2 model.
We acknowledge Dr. Hanming Chen at the China University of Petroleum (Beijing) for providing the used
seismic forward modelling codes. We thank Junyong Yu, Jiankun Jing, and Jinhan Zhang at the China University
of Geosciences (Wuhan) for help with proofreading.

Author contributions
X.C., K.L., H.G. and F.L. designed the research. X.C., K.L., H.D. and X.H. implemented the algorithm. F.L.,
H.D. and X.H. collected and processed the data. X.C., K.L., H.G. and F.L. designed, conducted and analysed the
experiments. All authors participated in preparing the manuscript and provided significant input to the final
manuscript.

Competing interests
The authors declare no competing interests.

https://doi.org/10.1038/s41598-020-59801-x
https://doi.org/10.1038/nature14539
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1126/science.aaa8415
https://science.sciencemag.org/content/349/6245/255.full.pdf
https://doi.org/10.1038/d41586-018-02174-z
https://doi.org/10.1038/s41592-018-0261-2
https://doi.org/10.1038/s41592-018-0261-2
https://doi.org/10.1038/nature25988
https://doi.org/10.1038/s41592-019-0458-z
https://doi.org/10.1126/science.aau0323
http://www.deeplearningbook.org
https://doi.org/10.1190/geo2018-0646.1
https://doi.org/10.1190/tle37060451.1
https://doi.org/10.1029/93JB01563
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/93JB01563
https://doi.org/10.1190/geo2016-0300.1
https://doi.org/10.1190/geo2017-0294.1
https://doi.org/10.1190/geo2017-0294.1
https://doi.org/10.1190/geo2017-0495.1
https://doi.org/10.1109/CVPR.2017.632
https://doi.org/10.1190/1.2356088
https://doi.org/10.1190/1.2356088
https://doi.org/10.1190/geo2012-0465.1
https://doi.org/10.1190/geo2012-0465.1
https://doi.org/10.1190/geo2012-0200.1
https://doi.org/10.1190/1.3511525
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1190/geo2015-0090.1
https://doi.org/10.1190/geo2015-0250.1
https://wiki.seg.org/wiki/Open_data
https://www.crewes.org/ResearchLinks/FreeSoftware/

1 8Scientific Reports | (2020) 10:3302 | https://doi.org/10.1038/s41598-020-59801-x

www.nature.com/scientificreportswww.nature.com/scientificreports/

Additional information
Correspondence and requests for materials should be addressed to H.G.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020

https://doi.org/10.1038/s41598-020-59801-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Deep learning for irregularly and regularly missing data reconstruction

	Methods

	Basic theory.
	Model architecture.
	Loss function.
	Optimization algorithm.
	Evaluation metrics.
	Training preparation and setup.
	Training data.
	Training setup.

	Results

	Irregularly missing data reconstruction.
	Regularly missing data reconstruction.

	Discussion

	Conclusions

	Acknowledgements

	Figure 1 Network architecture at an example of pixels in the lowest resolution.
	Figure 2 Feature maps for a randomly sampled data set going through the trained model.
	Algorithm 1 Adam, employed optimization algorithm for stochastic loss function.
	Figure 3 Velocity models used to generate the synthetic data.
	Figure 4 Results on a synthetic training data set.
	Figure 5 Results on the Mobil Viking graben line 12 data set.
	Figure 6 Model input-output pairs, which are randomly selected from the training data set.
	Figure 7 During training, variation of with epoch.
	Figure 8 Results on a test data set generated with the Marmousi2 model.
	Figure 9 Results on a physical modelling data set30.
	Figure 10 Results on a data set from the GeoFrame software.
	Figure 11 Results on the F3 data set.
	Figure 12 Results on a data set from the North Sea.
	Figure 13 Regularly missing data reconstruction.
	Table 1 Model summary for the model architecture shown in Fig.

