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Cell Population Data (CPD) provides various blood cell parameters that can be used for differential
diagnosis. Data analytics using Machine Learning (ML) have been playing a pivotal role in
revolutionizing medical diagnostics. This research presents a novel approach of using ML algorithms
for screening hematologic malignancies using CPD. The data collection was done at Konkuk University
Medical Center, Seoul. A total of (882 cases: 457 hematologic malignancy and 425 hematologic non-
malignancy) were used for analysis. In our study, seven machine learning models, i.e., SGD, SVM, RF,
DT, Linear model, Logistic regression, and ANN, were used. In order to measure the performance of our
ML models, stratified 10-fold cross validation was performed, and metrics, such as accuracy, precision,
recall, and AUC were used. We observed outstanding performance by the ANN model as compared

to other ML models. The diagnostic ability of ANN achieved the highest accuracy, precision, recall,

and AUC + Standard Deviation as follows: 82.8%, 82.8%, 84.9%, and 93.5% + 2.6 respectively. ANN
algorithm based on CPD appeared to be an efficient aid for clinical laboratory screening of hematologic
malignancies. Our results encourage further work of applying ML to wider field of clinical practice.

The global burden of blood cancers is rising and it has affected the lives of millions of people with all ages globally.
Hematological malignancies have a major contribution in disease burden almost in every country. The status
report produced by the International Agency for Research on Cancer (IARC) estimated 18.1 million new cancer
cases and 9.6 million cancer deaths in 2018; 1 out of 5 men and 1 out of 6 women get cancer in their life, and 1 out
of 8 men and 1 out of 11 women die due to cancer; and the estimated 5 year prevalence of cancer is 43.8 million'.
According to the detailed systematic analyses from Global Burden of Disease Cancer Collaboration, the current
cancer trends pose a threat to human development, and if these trends continue then the cancer incidence and
prevalence are expected to increase in the future due to population growth, ageing and epidemiological transi-
tions*?. These facts highlight the importance and urgency of implementing efficient prevention and early detec-
tion policies for cancer along with the strategic investments and effective programs for cancer control in order
to provide universal access to cancer care and achieve the global health action plans**. Clinical and biological
classifications have been developed by the World Health Organization (WHO) to recognize, categorize and treat
the hematological malignancies®. Various clinical methods and techniques, such as biopsies, blood tests, immu-
nology tests, flow cytometry, radiology exams, as well as genetics technologies, such as chromosome analysis and
DNA sequencing exist for the diagnosis of hematological malignancies®’. Complete Blood Count (CBC) is one
of the basic and fundamental tests to evaluate a variety of health disorders including hematological malignancies.
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ICD-10

Code Type Cases | Group

C81-C96 hMahgnant neoplasms of lymphoid, 457 Hematologic - Malignancies

aematopoietic and related tissue

D50-D53 | Nutritional anemia 49 Hematologic - Non Malignancies

D55-D59 | Haemolytic anemia 6 Hematologic - Non Malignancies

D60-D64 | Aplastic and other anemia 166 Hematologic - Non Malignancies

D65-D69 Coagulatlm? defeCFST purpuraand other 83 Hematologic - Non Malignancies
hemorrhagic conditions

D70-D77 ?‘he? diseases of blood and blood- 121 Hematologic - Non Malignancies
orming organs

Table 1. Case numbers analyzed in the study (after preprocessing).

With technological innovations, the Next-Generation Hematological Analyzers (HA) are instrumental in cellular
and morphological analysis®. Though these analyzers are most commonly used for cell counts and differential leu-
kocyte analysis, but their maximum potentials still need to be utilized®. They can provide additional parameters
to support the screening and diagnosis of different diseases, e.g. they can expand the potential information from
CBC%’. The Cell Population Data (CPD) generated from these analyzers provides various blood cell parameters
and have proved its usefulness in the screening of hematological and non-hematological diseases!’. The literature
has provided successful examples of utilizing clinical information using CPD parameters for diagnosis and man-
agement of infectious diseases, such as Sepsis®'°.

With the advent of time, latest Information and Communication Technologies (ICTs) are paving the way
for new discoveries of screening, diagnosing and predicting diseases; and Artificial Intelligence (AI) is one of
the most influential names in that technological list. Al is the field of computer science that simulates human
intelligence by creating intelligent machines. It has great potentials to identify the relevant clinical information
that is hidden in large scale or big healthcare data. AI and its branches, such as Machine Learning (ML) have
made remarkable achievements in healthcare industry in the past decades and have been playing a pivotal role in
revolutionizing the medical diagnostics and practices through intelligent applications and tools. Some important
uses of ML applications in clinical practice include: provision of up-to-date information for reducing diagnostic
and therapeutic errors, real time inferences, health risk alerts, and health outcome predictions'"'%. Though there
is substantial literature of AT and ML in healthcare research, most of the research focuses in the fields of Cancer,
Neurology and Cardiology'"'*-*!. In addition, the literature lacks successful applications of ML that deal with
complex medical diagnostic fields like Hematology?2. Blood tests are the most common measure to diagnose
the hematological diseases in the laboratories and clinicians need the hematological parameters to analyze the
numerical patterns, deviations and relations; and that’s where ML algorithms can come into action by performing
intelligent handling, detection and utilization of these parameters, and developing models to predict the future
diagnosis and outcomes?.

This research presents a novel approach of using ML algorithms for screening patients for hematologic malig-
nancies using CPD. The term screening refers to the medical process of determining the likelihood of disease
in healthy population; and based on subsequent diagnostic tests or procedures, it can lead to the intervention /
treatment of the diagnosed disease. Therefore, our proposed approach is not and cannot be used for diagnosing
or treating the malignancies, rather it just provides a simple technological support for screening the patients using
their numerical data. In order to measure the performance of ML models, stratified 10-fold cross validation was
performed, and metrics like accuracy, precision, recall, Area Under the Curve (AUC), and Receiver Operating
Characteristic (ROC) were used.

Methods

This study was performed in Konkuk University Medical Center (KUMC), which is 700-bed sized tertiary-care
teaching hospital in Seoul, South Korea. The study was conducted according to the Declaration of Helsinki, the
protocol approved an exemption by the Institutional Review Board (IRB) of KUMC, and obtaining informed con-
sent from the study patients was not necessary (IRB approval No. KUH1200110). The data collection was done
at the Department of Laboratory Medicine, Konkuk University Medical Center from February 2019 to March
2019. The data was anonymized due to the sensitivity of patients’ information. CPD parameters and International
Classification of Diseases, 10th Revision (ICD-10) codes were included. The demographic patient information,
i.e., gender and age, were also included for better prediction outcomes.

We performed the hematologic analysis using Mindray BC-6800 (Mindray, Shenzhen, China) automated
hematology analyzer that yielded CPD including CBC, leukocyte differentiation and reticulocyte count with
information on volume, conductivity and different scatter measures®. After preprocessing (see the following
section), a total of 882 cases were included for analysis. Detailed number of hematologic diseases including malig-
nancies and non-malignancies are shown below in Table 1.

Preprocessing. The dataset contained several missing values. We handled this issue in two steps. First, the
cases that had more than 90% values missing were excluded. In total, 17 cases were excluded, while 882 cases were
further analyzed. Second, missing values were predicted with two machine learning algorithms. The missing
numerical variables were predicted with linear regression, while the missing categorical variables were predicted
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with decision tree classifier. In both cases, the learning data contained a subset of numerical attributes and a sub-
set of instances with no missing values.

After handling missing values, we selected only laboratory data and demographic patient information (gender
and age) for further analysis. As a result, the number of variables (before feature selection) was 61.

There are different ranges of measurements and units in the laboratory data, therefore, in order to normalize
our dataset, we used the scaling process. We selected Min-Max Scalar as scaling feature to transform the normal
values to end up within the range of 0 to 1. In order to make the gender values in numerical form, we used the
value of 0 for female and 1 for male.

Bias variable. We applied point-biserial correlation to determine which variables have significant influence
on malignant or non-malignant hematologic diseases. Point-biserial correlation is assessed between —1 to 1. The
value closer to —1 shows the strong confidence of negative linear relationship between two variables, and the
value closer to 1 shows strong confidence of positive linear relationship.

The presented approach uses filter-based variable/feature selection. However, there exist two additional
approaches for selecting the most appropriate features: wrapper and embedded approaches. The main differences
among them are the following. Filter methods use a selected measure to get the best subset of features prior
machine learning phase. Wrapper methods use machine learning model to score the feature subsets and select
the best performing one. Embedded methods perform feature selection as a part of model construction process.

Variable selection. In order to find out the variables with high significance, either negative or positive
point-biserial correlation, we used the absolute value by changing the results from negative correlation to positive
value, and ranked them from high to low. Table 2 shows the selected variables based on point-biserial correlation.

Model selection. In our study, we applied seven machine learning models: Stochastic Gradient Descent
(SGD), Support Vector Machine (SVM), Random Forests (RF), Decision Tree (DT), an adapted Linear Regression
- its output was discretized into two classes by using a threshold - (LINEAR), Logistic Regression (LOGIT), and
Artificial Neural Networks (ANN). The first six models were used from the Scikit-learn library** with the default
parameter values, while ANN used the Keras library®.

ANN consisted of a 3-layer architecture and was trained in 300 epochs with batch size 48. The first hidden
layer had 128 nodes with Rectified Linear Unit (ReLU) activation function, and the second hidden layer had
64 nodes with ReLU activation function. A single node with Sigmoid/Logistic activation was used for the out-
put layer. The output layer was defined as malignancies predictive value, which is a continuous variable from 0
(haematologic non-malignancies) to 1 (haematologic malignancies). This architecture was selected based on our
past experience on processing similar medical datasets. A more appropriate approach for the selection of the
architecture would include evaluation of various parameter values (such as number of layers). However, such an
optimization is very complex and time-consuming thus will be carried out in future work if deemed necessary.

Performance evaluation. To evaluate the performance of the ML models, we used the stratified 10-fold
cross-validation. In stratified cross-validation, the folds are selected in such a way that the percentage of sam-
ples is preserved for each class?. That is, the procedure maintains the same distribution of the target variable
when randomly selecting examples for each fold; in our case, the same proportion between malignant and
non-malignant cases. More precisely, this procedure divides the set of cases into k groups (k= 10) or folds of
approximately equal sizes. The first fold is treated as a testing set, and the remaining k-1 folds are used for training
the model (90% training data vs. 10% testing data). This is repeated 10 times, each time selecting a different fold
as the testing set and the remaining folds as the training set. The performance metrics are then averaged over all
the 10 steps. To avoid double dipping, training and testing sets (folds) are always disjoint sets and thus they do
not share any sample?.

In our study we tested data with True Positive (TP) as real malignancies that are correctly predicted, False
Positive (FP) as real malignancies that are incorrectly classified to be non-malignancies, True Negative (TN)
as real non-malignancies that are correctly predicted, and False Negative (FN) as real non-malignancies that
are incorrectly predicted. The results of tested performance measures from precision denotes the proportion of
predicted positive cases or TP. Recall refers to sensitivity, and in medical term to identify all positive cases or rate
of TP. Accuracy is predicting the correct ratio of samples, and is one of the most intuitive and basic performance
measures for any ML model. Area Under the Curve (AUC) is used to determine the best cutoff point and compare
two or more tests or observers of each calculated fold*®. AUC compares rate of TP (TPR) and rate of FP (FPR). It
is created by plotting the TPR against the FPR%.

Results
Comparative analysis of gender on malignant and non-malignant group revealed different results. We found that
males in our set have a higher ratio in malignancies with 277 cases, as opposed to females with 180 cases. Among
non-malignant groups that had opposite results, females had higher ratio with 266 cases than males with 159
cases. The demographic population distribution on malignant and non-malignant group is shown in Table 3.
The classification information from our dataset was placed into two groups, haematologic malignancies and
haematologic non-malignancies using ICD-10 code. As shown in Table 4, C92 or myeloid leukemia disease had
the highest percentage (20.07) in malignant group with 177 cases, in which 167 cases belonged to acute myeloid
leukemia disease. In Non-Malignant group, D64 Pancytopenia took the highest cases with a total of 106 followed
by D61 with 60 cases.
The performance of the ML models was measured with 10-fold cross-validation as described in Section
Performance Evaluation. In addition to the ML models, we also evaluated variable selection with thresholds 0.05,
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Absolute
Abbreviation | Name Correlation
P-LCC Platelet-large cell count 0.351
PCT Plateletcrit 0.336
PLT optical impedance 0.321
PLT-I Platelet count- Impedance 0.320
InR%o Infected RBC percentage 0.297
Age Age 0.282
Gender Gender 0.231
HFC% High fluorescent Cell percentage 0.223
Neu-BF% Neutrophils percentage -body fluid 0.210
H-NR% High forward scatter NRBC ratio 0.198
PLR Platelet-to-lymphocyte ratio 0.188
Neu-BF# Neutrophils Number -body fluid 0.186
HF-BF# High Fluorescent cell Number -body fluid 0.181
NLR Neutrophil-to-lymphocyte ratio 0.181
L-NR% Low forward scatter NRBC ratio 0.179
Mon% Monocytes percentage 0.168
MO-BF% Monocytes percentage- body fluid 0.166
LY-BF% Lymphocytes percentage- body fluid 0.157
Eos-BF# Eosinophils number -body fluid 0.152
RDW-CV Red Blood Cell Distribution Width Coefficient of Variation | 0.149
IMG% Immature Granulocyte percentage 0.146
Micro# RBC microcyte Cell Number 0.143
Micro% RBC microcyte Cell percentage 0.142
RDW-SD Red Blood Cell Distribution Width Standard Deviation 0.141
Macro# RBC macrocyte Cell Number 0.130
HCT Hematocrit 0.128
IME% Immature eosinophil percentage 0.114
HGB Hemoglobin Concentration 0.110
MCHC Mean Corpuscular Hemoglobin Concentration 0.100
RBC Red Blood Cell count 0.098
Macro% RBC macrocyte Cell percentage 0.096
Lym# Lymphocytes number 0.095
MPV Mean Platelet Volume 0.093
MCV Mean Corpuscular volume 0.091
LY-BF# Lymphocytes number- body fluid 0.090
Bas% Basophils percentage 0.089
MO-BF# Monocytes number- body fluid 0.084
P-LCR Platelet-large cell ratio 0.075
Eos-BF% Eosinophils percentage -body fluid 0.064
NRBC# Nucleated red blood cell number 0.059
NRBC% Nucleated red blood cell percentage 0.057

Table 2. CPD selected variables based on point-biserial correlation.

Malignancies Non-Malignancies
Age Female (%) Male (%) Female (%) Male (%) Total (%)
<18 (Children) 0(0) 3(0.34) 1(0.11) 1(0.11) 5(0.57)
18-64 (Adults) 124 (14.06) 207 (23.47) 152 (17.23) 63 (7.14) 546 (61.90)
65 + (Elderly) 56 (6.35) 67 (7.60) 113 (12.81) 95 (10.77) 331 (37.53)
Total 180 (20.41) 277 (31.41) 266 (30.16) 159 (18.03) 882 (100)

Table 3. Demographic population distribution.

0.1, 0.15, and 0.2 (see Table 5). When evaluating a threshold, all the variables with lower absolute point-biserial
correlation were removed from the dataset. The results show that, for all the tested thresholds, the highest AUC is
obtained by ANN. In addition, since there is low difference in AUC when applying the threshold of 0.05in com-
parison to when no threshold is applied, the recall was also evaluated and the results show that recall is the highest
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Group ICD code | Disease category Frequency | Perc ge (%)
C81 Hodgkin lymphoma 9 1.02%
C82 Follicular lymphoma 1 0.11%
C83 Non-follicular lymphoma 50 5.67%
C84 Mature T/NK-cell lymphomas 10 1.13%
css g;}:iegl‘l;l:lel;ig;(}jzrrfaunspeciﬁed types of non- 28 3.17%
C86 Other specified types of T/NK-cell lymphoma 22 2.49%
oGy | O | Mot dssend 1
c90 i\l/it(l)lsgifn Tyeloma and malignant plasma cell 2 227%
C91 Lymphoid leukemia 73 8.28%
C92 Myeloid leukemia 177 20.07%
C94 Other leukemias of specified cell type 13 1.47%
C95 Leukemia of unspecified cell type 38 4.31%
C36 || mphotd, hemstopoietic and eated oue. | 0.11%
D50-D53 | Nutritional anaemias 49 5.56%
D55-D59 | Haemolytic anaemias 6 0.68%
Non-Malignant Group D60-D64 | Aplastic and other anaemias 166 18.82%
e e R P
D70-D77 | Other diseases of blood and blood-forming organs | 121 13.72%
Malignant Group C81-C96 457 51.81%
Non-Malignant Group D50-D77 425 48.19%
Total 882 100%

Table 4. Granularity information of group diseases in dataset.

Total Variable AUC % (= Standard
Used variable | Predictor Model | Deviation) Recall
All Variables 61 ANN 93943 84.2
>0.05 41 ANN 935+3 84.9
>0.1 29 ANN 92.8+3 83.6
>0.15 19 ANN 90.7+5 82.8
>0.20 9 ANN 87.7+5 79.1

Table 5. Total variable predictor on selection variable and model with high result AUC and recall.

when the threshold of 0.05 is applied. Consequently, we selected variable selection with the threshold of 0.05 for
further analysis. Such a variable selection eliminated 20 variables, as shown in Table 5.

The results of all the ML models when applying variable selection with the threshold of 0.05 are shown in
Fig. 1 and Table 6. These figure and table show that ANN has the best performance among ML algorithms. More
precisely, the diagnostic ability of ANN achieved the highest accuracy, precision, recall (diagnostic sensitivity)
and AUC =+ Standard Deviation as follows: 82.8%, 82.8%, 84.9%, and 93.5% = 2.6 respectively.

For the statistical comparison of the algorithms, we applied Dietterich’s 5x2-Fold Cross-Validation method*.
This method performs K-fold paired ¢ test in order to compare the performance of two algorithms. The statistical
comparison of the algorithms is shown in Table 7. This table shows that, assuming the level of significance of 0.05,
the performance of ANN is significantly different with respect to the performance of other models.

Discussion

An ample amount of research has been done by utilizing Al and patients’ clinical information for diagnosis and
management of various diseases. Here, our comparative analysis will focus on AI based studies in the literature
that have utilized CBC and particularly CPD for screening hematologic malignancies. The morphological identi-
fication of blood cell disorders with CPD is critical for the early diagnosis and clinical decision. Accordingly, CPD
could be used to assist physicians who are not specialized in haematology by facilitating the CBC and suggesting
proper and early patient referral. In a study using CBC test data, three data mining methods: association rules,
rule induction and deep learning were tested and the results showed that the deep learning classifier with the best
ability for predicting tumors from blood diseases with an accuracy of 79.45%, with the limitation of no explana-
tion of results®!. Another related study* used machine learning algorithm to differentiate lymphoid classification
using CPD parameters from 3 cohorts: healthy control, viral infection and chronic lymphocytic leukemia. In that
study, the best result came from Neural Networks classifier with an accuracy of 98.7% followed by SVM 98.0%
and KNN 98.0%2. A recent study using CPD showed Random Forest algorithm as the best model with two
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Figure 1. AUC Obtained with ML Models when Applying Variable Selection with the Threshold of 0.05.

AUC =+ Standard

Deviation Accuracy | Precision | Recall
Stochastic Gradient Descent (SGD) 0.823 +0.040 0.699 0.746 0.710
Support Vector Machine (SVM) 0.792+0.035 0.716 0.719 0.744
Decision Tree (DT) 0.782+0.039 0.728 0.745 0.722
Ramdom Forest (RF) 0.859+£0.027 0.778 0.803 0.764
Linear Regression (LINEAR), adapted | 0.802+0.019 0.721 0.726 0.742
Logistic Regression (LOGIT) 0.822+£0.034 0.725 0.741 0.724
Artificial Neural Network (ANN) 0.935+0.026 0.828 0.828 0.849

Table 6. Model performance indicators when applying variable selection with the threshold of 0.05.

SVM | DT RF LINEAR | LOGIT | ANN
SGD 0.329 |0.497 |0.238 |0.577 0.773 0.019
SVM 0.187 |0.051 |0.123 0.165 0.010
DT 0.161 |0.304 0.892 0.002
RF 0.099 0.104 0.000
LINEAR 0.507 0.010
LOGIT 0.005

Table 7. The p values of testing hypothesis that pairs of algorithms perform similarly.

practices, using all parameters and reduced parameters. It showed the accuracy of 59% for 181 parameters and
accuracy of 57% for 61 parameters®>. Another study took CPD data with 103 parameters for prediction of relapse
in childhood with Acute Lymphoblastic Leukemia®. It showed the Random Forest as the best model for predic-
tion with measurements (accuracy: 83.1%; specificity 89.5%; positive predictive value: 88.0% and AUC: 90.2%).
One slightly different retrospective study* in the field of medical imaging with 467 cases (training set: 360 and
test set: 107) constructed SVM texture classifier model to see the feasibility of differentiating bone marrow with
hematologic diseases. With the above-mentioned training set, the values of accuracy, sensitivity and specificity
and AUC were 82.8%, 81.7%, 83.9% and 0.895 (p < 0.001) respectively. The model’s predictive performance was
comparable to the radiologists, but it requires more clinical and lab work for the finalization.

In our study, the results showed that machine learning approach, using deep learning algorithm trained on
large amount of multi-analyte sets from laboratory blood test results, is able to predict diseases with high accu-
racy. Under these conditions, a classification (diagnostic) accuracy of 82.8% (ANN) and AUC 93.5% for the two
classifications represent excellent results; and ANN are comparable to that of other ML methods have significance
improvement.

Moreover, our results showed that the step of filtering variables based on point-biserial correlation had better
results. Total variable predictor without filtered by point-biserial correlation would contain weak association with
the classes. This suggests that there is a bias to assess malignancies and non-malignancies classes for choosing
variables on CPD. Therefore, the highest selection that eliminated predictor with point-biserial correlation below
2 is not covered as outstanding result because AUC performance decreased from 93.9 to 87.7% (see Table 5).
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This type of predictor has an excellent selection but it has to be filtered to eliminate the weak association of the
variable. Our results encourage further work of applying machine learning to the wider field of internal medicine.

As far as the association of platelet-large cell count with malignancy is concerned, a high blood platelet count
is a strong predictor of cancer and should be urgently investigated further. A high platelet count may be referred
to as thrombocytosis. This is usually the result of an existing condition (also called secondary or reactive throm-
bocytosis), such as: cancer - most commonly lung, gastrointestinal, ovarian, breast or lymphoma. Also, optimal
impedance (PLT) is an advanced technique that provides an accurate automated complete blood count (CBC),
including white blood cell (WBC) differential, in a short turnaround time. Clinically, it makes sense that PLT is
among top influential variables in the model.

There were certain limitations in our study. It used a relatively small sample size and many cases were excluded
for the main purpose of the study. The data collection process took two months, and we excluded data due to the
machine learning algorithm restriction of high missing items. Due to the sample size, we focused on CPD and
used the stratified cross-validation method. Moreover, we did not perform validation with external data, as we
worked with the accumulated dataset only. Hence, the diagnostic ability of machine learning using other external
data, e.g. (gene expression data) should be applied in the future. Our study mainly focused on predictive accuracy
and did not look at the other additional benefits from CPD. For future investigations, we suggest the following
potential areas for further investigation: predictive performance, counting identifying tasks and metrics, testing
different approaches for data modeling, and understanding portions of the data have contrasting contributions
to predictive accuracy. Furthermore, since genomic analysis is already a part of the clinical practice for the diag-
nosis and management of diverse hematologic malignancies, so the genomic evaluation of cancer supported by
upcoming improvements in molecular diagnostic technologies is another key area that must be considered for
the future research.

Conclusions

This research presents a novel approach of using ML algorithm for screening patients with suspected hematologic
malignancies versus non-malignancies using CPD that was generated by routine CBC. We observed outstanding
performance results on ANN model, as the diagnostic ability of ANN achieved higher accuracy, prediction, recall
and AUC as compared to the other ML models. Therefore, we conclude that based on CPD, the ANN algorithm
appears to be an efficient aid for the clinical laboratory diagnostic approach of hematologic malignancies. In the
future, we are planning to apply this algorithm to the outpatient data in hematology departments. Prospective
research and trials are mandatory to confirm the validity of clinical Al before it actually helps physicians in clini-
cal practice, particularly in haematologic diseases.
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