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Deep learning-based decision 
support system for the diagnosis 
of neoplastic gallbladder polyps 
on ultrasonography: Preliminary 
results
Younbeom Jeong1, Jung Hoon Kim1,2,3,4 ✉, Hee-Dong Chae   1,2,4 ✉, Sae-Jin Park1,2,  
Jae Seok Bae   1,2, Ijin Joo1,2 & Joon Koo Han1,2,3

Ultrasonography (US) has been considered image of choice for gallbladder (GB) polyp, however, it 
had limitations in differentiating between nonneoplastic polyps and neoplastic polyps. We developed 
and investigated the usefulness of a deep learning-based decision support system (DL-DSS) for the 
differential diagnosis of GB polyps on US. We retrospectively collected 535 patients, and they were 
divided into the development dataset (n = 437) and test dataset (n = 98). The binary classification 
convolutional neural network model was developed by transfer learning. Using the test dataset, three 
radiologists with different experience levels retrospectively graded the possibility of a neoplastic polyp 
using a 5-point confidence scale. The reviewers were requested to re-evaluate their grades using the 
DL-DSS assistant. The areas under the curve (AUCs) of three reviewers were 0.94, 0.78, and 0.87. The 
DL-DSS alone showed an AUC of 0.92. With the DL-DSS assistant, the AUCs of the reviewer’s improved 
to 0.95, 0.91, and 0.91. Also, the specificity of the reviewers was improved (65.1–85.7 to 71.4–93.7). The 
intraclass correlation coefficient (ICC) improved from 0.87 to 0.93. In conclusion, DL-DSS could be used 
as an assistant tool to decrease the gap between reviewers and to reduce the false positive rate.

Gallbladder (GB) polyps are commonly detected during ultrasonography (US), with a reported prevalence that 
ranges from 0.3 to 9.5%, and they present a tricky clinical question regarding their malignancy1–9. They can be 
divided into two groups: benign nonneoplastic and neoplastic polyps, which include adenomas and adenocarci-
nomas9–11. As adenomatous polyps can be malignant or can become malignant, it is important to differentiate and 
properly manage an adenomatous polyp9.

US has been considered image of choice for GB polyp. To diagnose neoplastic GB polyps, US showed an 80% 
accuracy12. Although US provided relatively good performance for diagnosing GB polyps, it had limitations in 
differentiating between nonneoplastic polyps and neoplastic polyps.

Recently, deep learning has been applied in various fields13. The deep learning models using image input 
usually have been developed to classify lesion or nonlesion, to group the lesion type, to detect the lesion, or to 
segment the lesion14. Additionally, the US field has less deep learning studies than other modalities. Most of the 
topics have been focused on lesion classification for breast, liver, and thyroid, and other minor topics include 
automatic carotid ultrasound image analysis, myositis type classification, and spine level identification15.

Several studies have shown that deep learning could enhance the performance of the radiologist13. A deep 
learning model could help the radiologist in detecting the pulmonary nodule on a chest radiograph, interpreting 
the knee magnetic resonance imaging (MRI), and detecting a cerebral aneurysm on magnetic resonance angiog-
raphy16–18. To our knowledge, no articles have been published applying the deep learning method to differentiate 
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GB polyps on US. The purpose of our study is to determine if a deep learning-based decision support system 
(DL-DSS) is helpful for the differential diagnosis of neoplastic GB polyps on US.

Results
Patient population.  A total of 535 patients were included in our study group, including 357 patients with 
nonneoplastic polyps and 179 patients with neoplastic polyps. We divided selected patients into two groups to 
make two temporally independent datasets: the development dataset (n = 437) and test dataset (n = 98).

The pathologic diagnoses of GB polyps were as follows: nonneoplastic polyp (n = 357), including cholesterol 
polyp (n = 349); hyperplastic polyp (n = 1); inflammatory polyp (n = 7); neoplastic polyp (n = 179), including 
adenoma (n = 95); intracystic papillary neoplasm (n = 1); intracystic tubulopapillary neoplasm (n = 8); fibroepi-
thelial polyp (n = 1); adenocarcinoma (n = 62); intracystic papillary neoplasm with an associated invasive carci-
noma (n = 10); papillary carcinoma (n = 1); and adenosquamous carcinoma (n = 1).

From the 535 patients, we collected total of 6,056 cropped polyp images: 3,629 images of nonneoplastic polyps 
and 2,427 images of neoplastic polyps. The development dataset consisted of 3,200 images of nonneoplastic pol-
yps and 1,971 images of neoplastic polyps. The test dataset consisted of 429 images of nonneoplastic polyps and 
456 images of neoplastic polyps.

Baseline characteristics of data sets.  There was no significant difference in the population characteris-
tics (age, man to woman ratio, proportion of nonneoplastic and neoplastic polyps, and size of polyps) between 
the development set and test set (p ≥ 0.05). The baseline characteristics of the data sets are described in Table 1.

In the both development set and test set, patient age and polyp size showed statistically significant differences 
between nonneoplastic and neoplastic polyp (p < .001). The average size of nonneoplastic and neoplastic polyps 
was 9.4 ± 3.5 mm and 18.4 ± 8.4 mm, respectively. The optimal size cutoff for differentiating a neoplastic polyp 
was over 13.1 mm (with sensitivity 70.1%, and specificity 87.1%) form the receiver operating characteristic (ROC) 
curve analysis. However, there was a substantial amount of size overlap between the nonneoplastic and neoplastic 
polyps. The size distribution histogram is shown on Fig. 1.

Outcomes of clinical validation of DL-DSS.  Step 1: Diagnostic performance of image analysis by three 
human reviewers.  Table 2 summarizes the diagnostic performance of the three human reviewers. Three review-
ers showed different area under the receiver operating characteristic curve (AUC) from 0.78 to 0.94. Reviewer 
A showed relatively good sensitivity (31 of 35 [88.6%]) and specificity (54 of 63 [85.7%]) on classifying the neo-
plastic polyp. However, reviewers B and C showed relatively low specificities of 43/63 (68.3%) and 41/63 (65.1%) 
respectively. The overall accuracy was between 68/98 (69.4%) and 85/98 (86.7%).

Table 3 summarizes the comparison with the US image findings between neoplastic polyps and nonneoplastic 
polyps. Among the three reviewers, the characteristic image findings of neoplastic polyps were single, larger, and 
sessile compared to the nonneoplastic polyps. A majority of the reviewers (two of three) reported lobulated sur-
face contour, the presence of a vascular core, and heterogeneous internal echogenicity was also a common find-
ing in the neoplastic polyps. Among the US findings, multiplicity, size, vascular core, and presence of gallstone 

Characteristics Development Set Test Set Total p

No. of Patients 437 98 535

No. of Images 5,171 885 6,056

Age (y) 52.2 ± 13.5 (21–53–87) 55.2 ± 12.5 (26–55–86) 52.7 ± 13.4 (21–54–87) 0.05

No. of Man Patients 198 [45.3] 37 [37.8] 235 [43.9] 0.17

No. of Patients with Nonneoplastic polyp 294 [67.3] 63 [64.3] 357 [66.7] 0.6

No. of Patients with Neoplastic polyp 144 [33.0] 35 [39.3] 179 [33.5]

Size of Polyp 12.2 ± 7.1 (4.1–10.4–47.2) 13.4 ± 6.9 (4–12.3–35) 12.4 ± 7.0 (4–10.6–47.2) 0.14

Size of Nonneoplastic Polyp 9.4 ± 3.6 (4.1–8.9–21.4) 9.9 ± 2.9 (4–9.9–15.4) 9.4 ± 3.5 (4–9.1–21.4) 0.27

Size of Neoplastic Polyp 18.1 ± 8.6 (4.3–16.0–47.2) 19.8 ± 7.5 (4.6–17.7–35) 18.4 ± 8.4 (4.3–16.4–47.2) 0.29

Development Set Nonneoplastic polyp Neoplastic polyp

No. of Patients 294 144

Age (y) 48.5 ± 12.5 59.7 ± 12.4 <0.001

No. of Man Patients 124 [42.2] 74 [51.4] 0.07

Size of Polyp 9.4 ± 3.6 18.1 ± 8.6 <0.001

Test Set Nonneoplastic polyp Neoplastic polyp

No. of Patients 63 35

Age (y) 51.1 ± 10.9 62.5 ± 11.9 <0.001

No. of Man Patients 17 [27.0] 20 [57.1] 0.07

Size of Polyp 9.9 ± 2.9 19.8 ± 7.5 <0.001

Table 1.  Baseline Characteristics of Data Sets. Note.- Size of polyp was calculated from the one maximum value 
from each patients. Data in parentheses are minimum, median, maximum values, respectively. Data in brackets 
are percentage.
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showed good interobserver agreement (intraclass correlation coefficient (ICC) = 0.82–0.97). The shape, surface 
contour, and internal echo level showed moderate agreement (ICC = 0.65–0.79). From the multivariate logistic 
regression analysis, only the diameter of the polyp was a significant predictive finding of a neoplastic polyp. This 
was consistent result from all three reviewers (odds ratio (OR) 2.1, confidence interval (CI) 1.2–3.5, p < 0.01 for 
reviewer A, OR 1.5, CI 1.2–1.9, p < 0.001 for reviewer B, and OR 1.5, CI 1.1–2.2, p < 0.02 for reviewer C).

Step 2: Diagnostic performance of the DL-DSS.  The diagnostic performance of the DL-DSS showed an AUC of 
0.92, sensitivity of 26/35 (74.3%), specificity of 58/63 (92.1%), and an overall accuracy of 84/98 (85.7%) (Table 2). 
One radiologist with 11 years of abdominal ultrasound experience showed better performance than the DL-DSS. 
However, the system showed a better performance than two reviewers, who had 3 and 5 years of abdominal 
ultrasound experience. A statistically significant difference was observed between the DL-DSS and reviewer B 
(p < 0.01).

Step 3: Diagnostic performance of image analysis by three human reviewers with the aid of the DL-DSS.  Table 2 
shows that all three reviewers’ diagnostic performances increased when the DL-DSS was added. All three of the 
reviewers’ AUCs became higher than 0.9. A statistically significant improvement was shown for reviewer B, whose 
performance increased from 0.78 to 0.91 (p < 0.01). Among the sensitivity, specificity, and accuracy, the specific-
ity showed marked growth in all three reviewers (Fig. 2). In addition, the interobserver agreement improved with 
the aid of the DL-DSS (ICC from 0.87 to 0.93).

Diagnostic performance for GB polyps larger than 10 mm.  Table 4 summarizes the diagnostic perfor-
mance of the three human reviewers and the DL-DSS for GB polyps larger than 10 mm. When the GB polyps were 

Figure 1.  Size distribution histogram of the polyps in the whole dataset. The average size of all polyps was 
12.4 mm, and the average size of nonneoplastic and neoplastic polyp was 9.4 mm and 18.4 mm respectively. 
There was a substantial overlap zone between nonneoplastic polyps and neoplastic polyps.

AUC Comparison Sensitivity Specificity Accuracy F-1 Score

Step 1: Initial Image Analysis Step 1 vs Step 2 
(p value)

Reviewer A 0.94  
[0.88–0.98] 0.49 88.6 (31/35) 

[73.3–96.8]
85.7 (54/63) 
[74.6–93.3]

86.7 (85/98) 
[74.1–94.6]

0.827  
[0.737–0.870]

Reviewer B 0.78  
[0.68–0.85] <0.01 71.4 (25/35) 

[53.7–85.4]
68.3 (43/63) 
[55.3–79.4]

69.4 (68/98) 
[54.7–81.5]

0.624  
[0.509–0.704]

Reviewer C 0.87  
[0.79–0.93] 0.11 97.1 (34/35) 

[85.1–99.9]
65.1 (41/63) 
[52.0–76.7]

76.5 (75/98) 
[63.8–85.0]

0.747  
[0.687–0.760]

Step 2: DL-DSS Alone

DL-DSS 0.92  
[0.85–0.97]

74.3 (26/35) 
[56.7–87.5]

92.1 (58/63) 
[82.4–97.4]

85.7 (84/98) 
[73.2–93.9]

0.788  
[0.663–0.867]

Step 3: DL-DSS Aided Step 1 vs Step 3 
(p value)

Reviewer A 0.95  
[0.88–0.98] 0.65 85.7 (30/35) 

[69.7–95.2]
93.7 (59/63) 
[84.5–98.2]

90.8 (89/98) 
[79.2–97.1]

0.869  
[0.770–0.921]

Reviewer B 0.91  
[0.83–0.96] <0.01 80.0 (28/35) 

[63.1–91.6]
93.7 (59/63) 
[84.5–98.2]

88.8 (87/98) 
[76.9–95.8]

0.836  
[0.723–0.902]

Reviewer C 0.91  
[0.83–0.96] 0.17 91.4 (32/35) 

[76.9–98.2]
71.4 (45/63) 
[58.7–82.1]

78.6 (77/98) 
[65.2–87.9]

0.753  
[0.673–0.787]

Table 2.  Diagnostic Performance of Reviewers and DL-DSS. Note.- Data in brackets are 95% CI.
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larger than 10 mm, the AUC of all experiments became lower. However, the added gain of the DL-DSS became 
more evident. For the human reviewers, the gap between sensitivity and specificity became more prominent. The 
sensitivity and specificity were from 69.7 to 100 and from 41.9 to 77.4, respectively. Additionally, the sensitivity 
and specificity of the DL-DSS were 78.8 and 87.1, respectively. The maximum gap of specificity between human 
and DL-DSS was exaggerated from 27 to 45.2. The p-values of the comparison between the 1st and 2nd review 
became more significant (<0.001–0.16).

Discussion
The DL-DSS could be a useful assistant tool for the differential diagnosis of neoplastic GB polyp by decreasing the 
gap between reviewers with different experience levels and reducing the false positive rate. The initial AUCs for 
neoplastic GB polyp were 0.94, 0.78, and 0.87. With the DL-DSS assistant, reviewers’ performances improved to 
0.95, 0.91, and 0.91. The diagnostic performance of the less-experienced radiologists significantly improved with 
the aid of the DL-DSS (0.78 to 0.91 p < 0.01 for Reviewer B and 0.87 to 0.91, p = 0.17 for Reviewer C). The ICC 
improved from 0.87 to 0.93 with the aid of DL-DSS.

Among the important US finings for neoplastic polyps such as a single, larger, and sessile polyp, a larger size 
was the only independent factor on the multivariable regression. The optimal cutoff dividing the nonneoplastic 
polyp and neoplastic polyp was 13.1 mm. The importance of the size also had been reported on previous studies. 
According to Yeh C-N’s reports19, a size criteria that was equal to 10 mm or larger was the independent risk factor 
for neoplastic polyp. Cha BH, et al. collected 210 patients who had a GB polyp larger than 10 mm, and found 
that a size equal to 15 mm or larger was an independent risk factor suggesting neoplastic polyp20. Choi TW, et al. 
collected 136 patient’s high-resolution US images and reported that a single polyp and large diameter were the 
meaningful factors predicting a neoplastic polyp21.

The DL-DSS showed a higher specificity than all of the human reviewers, and this characteristic helped in 
improving the human performance. Although the human reviewers mainly relied on the size of polyp to differen-
tiate neoplastic polyp, there was a substantial overlap zone between nonneoplastic polyps and neoplastic polyps 
in the size distribution plot. On the subgroup analysis for the large polyp (≥10 mm), the specificity of the human 
reviewers dropped markedly than the DL-DSS. The human reviewers overcalled the neoplastic polyp when the 
polyp measured 10 mm or larger, and this trend led to unnecessary cholecystectomies. The DL-DSS could reduce 
the false positive rate, thereby avoiding unnecessary cholecystectomy.

The DL-DSS could help to improve a less-experienced radiologist’s performance and narrow the gap between 
reviewers. Nam JG, et al. demonstrated that the malignant pulmonary nodule detection deep learning algorithm 
improved the nodule detection performance of 18 physicians with different experience levels16. The performance 
gap between the thoracic radiologist group and other physicians became lower. Bien N, et al. developed and vali-
dated the deep learning model to detect a general abnormality, anterior cruciate ligament tear, and meniscal tear 
on knee MRI data17. The model improved the interrater reliability among the 7 general radiologists and 2 ortho-
pedic surgeons. Our study results also showed that the diagnostic performance of a nonexperienced radiologist 
significantly improved with the aid of the DL-DSS (0.78 to 0.91 p < .01 for Reviewer B and 0.87 to 0.91, p = 0.17 
for Reviewer C).

Our study has some limitations. First, this study was only performed in a single center, and only temporally 
external validation was done. Second, the DL-DSS differentiated between nonneoplastic polyps and neoplastic 

Findings

Reviewer A Reviewer B Reviewer C

Nonneo Neo p Nonneo Neo p Nonneo Neo p

Multiplicity
Single 30.2% (19/63) 71.4% (25/35) <0.001 38.1% (24/63) 74.3% (26/35) <0.001 36.5% (23/63) 80.0% (28/35) <0.001

Multiple 69.8% (44/63) 28.6% (10/35) 63.9% (39/63) 25.7% (9/35) 63.5% (40/63) 20.0% (7/35)

Size 9.4 ± 2.7 19.9 ± 7.5 <0.001 10.2 ± 2.9 19.5 ± 7.6 <0.001 9.6 ± 3.0 19.2 ± 7.9 <0.001

Shape
Pedunculated 95.2% (60/63) 57.1% (20/35) <0.001 73.0% (46/63) 37.1% (13/35) <0.01 81.0% (51/63) 40.0% (14/35) <0.001

Sessile 4.8% (3/63) 42.9% (15/35) 27.0% (17/63) 62.9% (22/35) 19.0% (12/63) 60.0% (21/35)

Contour
Smooth 60.3% (38/63) 22.9% (8/35) <0.001 19.0% (12/63) 8.6% (3/35) 0.24 60.3% (38/63) 20.0% (7/35) <0.001

Lobulated 39.7% (25/63) 77.1% (27/35) 81.0% (51/63) 91.4% (32/35) 39.7% (25/63) 80.0% (28/35)

Gallstone
Absent 88.9% (56/63) 85.7% (30/35) 0.75 46.7% (21/45) 28.1% (9/32) 0.15 85.7% (54/63) 91.4% (32/35) 0.53

Present 11.1% (7/63) 14.3% (5/35) 53.3% (24/45) 71.9% (23/32) 14.3% (9/63) 8.6% (3/35)

Vascular Core
Absent 47.8% (22/46) 21.9% (7/32) 0.03 88.9% (56/63) 94.3% (33/35) 0.49 54.3% (25/46) 21.9% (7/32) <0.01

Present 52.2% (24/46) 78.1% (25/32) 11.1% (7/63) 5.7% (2/35) 45.7% (21/46) 78.1% (25/32)

Internal Echo 
Level

Hypoechoic 41.3% (26/63) 62.9% (22/35) 0.03 64.5% (40/62) 51.4% (18/35) 0.30 34.9% (22/63) 57.1% (20/35) 0.05

Isoechoic 58.7% (37/63) 34.3% (12/35) 33.9% (21/62) 42.9% (15/35) 61.9% (39/63) 40.0% (14/35)

Hyperechoic 0% (0/63) 2.9% (1/35) 1.6% (1/62) 5.7% (2/35) 3.2% (2/63) 2.9% (1/35)

Internal Echo 
Pattern

Homogenous 66.7% (42/63) 68.6% (24/35) 1.00 71.4% (45/63) 42.9% (15/35) <0.01 58.7% (37/63) 11.4% (4/35) <0.001

Heterogenous 33.3% (21/63) 31.4% (11/35) 28.6% (18/63) 57.1% (20/35) 41.3% (26/63) 88.6% (31/35)

Presence of foci

Absent 30.2% (19/63) 48.6% (17/35) 0.04 90.5% (57/63) 97.1% (34/35) 0.42 74.6% (47/63) 45.7% (16/35) <0.001

Hypoechoic foci 1.6% (1/63) 11.4% (4/35) 0% (0/63) 0% (0/35) 11.1% (7/63) 45.7% (16/35)

Hyperechoic foci 68.3% (43/63) 40.0% (14/35) 9.5% (6/63) 2.9% (1/35) 14.3% (9/63) 8.6% (3/35)

Table 3.  Comparison of US findings. Note.- Nonneo: nonneoplastic polyp, Neo: neoplastic polyp.
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polyps rather than diagnosing the malignant polyps. Since malignant polys are rare, not enough of a development 
dataset could be collected. With the multicenter dataset, the system could also learn this function. Third, in this 
study, we used Inception V3 and did not compare with more recent networks such as DenseNet, NASNet, etc. 
This is one of limitation of this research and further study is needed to make optimal DL-DSS. Finally, as a ret-
rospective study, this study could not reflect the real clinical setting. A multicenter prospective study is needed.

In conclusion, we developed the DL-DSS, which has higher specificity at differentiating neoplastic polyps on 
transabdominal US. When it was used as an assistant tool, the gap between the reviewers with different experi-
ence levels narrowed, and the false positive rate was reduced, especially for the polyps with a size of 10 mm or 
larger. The DL-DSS could be used as an assistant tool for the differential diagnosis of neoplastic GB polyps using 
US, decrease the gap between the reviewers with different experience levels, and reduce the false positive rate, 
thus avoiding unnecessary cholecystectomies.

Materials and Methods
This study was approved by the Institutional Review Board of Seoul National University Hospital (IRB No. 1712–
007–903). The Institutional Review Board granted a waiver of informed patient consent due to the retrospective 
nature of our study. All methods were performed in accordance with the relevant guidelines and regulations.

Patients.  We reviewed our institution’s medical patient records from 2006 to 2017 and identified 8,452 
patients who received cholecystectomy and 8,047 patients who received US for GB. From this data, we collected 
923 patients on whom a GB polyp was found through US and received consecutive cholecystectomy. Among 
them, the following patients were excluded: polyp was not identified on pathologic report (n = 290); polyp 
smaller than 4 mm in size (n = 82); suboptimal image quality (n = 7); size and location of the polyp was evidently 
different between US and pathologic report (n = 6); rare pathology such as lymphoma or metastasis (n = 3). 

Figure 2.  Example cases showing the effectiveness of DL-DSS aided diagnosis. (a) Three patients with a 
nonneoplastic polyp, measured over 10 mm size. Majority of the reviewers regarded these polyps as neoplastic 
polyp with confidence scale 3 or more. However, patient-level probability value was from 0.1 to 0.3 suggesting 
nonneoplastic polyp more likely. On the re-evaluation, some of the reviewers downgraded the score. (b) Three 
patients with a neoplastic polyp, measured from 13 to 18 mm size. Some of the reviewers classified these polyps 
as nonneoplastic polyp with confidence scale 3 or less. On the other hand, patient-level probability value was 
from 0.7 to 0.9, favoring neoplastic polyp. On the re-evaluation, some of the reviewers upgraded the score.
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Finally, a total of 535 patients were included in our study group, including 357 patients with nonneoplastic polyps 
and 179 patients with neoplastic polyps. We divided selected patients into two groups to make two temporally 
independent datasets: the development dataset and test dataset. According to study date of their latest US exam, 
the patients who received US before January 2015 were considered as the development dataset (n = 437), and the 
patients who received US from January 2015 were grouped as the test dataset (n = 98). Figure 3 shows the flow-
chart of this study population.

US examination.  An US examination was performed by the radiologists, who have approximately 10 to 
20 years of abdominal ultrasound experience, using an US scanner (LOGIQ 9 or LOGIQ E9, GE Healthcare, 
Milwaukee, WI, USA). First, the GB was observed grossly by a subcostal or intercostal approach with the convex 
low-MHz transducer (C1–6 or 4C, GE Healthcare, Milwaukee, WI, USA). Then the high resolution images were 
achieved by a linear transducer (9L or 7L, GE Healthcare, Milwaukee, WI, USA), which produced a high fre-
quency ultrasound wave with a bandwidth of 2–8 MHz21,22.

Development of DL-DSS.  Labeling of dataset.  The images were selected from each patient’s US studies 
according to the following criteria: only the B-mode images were captured with the linear transducer, the images 
did not contain any annotation such as size measurement, and the captured polyp should match the pathology 
report in terms of its size and location. The US image selection and labeling process were performed by two radi-
ologists (Kim JH and Jeong YB, with 23 years and two years of abdominal ultrasound experience, respectively) 
with consensus. If one patient received serial US follow up, all of the US studies were included when the patient 
was in the development dataset. By contrast, only the latest US study was included when the patient was in the 
test dataset. All of the selected images were converted into Portable Network Graphics (PNG) format. Then, all 
of the images were manually cropped using an in-house program. In every image, we drew a free size square box 
that contained one polyp and its attachment site. The square box was drawn as small as possible to contain the 
whole following structures; polyp, stalk, and focal portion of GB wall the polyp attached. The center of the box 
was located as close as to the polyp’s center. If there were multiple polyps in one image, each meaningful polyp 
that was 4 mm or larger and matched the pathologic description was cropped separately. We evaluated the size of 
each polyp simultaneously. We used the size that was measured by the onsite radiologist when it was available. If 
not, a retrospective size estimation was conducted using the scale bar in the image.

Training for the DL-DSS.  We used the transfer learning method base on the GoogleNet Inception v3 
Convolutional Neural Network (CNN) architecture23,24. DL-DSS used both cropped image and nonimage infor-
mation. All of the cropped images were resized into 299 × 299 pixels. Intensity normalization was used as a 
preprocessing method. Geometric image augmentation techniques such as vertical/horizontal flipping, rotation, 
and cropping were used to reduce overfitting. Then, the image input was processed with a pretrained Inception v3 
model to extract the high-level features. Nonimage inputs, including patient age, size of polyp and polyp multi-
plicity, were concatenated to the last fully connected layer of the network using a late fusion strategy25. In the end, 
DL-DSS reports a probability value that represents the image-level probability of a neoplastic polyp. A schematic 
diagram of the DL-DSS is described in Fig. 4.

The development dataset was randomly divided into an 8:2 ratio and was then used for development (4138 
images) and test (1033 images). The training process was done with a learning rate of 0.001 and an RMSprop opti-
mizer. We used an early stopping strategy to prevent overfitting, and training was performed for up to 400 epochs 
where validation loss has reached a plateau (Fig. 5).

AUC Comparison Sensitivity Specificity Accuracy F-1 Score

Step 1: Initial Image Analysis Step 1 vs Step 2 
(p value)

Reviewer A 0.92  
[0.82–0.97] 0.96 90.9 (30/33) 

[75.7–98.1]
77.4 (24/31) 
[58.9–90.4]

89.1 (57/64) 
[67.6–94.4]

0.857  
[0.769–0.895]

Reviewer B 0.68  
[0.55–0.79] <0.001 69.7 (23/33) 

[51.3–84.4]
54.8 (17/31) 
[36.0–72.7]

62.5 (40/64) 
[43.9–78.7]

0.657  
[0.530–0.744]

Reviewer C 0.82  
[0.70–0.90] 0.04 100 (33/33) 

[89.4–100.0]
41.9 (13/31) 
[24.5–60.9]

71.9 (46/64) 
[58.0–81.1]

0.786  
[0.733–0.814]

Step 2: DL-DSS Alone

DL-DSS 0.92  
[0.82–0.97]

78.8 (26/33) 
[61.1–91.0]

87.1 (27/31) 
[70.2–96.4]

82.8 (53/64) 
[65.5–93.6]

0.825  
[0.705–0.896]

Step 3: DL-DSS Aided Step 1 vs Step 3 
(p value)

Reviewer A 0.94  
[0.84–0.98] 0.16 87.9 (29/33) 

[71.8–96.6]
93.6 (29/31) 
[78.6–99.2]

90.7 (58/64) 
[75.1–97.9]

0.906  
[0.807–0.953]

Reviewer B 0.89  
[0.79–0.96] <0.001 84.9 (28/33) 

[68.1–94.9]
87.1 (27/31) 
[70.2–96.4]

86.0 (55/64) 
[69.1–95.6]

0.862  
[0.756–0.917]

Reviewer C 0.89  
[0.79–0.96] 0.08 97.0 (32/33) 

[84.2–99.9]
54.8 (17/31) 
[36.0–72.7]

76.6 (49/31) 
[60.9–86.7]

0.810  
[0.743–0.825]

Table 4.  Diagnostic Performance of Reviewers and DL-DSS for GB polyps larger than 10 mm. Note.- Data in 
brackets are 95% CI.
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Clinical validation of the DL-DSS.  Step 1: Image analysis by three human reviewers.  Two abdominal 
radiologists (Reviewers A and B, with 11 and 5 years of abdominal ultrasound experience, respectively) and 
one trainee radiology resident (Reviewer C with 3 years of abdominal ultrasound experience) independently 
reviewed the 98 patients’ US exams in the test dataset. They were blinded to the histologic diagnoses. First, they 
reviewed the following characteristics of polyp: multiplicity (solitary or multiple), size of the largest polyp (mm), 
overall shape (pedunculated or sessile), surface contour (smooth or lobulated), presence or absence of a vascular 
core seen on color Doppler sonography, presence of GB stone, internal echogenicity level (hypoechoic or iso- to 
hyperechoic), internal echogenicity pattern (homogenous or heterogenous) and presence of hyper- or hypoechoic 
foci. When the patient had multiple polyps, the largest polyp was evaluated. The detail method to evaluate the 
polyp characteristics was based on the previous researches21,22. Second, the radiologists graded the possibility of 
a neoplastic polyp using a 5-point confidence scale (1: definitely a nonneoplastic polyp; 2: probably a nonneo-
plastic polyp; 3: borderline; 4: probably a neoplastic polyp; and 5: definitely a neoplastic polyp) for each patient. 
The grading was based on not only the reviewers own experience, but also the polyp characteristics. All reviewers 
knew the relationship between the risk of neoplastic polyp and polyp characteristics, based on two previous 
researches21,22.

Step 2: Image analysis by DL-DSS.  A temporally external validation of the DL-DSS was done with the 98 patients 
in the test set. Unlike human reviewers’ 5-point confident scale, the DL-DSS output the decimal probability value 
range from 0 to 1 (0: definitely a definite nonneoplastic polyp, and 1: definitely a neoplastic polyp). As multiple 
images were included for one patient, the average of the multiple image-level probability values was used as a 
patient-level probability value (Fig. 4). Using the patient-level probability value from each patient, we performed 
a ROC curve analysis and calculated the sensitivity, specificity, and accuracy of the DL-DSS.

Step 3: Image analysis by three human reviewers with the aid of the DL-DSS.  To evaluate the added value of the 
DL-DSS aided diagnosis, a second review was conducted by three reviewers after 4 months since the first human 

Figure 3.  Flow diagrams for the patient selection and dataset division. From our institution’s medical record, 
we collected 923 patients who examined GB polyp on US and underwent consecutive cholecystectomy. After 
the exclusion step, we collected total of 535 patients. We divided patients into two temporally independent 
groups according to study date of their latest US exam.
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review. They were still blinded to the histologic diagnoses. The following DL-DSS analysis data from each patients 
of test dataset was provide to the reviewers: the number of cropped images analyzed by DL-DSS, patient-level 
probability value, and standard deviation of multiple image-level probability values. US-images and previous 
5-point confidence scale that own rated were also provided to the reviewers. Finally, considering all this infor-
mation from the DL-DSS, including DL-DSS performance data and DL-DSS analysis data, the reviewers rerated 
the 5-point confidence scale. We also provided the performance of the DL-DSS on development dataset was 
introduced, by providing the ROC curve, sensitivity, specificity, and accuracy (with cut-off probability value 0.5).

Statistical analysis.  The population characteristics, such as man to woman ratio, a proportion of nonneo-
plastic and neoplastic polyps, were compared using a Pearson’s Chi-square test between the development set and 
test set. Also, patient age and size of polyp were compared using an independent t test. These method were also 

Figure 4.  Schematic diagram of DL-DSS. (a) We used transfer learning method base on the GoogleNet 
Inception v3 CNN architecture. All cropped Image were resized into 299 × 299 pixels, and then processed with 
a pretrained Inception v3 model. Nonimage inputs were concatenated to the last fully connected layer of the 
network using a late fusion strategy. (b) As multiple images were included for one patient, the average of the 
multiple image-level probability values was used as a patient-level probability value. It is a continuous value 
between 0 and 1. Zero represents a definite nonneoplastic polyp, and vice versa.

https://doi.org/10.1038/s41598-020-64205-y


9Scientific Reports |         (2020) 10:7700  | https://doi.org/10.1038/s41598-020-64205-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

used to evaluate characteristic differences between the nonneoplastic polyp group and the neoplastic polyp group, 
in both the development set and test set.

In the step 1, polyp characteristics were compared between the nonneoplastic polyps and neoplastic pol-
yps using a Pearson’s Chi-square test and Fisher’s exact test. The sizes of the polyps were compared using an 
independent t test. A logistic regression analysis was performed to extract meaningful predictors for neoplastic 
polyp. After the univariate analysis with the US findings, variables with p values less than 0.05 were chosen for 
the multivariate analysis. Among three reviewers, the interobserver agreement was calculated with an ICC for 
each US finding and confidence scale. An ICC was classified into three levels of agreement: 0.59 and less as poor 
agreement, 0.60–0.79 as moderate agreement, and 0.80–1.00 as good correlation.

In step 1 and step 3, the diagnostic performance evaluation of reviewers was done by a ROC curve analysis, 
using a 5-point confidence scale. Sensitivity, specificity, accuracy, and F-1 score were calculated with a cut-off 
confident scale (>3). In step 2, the diagnostic performance evaluation of the DL-DSS was done by a ROC curve 
analysis, using a patient-level probability value. Sensitivity, specificity, accuracy, and F-1 score were calculated 
with a cut-off probability value (>0.5). An AUC comparison was performed by using a pairwise comparison 
ROC curve analysis.

All of the analyses were performed with software (SPSS version 25.0, IBM, Armonk, NY; and MedCalc version 
18.2, MedCalc Software, Ostend, Belgium). For all of the tests, a P value less than 0.05 was considered to indicate 
statistical significance.

Data availability
The datasets generated during the current study are not publicly available due to our institutional review board 
prohibits publication of patient’s personal medical records.
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