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Muscle strength and gait speed
rather than lean mass are better
indicators for poor cognitive
function in older men

Sophia X. Sui'™, Kara L. Holloway-Kew?, Natalie K. Hyde?, Lana J. Williams?, Sarah Leach? &
Julie A. Pascol34>

We aimed to examine muscle strength, function and mass in relation to cognition in older men. This
cross-sectional data-set included 292 men aged >60 yr. Handgrip strength (kg) was measured by
dynamometry, gait speed by 4-metre walk (m/s) and appendicular lean mass (kg) by dual-energy

x-ray absorptiometry. Cognition was assessed across four domains: psychomotor function, attention,
visual learning and working memory. Composite scores for overall cognition were calculated. Bivariate
analyses indicated that handgrip strength and gait speed were positively associated with cognitive
function. After accounting for confounders, positive associations between individual muscle (or
physical) measures and cognitive performance were sustained for handgrip strength and psychomotor
function, gait speed and psychomotor function, gait speed and attention, handgrip strength and overall
cognition, and gait speed and overall cognition. In multivariable models, handgrip strength and gait
speed independently predicted psychomotor function and overall cognition. No associations were
detected between lean mass and cognition after adjusting for confounders. Thus, low muscle strength
and slower gait speed, rather than low lean mass, were associated with poor cognition in older men.

The proportion of elderly people in Australia has been increasing and will continue to increase in coming dec-
ades'. Investigations into factors that influence older Australians” health make significant contributions to ena-
bling them to live independently and maintain a high quality of life’. Dementia, a decline in mental ability due
to a wide range of progressive and acquired neurocognitive disorders, is a major health threat to older people
and carries a substantial social and economic burden’. Mild cognitive impairment (MCI), a pre-dementia stage,
can be identified years before the onset of established dementia. Currently, there is no effective psychological or
medical treatment for dementia; however, MCI may be preventable and reversible by addressing modifiable risk
factors®.

Previous research has demonstrated that poor skeletal muscle health is associated with an increased likeli-
hood of MCI and other adverse physical and mental outcomes®!!. Sarcopenia is characterised as age-associated
low muscle mass in conjunction with low muscle strength or physical performance’*!%. A systematic review
and meta-analysis published in 2016 revealed that sarcopenia was associated with cognitive impairment'’, and
when assessed separately, muscle strength'8, gait'® and gait speed®**! were identified in association with cognitive
function. A non-linear relationship between muscle mass and strength?>? raises uncertainty about the roles of
the components of sarcopenia in the relationship between sarcopenia and cognition. In many studies, general
cognitive function has been assessed using global cognitive tests, such as The Mini-Mental State Examination
(MMSE) and its modified versions, and these tests have limited ability to identify subtle differences in cognitive
deficits*. To date, few studies have examined the relationship between the components of sarcopenia and the
specific domains of cognitive function.

Demographics, health behaviours, and life experiences can affect both physical and mental health and should
be considered as potential confounders in associations between muscle health and cognitive function®-*°. Thus,
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the aim of our study was to determine whether muscle strength, performance and mass in older men are associ-
ated with cognitive function, both overall and across specific domains.

Methods

Study design. This cross-sectional study is part of the Geelong Osteoporosis Study (GOS), an ongoing lon-
gitudinal population-based study. Briefly, age-stratified samples of men and women were randomly selected from
electoral rolls for the Barwon Statistical Division in south-eastern Australia. For the male cohort, baseline data
for 1,540 men were collected 2001-2006 (67% response), and again at 5-, 6- and 15-year follow-up phases. Details
of the GOS have been published elsewhere®!. This study utilises data from the 15-year follow-up phase for men.
Comparable data are being collected for female participants.

Participants. The current analysis involved 292 men aged 60-96 years assessed in the most recent follow-up
phase (2016-2019). Participants completed a series of questionnaires regarding lifestyle and demographic charac-
teristics in conjunction with physical and mental health assessments. Participants were mostly Caucasian (~98%).
All participants provided written, informed consent to participate in the study. A listing on the Commonwealth
electoral roll as a resident of the Barwon Statistical Division was the inclusion criterion; individuals who had
resided in the region for less than 6 months and those unable to provide informed, written consent met exclusion
criteria®. Thus, individuals with severe cognitive impairment or dementia and were not able to provide consent
were excluded from the study. The study was approved by the Human Research Ethics Committee at Barwon
Health.

Measures. Cognitive function. Cognitive function was assessed using the CogState Brief Battery (CBB), a
computer-based neuropsychology battery®, described in detail elsewhere>**-%>. In brief, CBB involves respond-
ing to stimuli cards as part of a detection task (DET), an identification task (IDN), a one-card learning task
(OCL) and a one-back task (OBK). These four tasks assess the cognitive domains of psychomotor function, visual
attention, recognition memory/learning and working memory, respectively. Each task included a practice trial
and a real test. Participants completed the tasks in a quiet room accompanied by a researcher. As stated in the
guidelines, the aim of the tasks was to capture performance, in terms of both speed and accuracy'?, in each cog-
nitive domain. In DET, IDN, and OBK tasks, the primary measurement scores, named “Imn” (unit: log,, million
seconds), were calculated according to speed in supplying correct answers (mean of log,,-transformed reaction
times), so lower scores indicated better performance. The primary measurement scores in the OLC task, labelled
“acc” (unit: arcsine square root proportion correct) were calculated according to accuracy (arcsine transformation
of the square root of the proportion of correct response), so higher scores indicated better performance. Scores for
overall cognitive function (OCF) (unitless) were calculated by compositing the primary measures in the four cog-
nitive domains®; higher scores indicated better performance. The primary outcomes for each task and composite
measures were used for analyses. Administration of the CBB took about 20 minutes per participant; a previous
study has demonstrated the validity and reliability of the CBB*.

Muscle parameters. Handgrip strength (HGS) was measured using an electronic handheld dynamometer
(Vernier, LoggerPro3). The participant was seated in a comfortable position with the arm holding the dynamom-
eter flexed at the elbow to 90 degrees. The participant squeezed the device using each hand three times with max-
imum effort for three seconds with a five-second interval between trials. The maximum value for each hand was
used to calculate a mean HGS, which was used for all analyses. Lean soft tissue mass, a proxy measure for muscle
mass, was assessed by whole body dual-energy X-ray absorptiometry (DXA; Lunar Prodigy-Pro, Madison, W1,
USA). DXA-derived lean mass comprises non-fat and non-bone tissue and is correlated with skeletal muscle
mass measured with magnetic resonance imaging®. Appendicular lean mass (ALM) was calculated as the sum of
lean mass for the arms and legs and expressed relative to the square of height ALM/height* (kg/m?). Short-term
precision (calculated as the coefficient of variation on repeated whole body scans) was 0.9% for ALM. Usual gait
speed!>!** was determined by measuring how many seconds the participant took to walk a distance of 4 metres
and recorded as m/s; participants wore shoes and were asked to walk at their normal (preferred) walking speed,
and used a walking aid if necessary.

Other measures. Weight and height were measured to the nearest +0.1kg and 0.001 m. Body mass index
(BMI) was calculated as weight/height® (kg/m?). BMI < 18.5kg/m? was classified as underweight, 18.5-24.9kg/m?
as normal weight, 25.0-29.9 kg/m? as overweight, and > 30kg/m? as obese'**. Details about education, smoking
status, marital status and mobility were obtained by self-report. Education was classified as secondary education
completed (13-years of school education) or not, marital status as living with a partner or not, and mobility as
active (if vigorous or light exercise was performed regularly) or sedentary®'. In this study, active is equivalent to
“moves, walks and works energetically and participate in vigorous exercise (very active); or walks at brisk pace,
does normal housework or other work. Engages in light exercise (active)”. Participants who smoked at least one
cigarette per day were classified as current smokers, otherwise as non-smokers.

Statistical analysis. After checking the data for normality using histograms, inter-group differences were
examined using one-way analysis of variance or Mann-Whitney tests for continuous variables; chi-squared tests
or Fisher exact test were employed for categorical variables. Linear regression models were used to investigate
associations between muscle parameters (HGS for strength, gait speed for physical performance and ALM/
height? for lean mass) and cognitive function. The cognitive function scores on four tasks (DET, IDN, OCL, and
OBK) and OCF were included as separate dependent variables. For each muscle parameter, regression analyses
included an unadjusted model (model 1), an age-adjusted model (model 2), and a model that also considered
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Age (yr) 70 (66-77)
Height (m) 1.73 (+0.07)
Weight (kg) 84.1(+13.8)
BMI (kg/m?) 28 (+4)
Demographic characteristics
Current smoker 9 (3%)
Education status (completed year 12) 204 (70%)
Marital status (living with a partner) 239 (82%)
Mobility (active) 195 (67%)
Muscle strength HGS (kg) 21 (£7)
ALM (kg) 24.7 (£3.3)
Muscle mass
ALM/height? (kg/m?) 8.3 (£0.9)
Physcial performance Gait speed (m/s) 0.9 (+0.2)
DET 2.48 (£0.11)
IDN 2.68 (+0.08)
Cognitive function OCL 0.93 (£+0.10)
OBK 2.91 (40.11)
OCF 0.001(%0.72)

Table 1. Participant characteristics. Data (n =292) are presented as mean (£SD), n (%) or median (IQR).
HGS: handgrip strength (kg); ALM: relative appendicular lean mass (kg/m?); DET: the detection task (log10
milliseconds) measuring psychomotor function; IDN: the identification task (log10 milliseconds) measuring
attention; OCL: the one-card learning task (arcsine square root proportion correct) measuring memory/
learning; OBK: one-back task (log10 milliseconds) measuring working memory; OCF: overall cognitive
function (unitless).

potential confounders that were identified (in a stepwise sequence) in the order of education status, marital sta-
tus, mobility, smoking status and BMI; confounding variables were retained if p < 0.05 (model 3). BMI was not
included in the model for ALM/height?, to avoid collinearity. Finally, multivariable models were developed for
each cognitive parameter by considering independent contributions of muscle strength, physical performance
and lean mass (and confounding variables) in the same model (model 4). A sensitivity analysis excluded outliers,
whose extreme cognitive scores likely reflected inconsistencies in cognitive performance tests, with scores of two
standard deviations beyond the mean in specific cognitive domains. All the analyses were conducted using IBM
SPSS (v24, USA) and Minitab (v18, USA).

Results
Participant characteristics. Demographic and anthropometric characteristics for participants are pre-
sented in Table 1. The mean BMI was in the overweight range, few participants smoked, and nearly three-quarters
had completed secondary education. Most participants lived with a partner and two-thirds were physically active.
There was an age-related decline in cognitive performance according to scores for DET, IDN, OBK, OCL,
and OCF (coeflicient (B) = +0.004, +0.003, +-0.005, —0.003, —0.04, respectively; all p < 0.001) and in HGS,
ALM/height? and gait speed (B= —0.39, —0.04, —0.01, respectively; all p < 0.001). Participants with completed
secondary education had greater HGS and faster gait speed, and performed better on all cognitive domains and
OCEF (Table 2). Those living with a partner performed better on OCF and all cognitive domains expect OCL, and
had higher values of HGS. The physically active group performed better on OCF and all cognitive domains except
OCL, and had better values for all the muscle parameters. Smokers performed better on IDN, but had lower val-
ues for ALM/height? no other differences between smokers and non-smokers were detected.

Multivariable analysis. HGS, ALM/height? and gait speed were all positively associated with better per-
formance on DET and OCF (model 1). After adjusting for age, the associations of ALM/height? with DET and
OCF were attenuated, but the associations of HGS and gait speed with DET and OCF were sustained (model 2).
The best fit models (model 3) showed that, for every 1.0kg increase in HGS, there was a 0.004 score (log,, million
seconds) decrease in DET after adjusting for age, and a 0.02 score (unitless) increase in OCF after adjusting for
age, education, and mobility. For every 1.0 m/s increase in gait speed, there was a 0.11 score decrease in DET after
adjusting for age and mobility and a 0.52 score increase in OCF after adjusting for age, education and mobility
(Table 3). Model 4 included muscle strength and physical performance together, and revealed that HGS and gait
speed independently predicted DET, and no confounders were identified; HGS and gait speed independently
predicted OCF before and after adjusting for age and education (Table 4).

Handgrip strength, ALM/height?, and gait speed were all positively associated with IDN (model 1). After
adjusting for age, the association of IDN with ALM/height® was attenuated, but the association with HGS and gait
speed persisted (model 2). The best fit model showed that for every 1.0 m/s increase in gait speed, IND decreased
by 0.08 after adjusting for age, BMI, mobility and smoking status (model 3). HGS did not contribute to the final
model (Table 3).

There were positive associations of HGS and gait speed with OCL and OBK (model 1, Table 3); the associations
with OCL were attenuated after adjusting for age, but persisted with OBK (model 2). However, the associations
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Education P Marital status P Mobility P Smoking status P
Not
Completed | completed
secondary | secondary Living with | Living Physically Current Non-
Groups education | education apartner | alone active Sedentary smokers smokers
n 204 86 239 52 195 96 9 277
Cognitive function
2.47 2.51 2.47 2.51 2.51 2.46 2.48 2.48
DET (+0.10) | (£013) |00 (*0.10) | (x014) | 004 (+012) | (x010) | <000 (£009) |01y |90
2.67 2.71 2.67 2.72 2.67 2.71 2.63 2.68
IDN (£007) | (x007) | 0001 (£007) | (x009) | %003 (£007) | (x009) | <001 1 Gg0s) | (008 | 002
0.94 0.90 0.93 0.93 0.94 0.92 0.92 0.93
OcCL (+010) | (x010) | %007 (+£010) | (x010) |97 (£009) | (x0a1) | 908 (+£0.09) | (t010) | 968
2.89 294 2.90 2.95 2.89 2.93 291 291
OBK (£010) | (x0.10) | <0001 (£010) | (k011 | 0002 (£010) | (x012) | 0002 (£009) | (x011) |86
0.12 —0.29 0.06 —0.30 0.13 —0.28 0.16 —0.004
OCF (+0.68) | (+072) | <0001 (+0.67) | (+084) | 0006 (+063) | (+081) | <0001 (+045) | (x073) |93
Muscle parameters
HGS 22 (+7) 19 (£7) <0.001 22 (£7) 19 (£7) 0.002 23 (+7) 18 (£7) <0.001 20 (£5) 21 (£7) 0.34
ﬁel;g/]'[l/tz 8.3 (%0.9) 8.1(%1.0) 0.07 8.3 (£1.0) 8.0 (+1.0) 0.12 8.4 (£0.9) 8.0 (£0.9) <0.001 7.6 (£0.7) 8.3(£0.9) 0.02
GS 0.9 (+0.2) 0.8 (+0.2) 0.001 0.9 (+0.2) 0.8 (+0.2) 0.13 0.9 (+0.2) 0.8 (+0.2) <0.001 0.8 (£+0.2) 0.9 (+0.2) 0.20

Table 2. Inter-group differences in parameters of cognitive function and muscle, assessed using Student’s
t-tests. Data are shown as mean (£SD). HGS: handgrip strength (kg); ALM: relative appendicular lean mass
(kg/m?); GS: gait speed, measured as walking speed over 4 meters (m/s); DET: the detection task (log10
milliseconds) measuring psychomotor function; IDN: the identification task (log10 milliseconds) measuring
attention; OCL: the one-card learning task (arcsine square root proportion correct) measuring memory/
learning; OBK: one-back task (log10 milliseconds) measuring working memory; OCF: overall cognitive
function (unit less).

of HGS and gait speed with OBK were explained by further adjustment for confounders (model 3). ALM/height?
was associated with OBK in model 1, but this association was attenuated after adjusting for age (model 2, Table 3).

Sensitivity analysis. There were no differences in the patterns of associations described above, following
exclusion of 12 outliers in sensitivity analyses (data not shown).

Discussion

In this study, HGS was positively and independently associated with DET and OCEF. In addition, gait speed was
positively and independently associated with DET, IDN and OCF. No association was detected between lean
mass and cognition, overall or in specific cognitive domains. Our study suggests that muscle strength or physical
function is a better indication of cognitive function than lean mass, in older men.

We found that lower HGS was associated with poorer DET. Similar results were found in a study that com-
pared HGS and psychomotor performance measures for elderly Caucasian women in the USA in both healthy
(n=19) and frail (n=20) groups*. This study reported differences for both HGS and psychomotor performance
between the healthy and frail groups. It is possible that a decline in muscle strength may share the same neuro-
logical mechanism underlying reduced reaction times in older people before cognitive decline begins in other
domains. However, we did not detect associations between HGS and the other cognitive domains we assessed.

We found that slower gait speed was associated with reduced DET and IDN. This confirmed longitudinal find-
ings from the Health, Ageing and Body Composition Study, which included 2,776 men and women aged 75-85
years*!. In this study, gait speed was measured using walking speed test, while attention and psychomotor speed
were assessed using the Digit Symbol Substitution Test (DSST) at baseline and after five years. Results showed
that participants in the lowest quartile of gait speed were more likely to decline in DSST performance over five
years, indicating that gait speed predicts decline in specific cognitive domains (attention and psychomotor speed)
in the elderly*!. It is relevant to note that the DSST involves paper and pencil and requires participants to copy as
many novel symbols, corresponding to numbers, as possible in 1.5 minutes, while our task was computer based
and required participants to respond to card stimuli as accurately and fast as possible. The decline in psychomotor
function and attention could be due to changes in the white matter and hippocampus volume, which are consist-
ently present in participants with slow gait speed and reduced executive and psychomotor function*. Our results
also broadly agree with findings from a 6-year follow-up study of 2,654 men and women aged 60 to over 90 years
that detected an association between gait speed and cognition including processing speed, executive function and
verbal memory*.

Our study confirmed that low HGS was associated with poor OCEF, consistent with previous research. Abellan
van Kan et al. used the Short Portable Mental Status Questionnaire to measure general cognition and HGS to
measure muscle strength in 3025 community-dwelling French women aged >75 years; their results indicated that
lower HGS was associated with cognitive impairment®. The explanation could be that HGS decline is a marker
of reduced physical health in the elderly, and associated with frailty, comorbid disease and mortality, whilst at
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Unadjusted (model 1) Age adjusted (model 2) Final (model 3)
Coefficient B Coefficient B Adj. | Coefficient B Adj.
Outcomes | Exposures (95%CI) Pvalue | Adj.R*> | (95%CI) Pvalue |R? (95%CI) Pvalue |R?
—0.005 —0.004 —0.004
HGS (—0.006, <0.001 |0.10 (—0.005, <0.001 0.12 (—0.005, <0.001 0.12
—0.003) —0.002) —0.002) ?
—0.02 —0.007
DET ALM/heightZ (—0.03, 0.02 0.02 (—0.02, 0.33 0.08 | — — —
—0.003) 0.007)
—0.16 —0.12 —0.11(—0.18
Gait speed (—0.23, <0.001 |0.08 (=0.19, <0.001 0.11 70'04) . |0.003 0.12
—0.10) —0.06) :
—0.003
—0.002 —0.001
HGS (7—000%(;, <0.001 |0.07 (—0.003,0) 0.01 0.12 (—0.002,0) * 0.06 0.19
—0.02 —0.008
IDN ALM/heigh'sZ (—0.03, 0.001 0.03 (—0.02, 0.10 0.11 — — —
—0.006) 0.002)
—0.11 —0.08
Gait speed (—0.16, <0.001 | 0.09 (—0.12, 0.001 0.13 :8'82)(;0'13’ 0.001 0.19
—0.07) —0.03) :
0.001
HGS 8‘882)(0’ 001 | 0.02 (-0.001, 0.29 005 | — - -
: 0.003)
—0.007
ocL ALM/height? g.g;)(—o.m, 089 | —0003 |(-0.02, 031 005 | — — -
: 0.007)
. 0.06 (0.002, 0.02 (—0.05,
Gait speed 0.12) 0.04 0.01 0.09) 0.54 004 |— — —
—0.004
HGS (—0.005, <0.001 |0.06 (77000(())54 0) 0.04 0.13 — — —
—0.002) U
—0.01
OBK ALM/height? (—0.03, 0.06 0.009 # 1.00 0.12 | — — —
0.001)
—0.07
Gait speed :g.(l)g)(fo.z, <0.001 | 0.06 (-0.13, 0.06 0.14 |— — _
: 0.001)
0.03 (0.02, 0.02 (0.008, 0.02 (0.004,
HGS 0.04) <0.001 |0.11 0.03) 0.001 0.20 0.03)° 0.007 0.22
) 0.12 (0.03, 0.02 (—0.07,
2
OCF ALM/height 0.21) 0.01 0.02 0.11) 0.69 0.16 - - -
. 1.21 (0.80, 0.70 (0.27, 0.52 (0.08,
Gait speed 1.62) <0.001 |0.11 1.14) 0.002 0.19 0.96) € 0.02 0.21

Table 3. Linear regression analysis for predicting cognitive function in association with muscle parameters.
a HGS adjusted for age; gait speed (GS) adjusted for age and mobility; b. GS adjusted for age, BMI, mobility,
smoking status; c. HGS and GS adjusted for age, education, and mobility. Other tested confounders were not
significant and were excluded from the models. HGS: handgrip strength (kg); ALM: relative appendicular
lean mass (kg/m?); DET: the detection task (log10 milliseconds) measuring psychomotor function; IDN: the
identification task (log10 milliseconds) measuring attention; OCL: the one-card learning task (arcsine square
root proportion correct) measuring memory/learning; OBK: one-back task (log10 milliseconds) measuring
working memory; OCF: overall cognitive function (unitless). 95%CI: 95% confidence interval -: muscle
parameters do not contribute to the best-fitted models. *: age, education, marital status, mobility, BMI, and
smoking status contributed to the model. *: The number was too small to be reported.

the same time contributing to cognitive decline>”**. We found that slow gait speed was associated with poor
OCE This is consistent with the results of a study in Hong Kong, which examined the association between cog-
nitive function and physical performance, measured using a 6-metre walking test, in 4,000 community-recruited
Chinese men and women. The cognitively impaired group had poorer performance in gait speed tests than the
non-cognitively impaired control group®.

We found that HGS and gait speed, but not lean mass, were associated with OCL and OBK, but that these
associations were explained by age or other confounders. Therefore, this study does not support an association
between muscle strength, physical performance, or lean mass with recognition memory/learning or working
memory. However, to our knowledge, no studies have investigated the associations between muscle parameters
and learning/memory to date. In addition, we have no evidence from our study that lean mass was associated
with overall cognition. In 2018, van Dam et al.*® reported an association between cognitive functioning and mus-
cle strength and lean mass in older patients in hospital (n =378, 49.3% female, aged>70 years). Low cognitive
function was assessed using Six-Item Cognitive Impairment Test (short questionnaire), muscle mass parame-
ters (including appendicular lean mass) using direct segmental multifrequency bioelectrical impedance analysis
(BIA), and muscle strength by HGS. At admission, lower cognitive functioning was associated with lower HGS
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Coefficient B (95%CI) pvalue | Adj. R?
<0.001 0.13
DET HGS —0.003 (—0.005, —0.002) | <0.001
GS —0.12 (—0.18, —0.05) 0.001
Constants 2.66 (2.59,2.71) <0.001
<0.001 0.19
GS —0.08 (—0.13, —0.03) 0.001
Age 0.001 (0, 0.003) 0.02
IDN | BMI —0.003 (—0.006, —0.001) | 0.001
Physical activity 0.03 (0.01, 0.05) 0.002
Smoking —0.07 (—0.12, —0.02) 0.008
Constants 2.74(2.61,2.87) <0.001
<0.001 0.22
HGS 0.02 (0.003,0.03) 0.02
OCE GS 0.49 (0.05,0.93) 0.03
Age —0.02 (—0.03, —0.01) <0.001
Secondary education completed | 0.20 (0.03, 0.37) 0.03
Constants 0.73 (—0.31, 1.78) 0.17

Table 4. Multivariable linear regression models (model 4) for final best-predicting DET, IDN and OCE. HGS:
handgrip strength (kg); ALM: relative appendicular lean mass (kg/m?); GS: gait speed, measured as walking
speed over 4 meters (m/s); DET: the detection task (log10 milliseconds) measuring psychomotor function; IDN:
the identification task (log10 milliseconds) measuring attention; OCF: overall cognitive function (unitless); 95%
confidence interval.

and ALM. To note, differences in the participant characteristics (hospitalised vs general population), assessment
tools for muscle (BIA vs DXA) and cognitive function (questionnaires vs computer-based), might have contrib-
uted to inconsistencies with our results.

Our study systematically considered potential confounders that have been examined previously. We found
that age, BMI, self-reported levels of physical activity and smoking were associated IDN independent of GS, while
age and education were associated with OCF independent of HGS and gait speed. Smoking, alcohol use, phys-
ical activity®* and education®~*" are known to be associated with both muscle health and cognition. Marital
status in older participants is a marker for social isolation, loneliness and low levels of physical activity (device
measured objectively)®. Divorced and widowed older adults are particularly at risk of developing negative health
outcomes, such as frailty and depression®. A longitudinal study in the USA aimed to investigate marital status
and cognitive impairment and included 7508 participants aged >65 years*. This study found that, compared to
married counterparts, divorced and widowed elders had higher risk of developing dementia and non-demented
cognitive impairment, as well as impairment in memory, orientation and executive function, while never married
elders had higher risk of impairment in memory and orientation. A longitudinal study in Korea investigated the
association between HGS and risk of cognitive impairment in 544 older women aged over 65 years’. Cognitive
impairment was identified using Korean Mini-mental State Examination (K-MMSE). The finding was that HGS
was associated with risk of cognitive impairment among obese women only.

Consistent with our results, previous longitudinal studies have found that slow gait speed predicts dementia
independent of muscle mass, and a decline in gait speed also predicts the development of MCI***. Our HGS data
support the contention that measures of muscle strength are more clinically relevant than lean mass for indicating
poor cognition in older adults*®. This is in agreement with the view of the revised definition of sarcopenia, the
European Working Group on Sarcopenia in Older People 2 (EWGSOP2), that muscle strength is a better predic-
tor of negative health outcomes than muscle mass'. In a quantitative review, it was postulated that loss of muscle
strength is a more consistent risk for disability and death than loss of muscle mass®*; earlier articles had reported
loss of strength occurred 2-5 times faster than loss of mass®. This may explain why our cross-sectional study
suggests a parallel decline in cognition and muscle strength but not in lean mass. However, in a Belgian study of
men and women aged 60-80 years, differences in HGS were found between the group with MCI and the normal
group; no differences were found in physical performance (gait speed and balance measured by Short Physical
Performance Battery) or body composition (muscle and fat mass)®.

Our study indicated that muscle strength and physical performance are better indicators for poor cognitive
function, overall, and in some specific domains. There is a non-linear relationship between muscle mass and
strength; muscle strength declines more rapidly with age than does muscle mass and this might reflect the impor-
tance of neuromuscular decline*>**, More recently, the EWGSOP 2 placed more emphasis on reduced muscle
strength rather than muscle mass. Age-related loss of muscle strength and power appear to be more useful for
indicating the risk of physical disability>>. We could speculate that there is a redundancy in muscle mass that
allows for preservation of physical performance despite age-related atrophy, but this is beyond the scope of our
data set.
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We found that gait speed was a stronger indicator than HGS of IDN, DET and OCE A recent Korean study
involving older adults (70-84 years) reported that sarcopenia and gait speed were associated with information
processing and executive function in men, but only gait speed was associated with impairment in those domains
in women. The authors concluded that these associations were driven mainly by gait speed®®.

A strength of our study is that participants were selected at random from the general population rather than
on the basis of disease. However, ability to provide informed consent was an exclusion criterion; thus, individuals
with severe cognitive impairment or dementia were not included in the study. As we included men only, and
the sample was mainly Caucasian, our conclusions may not be generalisable to other populations. As this was a
cross-sectional study, we cannot determine causality. We recognise the limitation of using lean mass measured
by DXA as a surrogate measure of muscle mass, as DXA does not assess muscle quality or intramuscular fat that
may be important in the muscle-cognition relationship. For example, fat infiltration, lean tissue thickness and
hydration may not have been captured by DXA. HGS was measured using an electronic device that provides
systematically lower strength measures than those reported for the Jamar manual dynamometer. Furthermore,
we acknowledge that an individual’s cognitive function might have affected their physical performance in assess-
ment tasks. As only four cognitive domains were tested, the results should not be generalised to other cogni-
tive domains that we did not assess. As in all observational studies, confounding may not have been adequately
accounted for, thus we cannot discount the possibility of residual confounding.

In conclusion, poorer cognitive function, especially in DET and IDN, was associated with lower muscle
strength and poorer physical performance in the men in our study. This finding adds to the growing body of
evidence that skeletal muscle and cognitive decline share common pathological pathways and that skeletal mus-
cle might be a modifiable risk factor for cognitive impairment. Cognitive decline in tandem with loss of muscle
strength and function places elderly people at increased risk of personal injury, poor mobility and loss of inde-
pendence. Prospective epidemiological studies are warranted, and could include brain imaging to detect under-
lying common mechanisms for concomitant changes in brain and muscle.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding
author on reasonable request.
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