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Nano-scale depth-varying
recrystallization of oblique Ar*
sputtered Si(111) layers

Divya Gupta'™’, G. R. Umapathy?, Rahul Singhal?, Sunil Ojha? & Sanjeev Aggarwal***

Silicon, the workhorse of semiconductor industry, is being exploited for various functional applications
in numerous fields of nanotechnology. In this paper, we report the fabrication of depth controllable
amorphous silicon (a-Si) layers under 80 keV Ar* ion sputtering at off-normal ion incidences of 30°,

40° and 50° and crystallization of these amorphous Si(111) layers under thermal annealing. We

find that the irradiated samples were not fully amorphized even for the lowest oblique incidence

of 30°. Sputtering at off-normal incidences induces depth controllable surface amorphizationin
Si(111). Annealing at temperature of 1,073 K is characterized by formation of depth-varying buried
amorphous layer due to defect recrystallization and damage recovery. Some remnant tensile stress
has been observed for recrystallized samples even for lowest oblique incidence. The correlation

of amorphization and stress due to sputtering induced by oblique incidence has been discussed
systematically. The possible mechanism of recrystallization is discussed in terms of vacancies
produced in sputtering dominated regime and their migration during annealing treatment. Our results
reveal that with appropriate selection of oblique ion beam sputtering parameters, depth controllable
surface amorphization and recrystallization may be fine-tuned to achieve co-existing amorphous and
crystalline phases, playing a crucial role in fabrication of substrates for IC industry.

Silicon, the workhorse of semiconductor industry, is being exploited for the various applications in numerous
fields of nanotechnology like development of FETs and infrared detectors'=>. The combined amorphous and
crystalline phases of silicon play a crucial role in the fabrication of substrates for IC industry and hence, deciding
circuit performance and reliability*°. The process of ion implantation has become a versatile tool for producing
doped regions in FETs source, channel and drain in semiconductors'*-%. In this regard, low energy ion irradia-
tion is widely employed in IC industry for producing bipolar transistors in semiconductors, especially in silicon
substrates. This technique offers advantage of implanting controllable quantity of incident ions into the shallow
surface layers of substrate with good accuracy~®.

In addition to these beneficial features, this non-equilibrium method disorders the equilibrium crystalline
structure of the single crystal material by inducing amorphization as well as damage in the lattice®7'°. The
extent and nature of these ion beam induced imperfections in the lattice limits the performance and reliability
of semiconductor devices and circuits*!. This, in turn, necessitates the recovery of crystalline order of the
lattice™*1*1213 Tt is well known that recovery from disordered surface layers is eventually a diffusive process.
Hence, the well known viable tool for restoring ordered crystalline structure, recovery of ion beam induced
imperfections & defects and activation of dopants is thermal annealing®*!%12,

Ion implantation induced disorder and recovery processes have been reported by many researchers in
literature®!°-2%, In addition, implantation induced defects and its annealing has also been studied in different
orientations of silicon such as Si(100)*!-1%122, §j(110)*'2, Si(001)* and the dependence of recrystallization
behavior on electronic energy loss was reported. These studies have reported the amorphization and hence
recrystallization behavior at normal incidences. Nakata et al*'? have studied the recrystallization in Si for anneal-
ing temperatures ranging from 120 to 1,400 °C. Sahoo et al."* have discussed the effect of annealing temperature
on degree of recrystallization. Partial to complete recrystallization has been observed by varying the annealing
temperature from 473 to 623 K. Turos et al.** have performed the annealing treatment at temperatures of 650,
720 and 800 °C. Besides numerous technological applications, there are few relevant studies on the investigations
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of annealing behavior of Si(111) due to low energy ion implantations, e.g. Turos et al.** investigated the disorder

structure in neon implanted Si(111) after annealing. Labbani et al.>*® investigated the surface damage induced
in silicon and its recovery with respect to antimony dose and rapid thermal processing at 1,173 K.

None of the researcher attempted to address ion irradiation induced amorphization and defects and then
its recrystallization behavior in Si(111) under the oblique incidences where the process of sputtering govern
the degree of modifications. However, till date, there is no direct evidence in the existing literature regarding
regrowth of amorphous Si layers in the sputtering dominating regime. This strongly motivated us to quantitatively
address the recrystallization characteristics in amorphous Si(111) layers under off-normal argon ion sputtering.
It will be more interesting to study Si(111) for amorphization and subsequent recrystallization under off-normal
argon ion sputtering as it offers highest atomic density among all planar orientations of silicon. Further, Si(111)
are ideal substrates for surface reconstruction, heteroepitaxial growth techniques, optoelectronic devices and
generation of nano-electronics?’. Hence, present research focuses on experimentally investigating the role of
sputtering in regrowth of amorphous Si layers produced by oblique argon ion sputtering under thermal annealing.
Brown et al?*** have investigated the morphological evolution of Si(111) (n-type, As doped) during low energy
(250-1,200 eV) irradiation at oblique incidence of 60° keeping the samples at temperatures between 500 and
750 °C. Due to very low energy of eV at constant off-normal incidence of 60° with variable fluence and simulta-
neous substrate heating, they observed the formation of rich variety of self-assembled array of nano-structures.
They have mentioned that at these temperatures, recrystallization occurs faster than amorphization during single
ion impacts; hence, they have not observed the formation of amorphous layers and its recrystallization. But the
goal of present studies is to investigate the role of sputtering in amorphization and recrystallization behavior
of Si(111). So, the oblique incidences have been varied from 50° to 30° at energy of 80 keV keeping ion fluence
constant and thereafter annealing treatment at 1,073 K (800 °C).

Generally, incident ions at low energy interact with target atoms via nuclear energy loss>. This process of
energy deposition creates a cascade of elastic collisions and displaces the target atoms from their initial sites
and thus results in permanent atomic scale defects in the lattice>=. In case of low energy and obliquely incident
ion beam, incident ions produce a specific region of disorder along its path and lose its energy in this region of
disorder in surface layers only. So, the extent of disorder and induced amorphization is confined majorly to the
surface layers due to limited projected range of the incoming ions**~".

Therefore, we have made an attempt to investigate the recrystallization behavior of surface region of Si(111)
initially sputtered with 80 keV Ar* ions under off-normal incidences of 30°, 40° and 50°. The recrystallization
kinetics of these pre-amorphized Si(111) samples is reported under thermal annealing. An important practical
consequence of our study is related to understanding of the recrystallization kinetics of amorphized Si produced
under oblique and low argon beam irradiation.

Experimental details

Single crystalline single side polished silicon wafers with (111) orientation were used as substrates. Amorphous
surface layers were produced by sputtering with 80 keV Ar* ions at off-normal incidences of 30°, 40° and 50°.
For all the oblique incidences, a fixed ion dose of 3x 10'7 Ar*fcm™ at beam current density of ~3 pA cm™ was
used. 200 kV Ion Accelerator facility available at Ton Beam Centre, Kurukshetra University, Kurukshetra, India
was used for carrying out sputtering on the silicon samples under a vacuum of ~ 2 x 107 Torr.

For defect annealing and recrystallization, each sample was annealed in oxygen atmosphere at a definite
temperature of 1,073 K for 30 min. This thermal annealing process, in turn, formed a thin layer of SiO, oxide
over the sample surface which was expected to prevent the loss of argon ions.

Rutherford backscattering spectrometry (RBS) was performed to understand and quantify ion-beam induced
amorphization and recrystallization. PARAS facility at Inter University Accelerator Center, New Delhi has been
employed in random and channeling geometry for RBS measurements. Channeling experiments were carried out
with ion beam parallel to (111) axis**-* and corresponding image and angle scan have been collected by NEC’s
RC43 Software. The damage profiles were simulated from the RBS/C spectra using the code DICADA, which is
based on the continuous model of dechanneling!*.

The structural alterations resulting from ion beam induced amorphization and subsequent annealing process
was studied as a function of oft-normal incidence of argon ions by Raman spectroscopy. Micro-Raman scattering
measurements were performed using STR 500 Confocal pu-Raman spectrometer for Doide-pumped laser tuned
at 532 nm in backscattering geometry. Here, we have recorded Raman spectra at 4-5 different places on one
sample and each time, focusing was done separately before recording the spectra. It was found that the variation
in the Raman intensity arising from different areas of the film is minimal.

Results and discussion

RBS/C investigations of as amorphized and recrystallized Si(111) surfaces. Rutherford Back-
scattering Spectrometry in channeling geometry (RBS/C) allows qualitative identification of the crystal orienta-
tions in single crystal lattice®**2. The identification of the channels in Si(111) (image and angle scan) carried out
in RBS/C employing NEC’s RC43 Software is presented in Fig. 1a,b.

It is clear from Fig. 1b that y,, is 0.38°, calculated from half the yield level half way between the minimum
and random level®>. This small value of y,, clearly illustrates that the scanned {111} is the principal crystal axis
in Si wafers used in the present studies.

Further, RBS in random and channeling geometry qualitatively analyze the crystalline, amorphous and recrys-
tallization content as a function of depth in these samples. A set of RBS/C spectra recorded for amorphized and
recrystallized Si(111) specimens are presented in Fig. 2. For comparison, we have plotted the RBS spectra in
random and {111} axis of the un-irradiated and unannealed crystalline Si (c-Si) in Fig. 2.
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Figure 1. (a) Image scan for crystalline-Si(111). (b) Angle scan for crystalline-Si(111).
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Figure 2. RBS random and RBS/C spectra along the {111) axis in un-irradiated, amorphized and annealed
Si(111) samples at 1,073 K.

In Fig. 2, the spectrum taken in the random direction displays edge at channel no. 1059 (energy value of
1.136 MeV) corresponding to the backscattering of analyzing particles from the un-irradiated silicon'**. The
spectrum taken in the (111)-axial direction in the irradiated and annealed samples displays the same edge of
silicon but with a lower backscattering yield due to channeling effect. After irradiation to a dose of 3 x 10"
Ar*cm™, the amorphized samples (Fig. 2) displays damage peak corresponding to amorphous silicon and an
additional peak at energy value of ~ channel no. 1249-1269. Using RUMP, this peak has been identified as of
argon. Moreover, in case of amorphized and annealed samples, there occurs similar damage peak and an addi-
tional peak at ~ channel no. 629-680 belonging to oxygen®.

For un-irradiated and unannealed Si(111), the backscattering yield of the amorphous peak along the {111}
axis is found to be only 5%, which signifies the high crystalline quality of the surface layers®'.

After amorphization at different oblique incidences of 50°, 40° and 30°, the presence of damage peak in RBS/C
spectra at channel no. 1059 along the {111) axis reveal the formation of amorphous layer due to argon beam
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Specimen Backscattering yield
Un-irradiated Si(111)

Random 849.85+6.71
Channeled 69.85+0.21
As amorphized with 80 keV Ar* ions at off-normal incidence

50° 685.85+4.23
40° 670.45+3.82
30° 658.85+2.64
Annealed at 1,073 K

50° 536.12+2.14
40° 480.76 £1.94
30° 435.45+1.30

Table 1. Backscattering yield values for un-irradiated, irradiated and annealed Si(111) samples as a function
of ion incidence.
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Figure 3. DICADA"™ simulated depth distribution of normalized damage D(z) in amorphized and annealed
Si(111) samples at 1,073 K.

induced disordering in the silicon lattice®. The channeled backscattering yield corresponding to this damage
peak decreases with decrease in oblique incidence (Fig. 2). The values of backscattering yield for un-irradiated,
irradiated and annealed Si(111) have been summarized in Table 1.

From Table 1, it is clear that the backscattering yield in the amorphized and annealed samples decreases with
decrease in oblique incidence. Based on these values the amorphous content in damage peak has been estimated
to be 79%, 77% and 75.4% for oblique incidences of 50°, 40° and 30°. Hence, irradiated Si(111) samples are not
completely amorphized under oblique Ar* sputtering. However, Turos et al.** reported complete amorphization
in Si(111) with 2 x 10'° Ne ions cm™ at 60 keV for normal incidence. Also, Nakata et al*!? have observed complete
amorphization in Si(100) and Si(110) with 50 keV As* at a fluence of 5x 10'® ions cm™ at normal incidence.

After the annealing of the amorphized samples, a good recovery of the damage has been observed for all
samples (Fig. 2). We note that the channeled yield reduces to 60%, 54% and 48% for recrystallized Si(111) speci-
mens at oblique incidences of 50°, 40° and 30°. Thus, RBS channeling experiment demonstrated that crystalline
behavior restores partially after recrystallization. In contrast to our finding, Turos et al.** have observed complete
recovery in amorphized Si samples at annealing temperature of 800 °C.

The presence of additional oxygen peak in recrystallized samples (Fig. 2) is logically due to annealing pro-
cess in the oxygen atmosphere. Significant shift in the oxygen peak position towards the surface with decrease
in oblique incidence has been observed. Concerning the argon ions, the implanted Ar profile in-diffuses with
decrease in oblique incidence after amorphization at different oblique incidences of 50°, 40° and 30°. But, it is
important to note that implanted Ar escaped out completely during the annealing treatment.

To study in detail the amorphization and recrystallization behavior, we present in Fig. 3 the damage profiles
D(z) as a function of penetration depth of incoming ions for different angle of incidences. These profiles have
been simulated from the RBS/C measurements using DICADA code™.
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Figure 4. Plots showing the dependence of the amorphized and recrystallized thickness on the oblique
incidence.

The thickness of the amorphous layer produced under oblique argon ion irradiation and recrystallized layer
under annealing treatment has been determined by estimating the full width at half maxima (FWHM) of these
damage profiles. The width of the amorphous layer in Ar*-amorphized samples at oblique incidences of 50°,
40° and 30° comes out to be 80 nm, 73 nm and 69 nm; evidencing the formation of amorphous layers of vari-
able thickness. It is very much clear that complete amorphization has not been attained in our present case. We
note that maximum of these profiles lies in the surface region as clear from Fig. 3a,c,e. As a consequence, only
surface amorphization is induced by oblique argon ion sputtering (Fig. 3a,c,e). Due to this surface amorphiza-
tion, asymmetry is present in these damage profiles. One noticeable feature is that these damage profiles exhibit
similar behavior towards the end of damage region and saturates in the near surface region. These observations
are further confirmed by structural studies as discussed later.

In case of annealing treatment at 1,073 K, the width of the damage profile starts decreasing significantly
(Fig. 3b,d,f). This emphasizes that the amorphized layer thickness as well as damage reduces drastically for the
recrystallized specimens. With decrease in oblique incidence, D(z) reduces drastically which indicates increas-
ing recrystallization as a function of oblique incidence. This decrease is found to be 42% of the total damage at
oblique incidence of 30°, resulting in recrystallized layer of thickness 32 nm. Surprisingly, complete recrystal-
lization could not be attained upon thermal annealing at 1,073 K. This can be attributed to the agglomeration
of isolated point defects into extended defect zones'"'8, thereby, making difficulty in annealing even at a tem-
perature of 1,073 K.

We have observed out diffusion of oxygen with decrease in oblique incidence from 50° to 30° (Fig. 2). This
shift in O peak position is attributed to depth varying amorphization induced by oblique argon ion sputtering.
The amorphous layer thickness is found to be 80, 73 and 69 nm for oblique incidences of 50°, 40° and 30° (Fig. 3).
Due to the decrease in amorphous layer thickness with oblique incidence from 50° to 30°, we observed out dif-
fusion in oxygen during annealing treatment.

One can clearly see that though the width of these damage profiles decreases but they are still asymmetric in
nature. As a consequence, the maximum of damage distribution shifts towards near surface region as compared
to amorphized samples (Fig. 3). This indicates the formation of buried amorphous layer in these as amorphized
and annealed Si(111) samples.

The amorphous and recrystallized layer thickness as a function of angle of incidence is presented in Fig. 4.

Figure 4 reveals that both the amorphous as well as recrystallized layer thickness reduce with decrease in
oblique incidence; evidencing direct dependence on the angle of incident argon ions.

The simulated distribution of argon in the Si(111) lattice with penetration depth?®® for different oblique inci-
dences from RBS/C spectra after amorphization at different off-normal incidences has been plotted in Fig. 5.

Figure 5 reveals Gaussian profile of argon distribution in the Si(111) lattice as a function of penetration depth
for all the amorphized specimens. Interestingly, this depth distribution of Ar enhances into the bulk Si(111);
hereby evidencing in-diffusion of argon with decrease in oblique incidence. In addition, maximum surface
concentration of Ar is found at lowest oblique incidence of 30° thus reaching 0.35 at.%. The calculated fluence of
Ar ions differ by nearly 7% from the original fluence (3 x 107 Arfcm™) used in sputtering experiment, as shown
in the inset of Fig. 5. The enhanced in-diffusion of Ar into Si(111) lattice can be accounted in terms of oblique
argon ion irradiation induced surface amorphization and defects under high flux. The projected range (Rp)
and standard deviation (AR}) are estimated to 54+ 26 nm, 64 +32 nm and 75 + 34 nm for different off-normal
incidences of 50°, 40° and 30°. These values of range compare well with TRIM simulation results of 55+ 28 nm,
65+30 nm and 77 31 nm*.

Our RBS/C results reveal that irradiated Si(111) are not completely amorphized under 80 keV argon ion
sputtering at oblique incidence of 50°, 40° and 30° for a fluence of 3 x 10'7 Ar*cm™. Upon annealing at 800 °C,
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Figure 5. RBS random and RBS/C spectra along the {111} axis in amorphized Si(111) samples.
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Figure 6. Raman spectra corresponding to Ar* amorphized and annealed samples as a function of off-normal
incidence.

partial recrystallization has been observed in these pre-amorphized samples. This can be due to highest atomic
density in Si(111) in comparison to other planar orientations of Si. Nakata et al.*'? have also reported that crys-
tallized thickness of Si(100) was approximately two times than that for Si(111). In addition, Nakata et al.*!> have
observed complete amorphization in Si(100) and Si(110) with 50 keV As* at a fluence of 1x 10'° ions cm™ at
normal incidence but Turos et al.** reported complete amorphization in Si(111) at 60 keV for normal incidence
but with double fluence of 2 x 10'* Ne ions cm™.

Raman investigations of as amorphized and recrystallized Si(111) surfaces. Raman spectra of
amorphized and recrystallized Si samples at different off-normal incidences of 30°, 40° and 50° have been pre-
sented in Fig. 6. The spectrum of un-irradiated Si(111) is also shown for comparison. For un-irradiated Si(111),
the Raman first order spectrum consists of one strong crystalline peak (c-Si) at 521 cm™ and broad second order
peak in the range 920 to 1,030 cm™ (Fig. 6a). These peaks are associated with the triply degenerate transverse
optical phonon (1TO and 2TO) corresponding to zone center®.

For oblique Ar* amorphized Si(111) samples (Fig. 6b,d,f), the spectra consists of a broad amorphous band
(a-Si), being centered at (450 +3) cm™. This band is ascribed to the amorphous silicon (a-Si) having transverse
optic TO mode*-*. The appearance of a-Si peak (Fig. 6b,c,d) at the expense of triply degenerate transverse optical
phonon (1TO and 2TO) peaks (Fig. 6a) for the as amorphized samples show the amorphization in sub-surface
region only. This is also reflected in the RBS/C spectra shown in Fig. 3.
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Specimen Raman peak position (cm™) | FWHM (cm™') | Stress (GPa)
Un-irradiated Si(111) 520 9+0.2 0

As amorphized with 80 keV Ar* ions at off-normal incidence

50° 469 140+5 12.75

40° 465 146+7 13.75

30° 462 150+8 14.50
Annealed at 1,073 K

50° 515 12+0.4 1.00

40° 517 11+0.5 0.50

30° 519 10+0.6 0.25

Table 2. Raman peak position, line-width variation and calculated stress for amorphized and annealed Si(111)
specimens.
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Figure 7. Amorphous content and relative stress for amorphized samples as a function of off-normal incidence.

After annealing at 1,073 K, apparent sign of recrystallization can be seen from the Raman spectra (Fig. 6¢,e,g).
With decrease in oblique incidence, the peak related to the crystalline component increases and becomes more
symmetric; which indicates increasing recrystallization with decrease in oblique incidence. However, the pres-
ence of small amorphous content in these samples results in a tail in this c-Si peak. This clearly demonstrates that
the decreasing contribution of amorphous phase accounts for the corresponding increase of crystalline phase.

However, the peak related to c-2TO phonon vibrations is found to be becoming broader and symmetric with
decrease in oblique incidence. This strongly emphasizes the dependence of recrystallization behavior on the
depth varying surface amorphization induced by obliquely incident argon ions. These findings corroborate the
RBS/C results showing the partial recrystallization after annealing treatment.

Besides recovery by annealing treatment, some stress still remains in the recrystallized Si(111) samples. This
remnant stress has been signified by shifting of the Raman peak in these recrystallized specimens towards the
lower wave numbers in comparison to un-irradiated c-Si, which is stress free’®*>-*. The magnitude of this stress
has been estimated* using the relation:

o (MPa) = 250Aw(cm™ 1)

where o is the magnitude of the stress, Aw is the peak shift. From above equation Aw has been calculated and
is shown in Table 2 for amorphized and annealed specimens.

It can be concluded from Table 2 that stress is increased with decrease in oblique incidence for amorphized
samples while this tensile stress decreases for recrystallized samples. Furthermore, the stress is not completely
removed even after annealing treatment at 1,073 K.

Mutual correlation. It is clear from Fig. 7 that the decrease in amorphous content with decreasing off-
normal incidence results in increased stress in the irradiated samples.

After annealing of these amorphized samples, the degree of amorphous content and stress reduces signifi-
cantly. We found that decrease in amorphous content with decreasing off-normal incidence results in decreased
stress in the recrystallized samples contrary to the relative increase in the stress in amorphized samples.
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Figure 8. Amorphous content and relative stress for annealed samples as a function of off-normal incidence.

Angle of incidence (°) | Sputtering yield (Si atoms/Ar* ion) | Energy transferred to recoils
30 0.96 70
40 1.35 80
50 2.16 100

Table 3. Magnitude of SY and energy transferred to recoils for different angle of incidences.

Hence, it can be inferred from Figs. 7 and 8 that depth dependent surface amorphization and hence recrystal-
lization is due to oblique incidence induced sputtering and results in angle dependent tensile stress in the samples.

The observed damage profiles of silicon in irradiated and annealed Si(111) samples relies on nuclear energy
loss dominated sputtering process and defect generation**-*2. The present experiment has been carried out at
oblique incidence of 50° and therein, sputtering effect comes into picture. So, to quantify its role in amorphization
and recrystallization, we have estimated the sputtering yield (SY) and hence the energy transferred by incoming
argon ions to recoiling Si atoms at these oblique incidences in Si(111) lattice.

Table 3 reveals that the sputtering yield and energy transferred to recoiling Si atoms is highest for 50° off nor-
mal incidence of irradiation. This shows that for this oblique incidence, the incoming argon ions have appropriate
energy and momentum to eject the Si atoms lying in the vicinity of surface rather than imparting its energy in the
sub-surface layers. Therefore, silicon atoms lying close to the surface gain sufficient energy to leave the surface
and get sputtered out**-*2. Table 3 further depicts that both these parameters decreases with decrease in angle of
incidence. Hence, energetic argon ions start depositing their energy in the near surface region in addition to sur-
face layers and results in increase in depth profiles of relative disorder of Si with decrease in oblique incidences.

Secondly, the peak position of disorder profile depends on the backscattering probability of He-ion versus the
evolution of defects and microstructure induced as a result of obliquely incident argon ions. Hence, variations
in irradiation-induced defects and isolated amorphous zones at different oblique incidences affect the energy of
backscattered He-ion and are responsible for the depth shift of the disorder peak*"#2.

Further, the recrystallization kinetics can be efficiently understood through the number of sputtered ions
and vacancies created by local the temperature rise due to the nuclear energy loss. In partially disordered Si
samples, where isolated regions of amorphous Si are embedded inside c-Si, annealing treatment at 1,073 K leads
to recrystallization. This may be due to the synergic effect of both the sputtered ions generated by sputtering
process and nuclear energy loss produced interstitial pairs at the crystalline/amorphous (c/a) interface. There-
fore, the recrystallization dynamics is governed by the rate of production of defects as well as interstitials at the
c/ainterface and lying close to it. So, sputtering induced sputtered ions (Ar and Si) and the annealing treatment
induced additional vacancies reach the interface and could help to enhance the re-growth process.

Conclusions

Present studies summarize the investigations of recrystallization of pre-amorphized Si by annealing treatment.
Results demonstrate that the damage retained in the substrate is highly dependent upon oblique incidence of
argon ions. The depth profiles reveal the out diffusion of Ar with increase in oblique incidence for amorphized
samples. The micro-Raman indicates the remnant stress even after the annealing treatment at temperature of
1,073 K. The re-growth rate dynamics is governed by the production and migration of irradiation induced defects
and vacancies near to crystalline/amorphous interface due to the dominance of sputtering phenomenon. This
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study reveals that oblique ion beam incidences induced sputtering process followed by annealing treatment
results in depth varying recrystallization of pre-amorphized Si(111) layers.
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