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Identification of key interactions 
between SARS‑CoV‑2 main 
protease and inhibitor drug 
candidates
Ryunosuke Yoshino1,2,5, Nobuaki Yasuo3,5 & Masakazu Sekijima3,4*

The number of cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection 
(COVID-19) has reached over 114,000. SARS-CoV-2 caused a pandemic in Wuhan, China, in December 
2019 and is rapidly spreading globally. It has been reported that peptide-like anti-HIV-1 drugs are 
effective against SARS-CoV Main protease (Mpro). Due to the close phylogenetic relationship between 
SARS-CoV and SARS-CoV-2, their main proteases share many structural and functional features. Thus, 
these drugs are also regarded as potential drug candidates targeting SARS-CoV-2 Mpro. However, 
the mechanism of action of SARS-CoV-2 Mpro at the atomic-level is unknown. In the present study, 
we revealed key interactions between SARS-CoV-2 Mpro and three drug candidates by performing 
pharmacophore modeling and 1 μs molecular dynamics (MD) simulations. His41, Gly143, and Glu166 
formed interactions with the functional groups that were common among peptide-like inhibitors in 
all MD simulations. These interactions are important targets for potential drugs against SARS-CoV-2 
Mpro.

In December 2019, numerous cases of pneumonia were reported in Wuhan, Hubei Province1–3 among which 19 
confirmed cases and 39 imported cases were identified. The cause was identified as a new coronavirus disease 
(COVID-19) which is closely related to severe acute respiratory syndrome CoV (SARS-CoV)4. In early March, 
88,913 cases of COVID-19 had been reported worldwide, 90% of the total were reported in China5, 8,739 cases 
of COVID-19 were reported to WHO from 61 countries outside of China, resulting in 127 deaths5. Moreover, 
The Republic of Korea has reported more than 4,200 cases and 22 deaths, which accounts for more than half 
of the cases of COVID-19 reported outside China5. To contain this virus outbreak, it is important to identify 
effective therapeutic drugs immediately6.

SARS-CoV-2’s main protease (Mpro), is emerging as a promising therapeutic target. This non-structural pro-
tein of coronavirus is responsible for processing the polyprotein translated from viral RNA7. It has been con-
firmed that viral replication is inhibited by Mpro inhibitor in SARS-CoV8. Its sequence is highly conserved with 
SARS-CoV Mpro (Fig. 1). When aligned, they show a sequence identity of 96%, and only the A46S mutation is 
located on the inhibitor binding site. Although no effective antivirals or vaccines against COVID-19 are currently 
reported, peptide-like HIV-1 protease inhibitors such as lopinavir and ritonavir have been reported to be effec-
tive against SARS-CoV Mpro8,9. Clinical trials of these repurposed HIV protease inhibitors for COVID-19 have 
already been launched (e.g. ChiCTR2000029603, 2/6/20)10. However, the mechanism of action for SARS-CoV-2 
Mpro at the atomic-level remains unknown. Understanding the mechanism of action at the atomic-level resolu-
tion may provide insights for more rational drug design11 and may decrease the risk of future drug resistance12.

Computational methods are commonly used for structure-based drug discovery (SBDD) and ligand-based 
drug discovery (LBDD)13–18. LBDD is a technique for searching and designing new drugs based on experimen-
tal information and structural information of known compounds19,20. On the other hand, SBDD is a method 
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based on the tertiary structural information of the target protein21. This study focused on SBDD to discover 
three-dimensional insight for target binding. Pharmacophore modeling is one of LBDD techniques to discover 
common features of ligands to bind to the target protein17. Molecular dynamics (MD) simulations, in which 
the dynamics of biopolymers in solution can be analyzed at the atomic level, is a typical SBDD method used to 
predict the interaction between proteins and inhibitors22–26. MD simulation is based on Newton’s equation of 
motion and has been applied to biomolecules such as proteins, nucleic acids, and lipid membranes27–30. Recent 
studies have shown that MD simulations can be applied to clarify the binding mechanism between proteins and 
compounds at the molecular level, which is highly useful for rational drug design22–24,31–34. Fortunately, many 
complex structures of SARS-CoV Mpro and inhibitor have already been determined and are available in the 
Protein Data Bank35. Therefore, by modeling the complex structure of SARS-CoV-2 Mpro and inhibitors using 
information on the known structure of SARS-CoV-Mpro and peptide-like inhibitors, it is possible to analyze the 
characteristics of functional groups required for the molecular recognition of ligands by SARS-CoV-2 Mpro.

In the present study, we revealed important interactions for potential anti-coronavirus drugs to bind to 
SARS-CoV-2 Mpro by pharmacophore modeling and MD simulations. Based on pharmacophore modeling, 
three SARS-CoV-2 Mpro inhibitor candidates were selected, and SARS-CoV-2 Mpro-inhibitor complex models 
were built. Subsequently, we conducted MD simulations for the SARS-CoV-2 Mpro-inhibitor complex models 
to predict key characteristics of the functional groups required for molecular recognition by SARS-CoV-2 Mpro 
using interaction analysis.

Methods
Protein preparation and pharmacophore modeling.  X-ray structures (2A5I, 2OP9, 6LU7) were 
downloaded from the Protein Data Bank (PDB). Assignment of bond orders and hydrogenation were performed 
using Maestro36. The suitable ionization states of each ligand were generated by Epik37 at pH 7.0 ± 2.0. Hydrogen 
bond optimization was performed using PROPKA38, and energy minimization calculations was conducted with 
Maestro using the OPLS3e force field39. Using the “protein structure alignment” tool in Maestro, all SARS-CoV 
Mpro structures were aligned to SARS-CoV-2 Mpro structure (PDB ID: 6LU7) to minimize RMSD based on alpha 
carbon. The pharmacophore was extracted by Phase40,41 using the conformation of the inhibitor in the structure 
of SARS-CoV Mpro. After constructing the pharmacophore model, the protein of the SARS-CoV Mpro-inhibitor 
complex superimposed on SARS-CoV Mpro was deleted, and the structure of the inhibitor and SARS-CoV-2 Mpro 
was merged. Indinavir was aligned to the pharmacophore model and the aligned Indinavir and SARS-CoV-2 
Mpro structures were merged. Each merged structure was processed by hydrogen bond optimization and energy 
minimization calculations. These structures were used as initial structures for MD simulation.

MD simulation.  MD simulations for interaction analysis were performed using Desmond42. The inhibitor-
SARS-CoV-2 Mpro complex models were placed in the orthorhombic box with a buffer distance of 10 Å in order 
to create a hydration model. TIP3P water model43 was used for creation of the hydration model. The cut-off 
radius for van der Waals and electrostatic interactions, time step, initial temperature and pressure of the system 

Figure 1.   Alignment of SARS-CoV and SARS-CoV-2’s main protease sequences and X-ray structure. As a 
result of pairwise alignment, sequence identity showed 96%. The green stick model in (B) indicates the inhibitor 
binding site, and sphere model indicates residues that are not conserved between both sequences. (A) Pairwise 
alignment result of SARS-CoV Mpro (above sequence) and SARS-CoV-2 Mpro (below sequence), (B) Structure 
alignment result of SARS-CoV Mpro (PDB ID: 2A5I, red ribbon) and SARS-CoV-2 Mpro (PDB ID: 6LU7, orange 
ribbon).
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were set to 9 Å, 2.0 fs, 300 K and 1.01325 bar respectively. The sampling interval during the simulation was set to 
50 ps. Finally, we performed MD simulations under the NPT ensemble for 1 μs using OPLS3e force field. Follow-
ing MD simulations, the “Simulation Interactions Diagram” tool in Maestro was used to perform an interaction 
analysis between Mpro and inhibitor. Images of simulated proteins and ligands were generated using Maestro36.

Results
Structure alignment and pharmacophore modeling.  To construct a SARS-CoV-2 Mpro-inhibitor 
model, we performed structure alignment between SARS-CoV Mpro-inhibitor complex structures and the SARS-
CoV-2 Mpro structure. Figure 2A shows SARS-CoV Mpro inhibitors aligned with the pharmacophore model indi-
cating the features of common functional groups of SARS-CoV Mpro inhibitors, namely 2A5I ligand and 2OP9 
ligand, and Fig. 2B shows the positional relationship of the pharmacophore.

Using Phase software, two pharmacophore candidates, which were common among three ligands and had 
four pharmacophore points, were obtained (Fig. S1). These candidates had the same interactions, but slightly 
different 3D coordinates. It is because a pharmacophore is initially developed from single reference ligand by 
Phase algorithm, and two candidates were developed from different reference ligands. The pharmacophore that 
fits other active ligands more were chosen, by using (1) the root-mean-squared deviation (RMSD) in the pharma-
cophore point positions, and (2) the cosine of the angles formed by corresponding pairs of donor/acceptor. The 
total “screen score” (higher is better) of three active ligands are 5.34 and 5.07, respectively. The structural align-
ment and the pharmacophore model revealed that these inhibitors have two H-bond donor (HBD) functional 
groups and two H-bond acceptor (HBA) functional groups as common features. These features are located on 

Figure 2.   Pharmacophore model constructed by SARS-CoV Mpro-inhibitor complex structure. Four features 
of inhibitors that bind to SARS-CoV Mpro were extracted. Blue spheres indicate H-bond donor (HBD), and 
red spheres indicates H-bond acceptor (HBA). (A) Alignment of pharmacophore model with each peptide-
like inhibitor (Gray stick model: 2A5I ligand, Green stick model: 2OP9 ligand, Blue stick model: Indinavir). 
(B) Details of the positional relationship of the pharmacophore (Purple numbers: Distance between 
pharmacophores (Å), Green numbers: Angle between pharmacophores). (C) Amino acid residues of SARS-CoV 
Mpro (PDBID: 2A5I) around the pharmacophore model (His41-Donor sphere: 3.58 Å, Gly143-Acceptor sphere: 
3.16 Å, Met145-Acceptor sphere: 3.12 Å, Glu166-Acceptor sphere: 3.37 Å, Gln189-Donor sphere: 1.72 Å).
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the carbonyl oxygen atom and the amine, which forms peptide bonds in the backbone of peptide-like inhibitor. 
The blue stick molecule in Fig. 2A indicates the predicted conformation of indinavir to fit the pharmacophore 
model. Indinavir fits all four pharmacophore features built from the SARS-CoV Mpro inhibitor.

Figure 2C shows the amino acid residues around the chemical group defined as the pharmacophore. His41 
and Gln189 are adjacent to the HBD sphere, and Gly143, Ser144, Cys145 and Glu166 are adjacent to the HBA 
sphere. His41’s side chain is located where the lone pair of nitrogen atoms on the imidazole ring can contact 
the donor sphere. Also, the carbonyl oxygen in the side chain of Gln189 is located near the donor sphere. These 
residues may form hydrogen bonds with the HBD located on the donor sphere. On the other hand, the HBA 
sphere is located near the main chain of Gly143, Ser144, and Cys145. The HBA sphere has a high affinity for the 
backbone NH Group. The backbone of Glu166 is also located near the HBA sphere, which enables NH group 
on the Glu166 backbone to connect with the HBA sphere. In Fig. 2C, these distance between His41, Gly143, 
Met145, Glu166, Gln189, and each pharmacophore sphere are 3.58 Å, 3.16 Å, 3.12 Å, 3.37 Å, 1.72 Å respectively.

Interaction analysis by MD simulation.  To clarify the key interactions between SARS-CoV-2 Mpro and 
drug candidates, we performed 1 μs MD simulations for each of six SARS-CoV-2 Mpro-inhibitor complex mod-
els. The complex models were created by superimposing SARS-CoV Mpro into SARS-CoV-2 Mpro. Protein and 
ligand RMSD information are presented in Figures S2 and S3. And root-mean-square fluctuation (RMSF) of 
amino acid residue is presented in Figure S4. Except for amino acid residues at both ends, the maximum RMSF 
of complex models is 2.0–2.4 Å (Figure S4A–C). In contrast, the maximum RMSF of apo form is 3.2 Å (Fig-
ure S4D). In the apo form result, fluctuations of amino acid residues around the 50th, 150th, and 270th positions 
are large (Figure S4D), and RMSF value around these regions decreases due to binding of inhibitor (Figure S4A–
C). Figure 3 shows a 2D summary of the interaction analysis results of three SARS-CoV-2 Mpro-inhibitor com-
plex models. Timeline representation of the interactions and contacts are presented in Figure S5.

In all MD simulations, the interaction with Glu166 had the highest interaction rate. This residue mostly inter-
acts with all ligands during each simulation (Figure S5). The 2A5I ligand and indinavir showed that it formed 
two hydrogen bonds with Glu166. Also, the interaction with His41 was maintained with a high probability in 

Figure 3.   2D summary of the interaction analysis by MD simulation for each ligand. This figure contains 
SARS-CoV-2 Mpro amino acid residues which show an interaction probability of over 30% during MD 
simulation. Dotted lines indicate interactions between side chains and inhibitors, and solid lines indicate 
interactions between side chains and inhibitors. (A) Interaction results of 2A5I ligand, (B) Interaction results of 
2OP9 ligand, (C) Interaction results of indinavir.
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all MD results (78%, 92%, and 94%). This residue continues to interact with inhibitors during each simulation 
(Figure S5). Interactions with His41 were classified into two types: hydrogen bonding and Pi-stacking. In the 
interaction with His41, most of the hydrogen bond interactions were strongly connected. With the 2OP9 ligand 
and indinavir, hydrogen bonds to Gly143 and Cys145 were observed with a probability of over 50% during 
simulation. These interactions form with the main chain of Gly143 and Cys145. Two interactions were observed 
between the 2OP9 ligand and Cys145, in which the amine group of Cys145 main chain and the thiol group of 
Cys145 side chain were involved. With the 2A5I ligand and the 2OP9 ligand, an interaction between Gln189 
and the inhibitors was confirmed with a probability of over 30% during simulation. 2A5I ligand, 20P9 ligand, 
and indinavir have one or two water bridge interactions with a probability of over 30% each during simulation. 
Especially, water between 2OP9 ligand and E166 forms a water bridge with a probability of 60%. According to 
the results of indinavir, water bridges are formed with T190 and Q192 with a probability of over 70%. Table 1 
shows amino acid residues having an interaction probability of over 30% in each simulation. Interaction of 
His41, Gly143, Met165, and Glu166 were observed in all MD simulations. The side chains of His41 and the 
main chains of Gly143 and Glu166 were involved in the interaction, and Met165 forms a van der Waals (vdW) 
interaction with the inhibitors.

Table 2 shows the interactions probabilities related to pharmacophore during 1 μs MD simulation. Gly143-
Acceptor and Met145-Acceptor are involved in the same pharmacophore point. Among pharmacophore inter-
action, His41-Donor and Glu166-Acceptor are highly stable during MD simulation for all compounds. Other 
interactions are also relatively stable except Met145-Acceptor of 2A5I ligand and Gln189-Donor of indinavir.

Discussion
In this study, we first modeled a pharmacophore based on the structure of the SARS-CoV Mpro bound to peptide-
like inhibitors. There were common features in the main chain of these peptide-like inhibitors. In Fig. 2C, SARS-
CoV Mpro residues: His41, Gly143, Ser144, Cys145, Glu166, and Gln189 were located near these pharmacophore 
spheres. Since these residues are conserved in SARS-CoV-2 Mpro, the features observed in SARS-CoV Mpro 
inhibitors will be located at similar positions in SARS-CoV-2 Mpro and thus, have the potential to inhibit SARS-
CoV-2 Mpro. Moreover, the three-dimensional structure of SARS-CoV Mpro and SARS-CoV-2 Mpro is almost 
conserved (Fig. 1B), and amino acid sequence identity value shows 96%. The pharmacophores do not contact 
unconserved amino acid residues in SARS-CoV Mpro and SARS-CoV-2 Mpro. Thus, inhibitors that are matched 
with these pharmacophores may have the potential to inhibit both Mpro.

To investigate the potential of these compounds to bind SARS-CoV-2 Mpro, we performed MD simulations 
for SARS-CoV-2 Mpro-inhibitor complex models. We observed strong hydrogen bonding with Glu166 main 
chain. In addition, although the thiol group of Cys145 interacts to the 2OP9 ligand, it was confirmed that the 
main chains of Gly143, Ser144, and Cys145 also interact with each inhibitor. It is suggested that the interaction 
with these amino acid residues may not be affected by side chain mutations unless the binding site shape or 
the dynamics of each chain are changed. Interactions with His41 were confirmed as hydrogen bonding and Pi-
stacking. In the hydrogen bond, NH in the imidazole ring of His41 works as HBD. In addition, the imidazole 
ring of His41 also forms Pi-stacking with each inhibitor. According to the results of pharmacophore mod-
eling, HBD pharmacophore sphere is located near His41. In contrast, the MD simulations suggested that His41 
works as HBD. Therefore, HBA functional group has the potential to contact with His41. MD simulations also 

Table 1.   Amino acid residues with interaction probability of over 30%.

2A5I ligand 2OP9 ligand Indinavir

His41 His41 His41

Met49 Gly143 Met49

Gly143 Ser144 Gly143

Met165 Cys145 Cys145

Glu166 Met165 Met165

Pro168 Glu166 Glu166

Gln189 Gln189

Table 2.   Interaction probabilities related to pharmacophore during 1 μs MD simulation. Gly143-Acceptor and 
Met145-Acceptor are involved in the same pharmacophore point. –: less than 30% probabilities of interaction.

2A5I ligand 2OP9 ligand Indinavir

His41-donor 78% 94% 92%

Gly143-acceptor 30% 36% 54%

Met145-acceptor – 66% 91%

Glu166-acceptor 99% 99% 97%

Gln189-donor 36% 30% –
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suggested that aromatic functional groups have high affinity for His41. In each MD simulation, Gly143, Ser144, 
Cys145, Glu166, and Gln189 interact with functional groups defined as pharmacophore of peptide-like inhibitors. 
Therefore, interactions with these amino acid residues are important for binding to SARS-CoV-2 Mpro. In these 
MD simulation results, all ligand has one or two water bridges. Therefore, it is suggested that water bridges are 
involved in Mpro and inhibitor complex structure to stabilize the structure, functional groups of ligands can be 
extended to the space occupied by these waters. Figure 4 shows SARS-CoV-2 Mpro with α-ketoamide inhibitors 
(PDBID: 6Y2G)44 aligned to 6UL7. One hydroxyl group and two carbonyl groups of α-ketoamide are matched 
the pharmacophore model. However, one donor sphere is located at the nitrogen atom of the pyrimidine ring. 
Since this nitrogen atom has no hydrogen atom, it cannot function as a hydrogen bond donor. Comparing the 
structures of Gln189 in Figs. 2C and 4, the conformations of the side chains are different. Although the results of 
MD simulations suggested that the 2A5I ligand and the 2OP9 ligand interacted with Gln189, this structure has 
been suggested that the side chain conformation of Gln189 flexibly changes depending on the binding inhibi-
tor. Irreversible inhibitors which have covalent bonds with Cys residue of SARS-CoV-2 Mpro have already been 
reported44. Irreversible inhibitors that selectively inhibit Mpro may have a higher binding affinity than competi-
tive inhibitors and the inhibitors analyzed in this study are competitive inhibitors. However, drug repositioning 
is effective for highly urgent diseases such as COVID-19, and the pharmacophore proposed in this study can 
evaluate compounds which is not included a functional group to form a covalent bond with Cys. Therefore, the 
pharmacophore can be applicated for drug repositioning strategy.

In summary, this study suggests that compounds matching the pharmacophore model have potential as 
coronavirus inhibitors. Although these results were obtained from peptide-like inhibitors, the formation of 
these interactions allows the design and search of non-peptide-like compounds. The pharmacophore features 
that are important for binding to SARS-CoV-2 Mpro might help to develop new effective anti-coronavirus drugs.

Data availability
Initial X-ray structures are available at Protein Data Bank (https​://www.rcsb.org/). Modeled structures for MD 
simulation are available at github (https​://githu​b.com/sekij​ima-lab/SARS-CoV-2_Mpro_struc​tures​). And the 
trajectory of all MD simulations can be downloaded from the following link (https​://data.mende​ley.com/datas​
ets/5jfsx​6j75g​/2). The source data underlying Fig. 3A–C and Figs. S2A–C and S3A–C are provided as a Source 
Data file. Other data are available from the corresponding author upon reasonable request.
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