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Highly improved convergence 
approach incorporating edge 
conditions for scattering analysis 
of graphene gratings
Ruey‑Bing Hwang

This research developed an effective and efficient approach for improving the slow convergence in 
the scattering analysis of a one-dimensional graphene grating, made of a periodic array of parallel 
graphene strips, illuminated by a TM-polarized plane wave. Specifically, the electric fields over the 
graphene strips and slit regions in a unit cell are individually expressed as an expansion of local basis 
functions inherently satisfying edge conditions. Interestingly, convergence rate is highly improved 
compared to the customary and modified Fourier modal method. Additionally, with the aid of local 
basis functions, the Gibbs phenomenon occurring at both edges of graphene strip can be removed.

The plane wave scattering by a one-dimensional (1D) grating made up of dielectric or metallic mediums has 
been intensively and extensively studied. Some numerical methods such as the rigorous coupled-wave analysis 
(RCWA)1, the modal theory for dielectric and finitely conducting gratings2, and the modal transmission-line 
method3–5 were developed to accurately calculate scattering characteristics of gratings. Moreover, graphene-based 
grating composed of graphene sheet has been a continued research interest6–14 in both theoretical studies and 
practical applications in recent years.

In the RCWA method, both the permittivity function of a periodic medium and electromagnetic fields are 
expanded into Fourier series and Floquet-Fourier series, respectively. Therefore, the electromagnetic boundary-
value problem can be converted into an eigenvalue problem. Such an approach is efficient in handling the grating 
with an arbitrary profile and a finite stack of multiple gratings, as well. However, the RCWA method1 is known 
to be slowly converging for 1D metallic gratings in TM polarization (magnetic-field vector parallel to the grat-
ing vector). Fortunately, the inverse rule, by invoking adequate Fourier series of the permittivity and reciprocal 
permittivity functions of a periodic medium to reformulate the eigenvalue problem, was developed to achieved 
a highly improved convergence rate for the scattering analysis of a metallic grating in TM polarization15–18. Addi-
tionally, the Floquet modes in a periodic medium with the unit cell composed of a dielectric slab and a metal 
layer having finite conductivity can be determined by solving the dispersion equation19. However, finding their 
complex roots is a difficult task. Consequently, use of Fourier series expansion to calculate Floquet modes in a 
periodic medium, in general, is the most reliable and effective approach in handling a diffraction grating problem.

In this paper, we aimed at studying the numerical convergence of plane wave scattering by a graphene grating 
in TM polarization. Here, the structure under study is a 1D periodic array of graphene strips (ribbons) deposited 
on a dielectric substrate. The graphene sheet is assumed to be near-zero thickness (the thickness of mono-layer 
graphene is 0.335nm); therefore, the electromagnetic fields are merely in the upper and lower homogeneous 
mediums, as shown in Fig. 1. Due to the periodicity along the x-axis, electric and magnetic fields can be pre-
sented in the standard form of Floquet-Fourier series (or Rayleigh expansions). Moreover, the electrical property 
of graphene strips can be modeled with a surface conductivity ( σg ). Consequently, the graphene conductivity 
function in a unit cell is σ(x) = σg on graphene strip and σ(x) = 0 otherwise, which can be further expressed 
as a Fourier series. Furthermore, two electromagnetic boundary conditions including (1) the continuous of tan-
gential electric fields across the graphene grating, and (2) the discontinuity of tangential magnetic fields across 
the graphene grating caused by the conduction current induced on graphene strips should be applied at the 
interface between two adjacent homogeneous mediums. Alternatively, such a problem amounts to imposing a 
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periodic boundary condition on the tangential electric- and magnetic-fields at an interface between two uniform 
mediums. Moreover, the periodic boundary condition is obtained by expanding the graphene conductivity into 
a Fourier series expansion. The Laurent’s rule16 then can be applied for Fourier factorization of the conduction 
current σ(x)Ex(x, z = 0) . By matching the Fourier coefficient corresponding to the same harmonic, an infinite set 
of linear equations for the input-output relation of the diffraction-order amplitudes are determined5,7,20. Notably, 
such an approach is termed as Fourier modal method (FMM) throughout this paper.

Unfortunately, the poor convergence occurs in conventional FMM for the scattering analysis of periodic 
arrays of graphene ribbons reported in the literature13,20. Furthermore, the inverse rule by including the recipro-
cal function 1/σ(x) into the FMM is not applicable because σ(x) is zero outside the graphene ribbon. To resolve 
this problem, the author20 proposed an approximate boundary condition (ABC) that takes into account the 
effective conductivity due to the displacement current in slit region without graphene. The effective conductiv-
ity is non-zero everywhere; therefore, the inverse rule can be successfully applied. Although FMM with ABC 
convincingly achieves numerical convergence, the convergent value varies in accordance with the enclosed-loop 
height (h), shown in Fig. 2, used to model the effective conductivity in slit region. Unfortunately, it is difficult 
to give a general criterion for h.

In this research, the respective local basis functions (LBFs) taking into account the electric-field edge condi-
tions over the graphene-strip and slit regions in a unit cell are developed to replace the global basis functions 
(Floquet–Fourier series in a homogeneous medium). As will become clear later on, the tangential electric-field 
expanded by the local basis functions exhibits the fidelity of discontinuous behaviour, which is not seen in 
the conventional FMM, enabling a fast convergence in the scattering analysis of graphen-strip gratings in TM 
polarization.

This paper is organized as follows. We begin with the mathematical formulation using the conventional FMM 
that is taken as a general framework for theoretical analysis. Moreover, ABC is employed to reformulate the 
FMM by invoking the inverse rule. Additionally, the present approach, namely, FMM incorporating LBFs, will 
be comprehensively elaborated. Finally, convergence behaviour will be examined for the three aforementioned 
methods. Specifically, electric field distribution on graphene grating surface will be demonstrated for various 
incident conditions.

Structure configuration and surface conductivity model of graphene
Figure 1 shows structure configuration of a 1D graphene grating consisting of a periodic array of parallel gra-
phene strips. The strip is infinite in extent along the y-axis and the electromagnetic fields have no variation 
along that direction. The strip width and period along the x-axis are denoted as wg and dx , respectively. The 
graphene layer is assumed to be zero thickness and characterized by a surface conductivity. Additionally, the 
1D graphene strip array is sandwiched by two semi-infinite homogeneous mediums designed as ε+ for z ≥ 0 
and ε− for z < 0 , respectively. A plane wave with magnetic field H(x, z) = ŷHy is impinging on the array; its 
incident angle is designated as θ.

Incidentally, graphene conductivity ( σg = σintra + σinter ), having a close-form expression for the condition 
| µc | ≫ kBT , consists of both the intraband ( σintra ) and interband ( σinter ) terms11:

Figure 1.   A periodic array of parallel graphene strips incident by a TM-polarized plane wave.

Figure 2.   Derivation of approximate boundary condition in the graphene and slit regions.
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where -e is the electron charge, ℏ is the reduced Planck constant, γ is a phenomenological carrier scattering rate, 
µc is the chemical potential, kB is Boltzmann’s constant, and T is the ambient temperature.

Fourier modal method
In a homogeneous medium, the electric and magnetic field components of TM polarization in the presence of 
periodicity dx along the x-axis can be represented by Rayleigh expansions (or Floquet–Fourier series) in the form

with ψn(x) is named as the n th space harmonic given below

Function ψn(x) forms an orthonormal set on x ∈ [0, dx] satisfying

Parameter δmn is the Kronecker delta function, and kxn = ko
√
ε− sin θ + n2π/dx . Functions Vn(z) and In(z) , 

satisfying transmission line equation, are the voltage and current amplitudes of the nth space harmonic, respec-
tively. Their general solutions can be written in the form5

with the propagation constant along the z-axis kzn =
√

k2oεs − k2xn and wave admittance Yn = ωεoεs/kzn in an 
infinite medium with relative dielectric constant εs . Parameters an and bn usually are termed as the amplitudes 
of the forward- and backward- propagating waves of the nth diffraction order, respectively.

Owing to the zero thickness approximation of the graphene grating, discontinuity in the tangential compo-
nent of magnetic fields at the interface (graphene grating surface) between two uniform mediums equals to the 
conduction current induced on the graphene strips array, yielding

where graphene conductivity σ(x) is a periodic function that can be expressed as a Fourier series

We first substitute magnetic field Hy in Eq.  (3) and conductivity function σ(x) in Eq.  (10) into Eq. (9) together 
with the electric field Ex on the graphene grating surface approximated by the Floquet-Fourier expansion in Eq. 
(4). Using Laurent’s rule16 and equaling the same Fourier coefficient corresponding to the same harmonic on 
both sides, one obtains the system of linear equations

where index m is running from negative to positive infinity.
Equation (11) can be expressed in a compact matrix form, one obtains

where [[Yg ]] is the Toeplitz matrix with (m, n) entry σm−n given in Eq. (10); the n th element in column vectors 
I(0±) and V(0) respectively are In(0±) and Vn(0) .

The matrix [[Yg ]] in Eq. (12) establishes a relationship between voltage and current waves across the grating 
layer; it is the so-called admittance matrix in microwave engineering5. Equation (12) is also regarded as the 

(1)σintra(ω) =
2ie2kBT

πℏ2(ω + iγ )
ln [2 cosh(µc/2kBT)], and

(2)σinter =
e2

4ℏ

{

1

2
+ 1

π
arctan

ℏ(ω + iγ )− 2µc

2kBT
− i

2π
ln

[ℏ(ω + iγ )+ 2µc]2
ℏ(ω + iγ )− 2µc]2 + (2kBT)2

}

,

(3)Hy(x, z) =
n=+∞
∑

n=−∞
In(z)ψn(x),

(4)Ex(x, z) =
n=+∞
∑

n=−∞
Vn(z)ψn(x),

(5)ψn(x) =
exp(−jkxnx)√

dx
.

(6)
∫ dx

0
ψ†
m(x)ψn(x)dx = δmn.

(7)Vn(z) = an exp(−jkznz)+ bn exp(+jkznz),

(8)In(z) =Yn

[

an exp(−jkznz)− bn exp(+jkznz)
]

,

(9)Hy(x, z = 0−)−Hy(x, z = 0+) = σ(x)Ex(x, z = 0),

(10)σ(x) =
{

σg for x ∈ graphene
0 for x ∈ slit

=
∑

n

σn exp(jn2πx/dx).

(11)
n=+∞
∑

n=−∞

[

In(0
−)− In(0

+)
]

=
n=+∞
∑

n=−∞
Yg ,mnVn(0),

(12)I(0−)− I(0+) = [[Yg ]]V(0),
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input-output relation among incident, reflected and transmitted diffraction-order amplitudes with respect to a 
graphene grating.

Moreover, due to continuous of Ex at z = 0 , Eq. (4) arrives at Vn(0
−) = Vn(0

+) ; its vector form can be writ-
ten as follow:

Furthermore, substitution of I(0+) = [[Y+]]V(0+) (no downward waves in the upper medium) and Eq. (13) 
into Eq. (12), one obtains

where the input admittance matrix looking into the interface in lower medium is defined as 
[[Yin]] = [[Yg ]] + [[Y+]].

Here the incident and reflected wave vectors, defined at z = 0− in the lower medium, are individually denoted 
as column vectors a and b whose elements are an and bn , respectively. Since the voltage and current wave vectors 
at z = 0− can be written as V(0−) = a+ b and I(0−) = [[Y−]](a− b) with their components given in Eqs. (7) 
and (8), the relationship between a and b can be obtained through Eq. (14). One obtains

where [[Ŵ]] is termed as the reflection matrix written below

Matrices [[Y+]] and [[Y−]] are denoted as the admittance matrices in the upper and lower uniform mediums, 
respectively; both are diagonal matrices with their nth diagonal entry given as

Since only the transmitted (upward) waves are present in the upper medium, the voltage vector in the upper 
medium at z = 0+ is written as V(0+) = c . By V(0−) = a+ b together with Eq. (13), one obtains

where c is a column vector with element cn at the nth entry. Symbol [[T]] is termed as a transmission matrix 
defined at the output surface of grating ( z = 0+ ); [[I]] is the identity matrix.

Notably, for a graphene grating incident by a single plane wave, the wave vector a is known and usually defined 
as a0 = 1 and an = 0 for n  = 0 . The amplitude of each reflected and transmitted diffraction order can then be 
obtained via Eqs. (15) and (18).

Moreover, the time average Poynting power along the z-axis over a grating period is defined as

Therefore, the incident-, reflected- and transmitted- power are obtained as follows: Pinc = 1
2Y

−
0  , 

Pref = 1
2Re

[

∑

n
Y−
n |bn|2

]

 , and Ptx = 1
2Re

[

∑

n
Y+
n |cn|2

]

 , respectively. The absorptance can be obtained by evaluat-

ing eabs = 1− Pref /Pinc − Ptx/Pinc.
Notably, the mathematical formulation in FMM is rigorous and the result is exact when the space harmonic 

index n runs from − ∞ to + ∞ ; however, they have to be truncate into [−N ,+N] in numerical computation, 
where N is denoted as truncated order. The total number of space harmonics is then designated as Ntot equal 
to 2N + 1.

Fourier modal method with approximate boundary condition
As reported in the literature15, 16, the slow convergence in the RCWA for TM polarization is not caused by the 
Fourier series expansion but the form where the Fourier series of the permittivity and the reciprocal permit-
tivity functions are utilized. The same problem also occurs in graphene gratings with thickness of almost zero. 
Nevertheless, the inverse rule15, 16 is not applicable in the graphene grating because 1/σ(x) goes to infinity in the 
slit region. The approximate boundary condition on periodic arrays of graphene ribbons was proposed to replace 
σ(x) by the effective conductivity function: σeff (x) incorporating the contribution of displacement current20 in 
slit region. In doing so, the reciprocal function 1/σeff (x) exists everywhere. More precisely, by Ampere’s law with 
Maxwell’s modification, the discontinuity in magnetic fields intensity (H) on the graphene grating between two 
uniform mediums equals to the sum of conduction- and displacement-current. At the left-hand side of Fig. 2, the 
line integral over the graphene strip equals to the conduction current flowing along the x-axis; while it equals to 
the displacement current filled in the rectangular box at the right-hand side figure. Combining these two results, 
Eq. (9) can be rewritten as20

where the effective conductivity at z = 0 is

(13)V(0+) = V(0−) = V(0).

(14)I(0−) = [[Yin]]V(0−),

(15)b = [[Ŵ]]a,

(16)[[Ŵ]] = ([[Y−]] + [[Yin]])−1([[Y−]] − [[Yin]]).

(17)Y±
n = ωεoε±

ko
√

ε± − ε− sin2 θ
.

(18)c = ([I]] + [[Ŵ])a = [[T]]a,

(19)

Pz(z) =
1

2
Re

[

∫ dx

0
Ex(x, z)H

†
y (x, z)dx

]

= 1

2
Re

[

∑

m

∑

n

Vm(z)I
†
n(z)

∫ dx

0
ψm(x)ψ

†
n (x)dx

]

= 1

2
Re

[

∑

n

Vn(z)I
†
n(z)

]

.

(20)Hy(x, z = 0−)−Hy(x, z = 0+) = σeff (x)Ex(x, z = 0),
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Parameter σ(x) is the graphen conductivity function given in Eq. (10) and ε̄ = (ε+ + ε−)/2 . Parameter h is the 
height of the rectangular enclosed loop in Fig. 2.

Now, the reciprocal function 1/σeff (x) exists everywhere as well as its Fourier expansion. By the standard 
procedure of FMM in the previous section incorporating inverse rule20, we obtain the same input-output relation 
in Eq. (12) but with different admittance matrix, [[Yg ]] = [[Zg ]]−1 , where the (m, n) entry of [[Zg ]] is given below:

Once the admittance matrix is obtained, the standard procedure of FMM in the previous section can be applied 
to calculate the reflection, transmission and absorption efficiencies.

Fourier modal method incorporating local basis functions
Although FMM with ABC can improve the convergence rate, the parameter h is still a core factor affecting the 
value of convergence, as will be demonstrated in the next section. Moreover, the criterion for determining the 
appropriate h remains to be studied in detail. So far, we have implemented a computer program based on FMM 
with ABC for calculating the scattering characteristics of a graphene grating as well as the electric-field ( Ex ) 
distribution on the graphene grating surface. Let us skip ahead to the numerical result concerning a graphene-
strip grating normally incident by a TM-polarized plane wave. Figure 5 shows the distribution of Ex (red dotted 
curve obtained using FMM with ABC) over the graphene-strip ( x ∈ [0, 20] ) and slit ( x ∈ [20, 70] ) regions. It is 
obvious to see jump discontinuities occurring around x = 0 and x = 20µm ; wherein Ex (or Jx/σg ) vanishes close 
to strip edges. In fact, induced current vanishes at strip edges can be explained physically as follows.

Referring to Fig. 1, at x = w+
g  in the slit region, magnetic field component Hy must be continuous across the 

interface due to Jx(x = w+
g , z = 0) = 0 , namely, Hy(x = w+

g , z = 0−) = Hy(x = w+
g , z = 0+) . Moreover, because 

of Hy(x = w+
g , z = 0−) = Hy(x = w−

g , z = 0−) in the lower medium and Hy(x = w+
g , z = 0+) = Hy(x = w−

g , z = 0+) 
in the upper medium, we have Hy(x = w−

g , z = 0−) = Hy(x = w−
g , z = 0+) , resulting in the vanished induced 

current density Jx(x = w−
g , z = 0) obtained via Eq. (9); therefore we have Ex(x = w−

g , z = 0) = 0 , that is, van-
ishing Ex at the edge. Additionally, the vanishing current at metal-strip edges was reported in the research of a 
metal-strip grating illuminated by a plane wave in TM polarization19, but unfortunately the distribution of Ex in 
the slit region was not shown in that paper. Regarding the electric field in the slit region, an exponential growth of 
Ex around the slit edges can be observed (red dotted curve) in Fig. 5. Alternatively, as is well know, TM-polarized 
electric field near the edge of a thin sheet is proportional to ρ−1/2 and becomes singular as ρ approaches zero21, 
where ρ is defined as the radius (in the polar coordinate system) with its original point locating at the edge.

Nevertheless, the Gibbs phenomenon taking place near the discontinuities reveals that the customary global 
basis of Floquet-Fourier series is inappropriate for expanding the field directly on the graphene grating surface. In 
view of that, it is essential to construct the local basis functions inherently satisfying the field nature in respective 
regions. Furthermore, the criterion for choosing basis functions contains: (1) to use only a few basis functions 
to approach the correct solution, and (2) to have closed forms in the overlap integral between the local basis 
functions and the space harmonic in Eq. (5).

More specifically, the sin-based local basis function vanishing at its both ends for any harmonic order is used 
to expand Ex over the graphene strip, which is given as

where wg = x
(g)
2 − x

(g)
1  ; the graphene strip belongs to the region of [x(g)1 , x

(g)
2 ] ; index n is ranging from 1 to Ng.

On the other hand, in the slit region, we have the singular basis functions with singularities at its two edges, 
which are commonly used to approximate the current parallel to the edges in a micro-strip line22. They are 
expressed as follows:

where x(s)c = (x
(s)
1 + x

(s)
2 )/2 and ws = x

(s)
2 − x

(s)
1  ; the slit is in the region of [x(s)1 , x

(s)
2 ] . Parameter γn = 2 for n = 0 

and γn = 1 for n  = 0 ; index n runs from 0 to Ns − 1 . Notably, the denominator in sn(x) approximates √ws
√
ρ 

at the strip edge where x = wg + ρ ( x(s)1 = wg and x(s)2 = dx ), which confirms the electric-field edge condition 
described previously. Notably, Eqs. (23) and (24) both are expressed in the general form for easy extension to 
the case with multiple graphene strips in a period.

In a unit cell on the graphene grating surface (at z = 0 ), Ex(x) can be written as

(21)σeff (x) = σ(x)+ jωε̄h.

(22)z
(g)
mn =

∫ x=dx

x=0

1

σeff (x)
exp[ j(m− n)2π

dx
x]dx.

(23)gn(x) =
√

2

wg
sin

nπ(x − x
(g)
1 )

wg
,

(24)sn(x) =
√

γn

ws

cos
nπ(x−x

(s)
1 )

ws
√

(ws/2)2 − (x − x
(s)
c )2

,
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Parameters Ng and Ns represent the number of basis in the graphene strip and slit regions, respectively.
Due to electromagnetic boundary condition, Ex must be continuous at the interface between graphene grating 

and uniform medium at z = 0 . Therefore, equality of Eqs. (4) and (25) gives

By multiplying the complex conjugate of ψm(x) on both sides of Eq. (26) and taking integration over one period, 
we obtain

where integer m is ranging from -N to +N. The notation of �a(x)|b(x)� =
∫ dx
0 a(x)b(x)dx is defined as the overlap 

integral of functions a(x) and b(x) in the range of [0, dx] . By the orthogonality of ψn(x) in Eq. (6) and the closed 
form solutions of overlap integral, the above equation becomes

with

where β±
mn = kxm ± nπ/ws and α±

mn = kxm ± nπ/wg ; function Jo(·) is the zero order Bessel function of the first 
kind; function sinc(x) is the unnormalized sinc function defined as sinc(x) = sin(x)/x . Parameter n is the index 
of the local basis function.

Equation 28 can be rewritten as a matrix-vector form:

Vector p is a Ng-by-1 column vector with its nth element pn ; qn is the nth element in column vector q of size Ns

-by-1. Here, the sub-matrix [[G]] and [[S]] have the size Ntot-by-Ng and Ntot-by-Ns , respectively. Specifically, Ntot , 
Ng and Ns satisfy the relationship: Ntot = Ng + Ns . Moreover, the ratio between Ng and Ns equals to the ratio of wg 
to ws

5, 19, therefore, we have Ng = round[Ntot · wg/(wg + ws)] and Ns = Ntot − Ng ; the operator round[.] rounds 
a real number towards the nearest integer. In doing so, we have a square matrix [[G]] [[S]] of size Ntot-by-Ntot.

Substituting of Eqs. (3) and (25) into Eq. (9), we obtain

Multiplying ψ†
m(x) on both sides of Eq. (32) and taking the integration over one period along the x-axis, one 

obtains

By invoking orthogonality and Eq. (29), the system of linear equations in Eq. (33) can be expressed in terms of 
matrix-vector form. One obtains

where [[0]] is a null matrix of size Ntot-by-Ns , and matrix 
[

σg [[G]] [[0]]
]

 is a square matrix of size Ntot-by-Ntot.

(25)Ex(x) =















Ng
�

n=1
pngn(x) for x ∈ graphene

Ns−1
�

n=0
qnsn(x) for x ∈ slit

.

(26)
n=+N
�

n=−N

Vn(0)ψn(x) =















Ng
�

n=1
pngn(x) for x ∈ graphene

Ns−1
�

n=0
qnsn(x) for x ∈ slit

.

(27)
n=+N
∑

n=−N

Vn(0)�ψm(x)
†|ψn(x)� =

Ng
∑

n=1

pn�ψm(x)
†|gn(x)� +

Ns−1
∑

n=0

qn�ψm(x)
†|sn(x)�,

(28)Vm(0) =
Ng
∑

n=1

pnGmn +
Ns−1
∑

n=0

qnSmn,

(29)Gmn =�ψm(x)
†|gn(x)� =

−j√
2

√

wg

dx
ejkxmx

(g)
c ·

[

ejnπ/2sinc(α+
mnwg/2)+ e−jnπ/2sinc(α−

mnwg/2)
]

,

(30)Smn =�ψm(x)
†|sn(x)� =

π

2

√

γn

wsdx
ejkxmx

(s)
c ·

[

ejnπ/2Jo(β
+
mnws/2)+ e−jnπ/2Jo(β

−
mnws/2)

]

,

(31)V(0) = [[G]]p+ [[S]]q =
[

[[G]] [[S]]
]

[

p

q

]

.

(32)
n=+N
∑

n=−N

[In(0−)− In(0
+)]ψn(x) =

Ng
∑

n=1

σg pngn(x).

(33)
n=+N
∑

n=−N

[In(0−)− In(0
+)]�ψm(x)

†|ψn(x)� =
Ng
∑

n=1

σg pn�ψm(x)
†|gn(x)�.

(34)I(0−)− I(0+) =
[

σg [[G]] [[0]]
]

[

p

q

]

,
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After performing matrix operations with Eqs. (31) and (34), we obtain the Eq. (12) with a new admittance 
matrix of size Ntot-by-Ntot given below

where the new admittance matrix in Eq. (35) is a square matrix of size Ntot-by-Ntot.
Here, we obtain a totally different admittance matrix while the input-output relation in Eq. (12) remains the 

same. The same procedure in FMM can be applied to calculate the reflect and transmit amplitudes of each dif-
fraction order. Once the voltage V(0) = [[T]]a is obtained, the expansion coefficients of local basis functions, 
p and q in Eq. (31) can be readily determined, as well as the distribution of Ex on the graphene strip and slit.

Furthermore, the power dissipated on the graphene strips array can be directly determined by

Numerical results and discussion
A free-standing graphene-strip grating is taken as an example to examine the convergence behaviour for the three 
approaches. The parameters of graphene are µc = 0.39 eV , T = 300K , and ℏγ = 0.658meV (relaxation time of 
charge carriers τ = 1/2γ = 0.5 ps ). The period and strip width are dx = 70µm and wg = 20µm , respectively. 
The upper and lower semi-infinite mediums are free space with ε+ = ε− = εo.

We first calculate the absorptance against the truncated order N running from 1 to 200. In Fig. 3, the three 
methods, including the conventional FMM, FMM with ABC, and the present approach FMM incorporating 
LBFs, were employed to carry out the convergence test. Three different enclosed-loop heights (h) in FMM with 
ABC are considered: wg/200 (magenta dashed curve), wg/2000 (blue dashed curve) and wg/20000 (red dashed 
curve). As was widely reported in literature15–18,20, the conventional FMM (green dotted curve) indeed runs into 
the serious problem of oscillating convergence behaviour. On the other hand, the FMM with ABC can improve 
the convergence rate; however, the convergent value changes with h accordingly. Interestingly, the result with 
h = wg/2000 approaches to that of our method. Apparently, the convergence rate of our approach (black dashed 
curve) is superior to the other two methods; even only a few number of truncated order is needed to achieve 
the numerical convergence.

Additionally, the absorption versus frequency for both convincing methods including the FMM with ABC 
and our approach are demonstrated in Fig. 4. Because of oscillating convergence in the conventional FMM, its 
result is unreliable and was neglected here. The aforementioned graphene and structure parameters are used in 
this example. The graphene grating is obliquely incident by a TM-polarized wave with incident angle 60°. The 
enclosed-loop height ( h = wg/2000 ) is chosen since it shares approximately the same convergence value with 
that of our approach in Fig. 3. Two truncated orders (N) are used to examine the performance of numerical 
convergence. It is obvious to see that FMM with ABC (yellow solid curve) and our approach (purple solid curve) 
agree very well for the case of N = 100 . Specifically, the result of our approach with N = 35 (red solid curve) 
coincides with those of N = 100 . However, the result obtained by FMM with ABC for N = 35 (blue solid curve) 
shows apparent discrepancy, particularly in the higher frequency range. Additionally, the Wood’s anomalous 
taking place at 2.3 THz can be observed in both approaches. We may conclude that compared to FMM with ABC, 
our approach can achieve numerical convergence even if only a few truncated orders is used.

(35)[[Yg ]] =
[

σg [[G]] [[0]]
] [

[[G]] [[S]]
]−1

,

(36)Pabs. =
1

2
Re





n=Ng
�

n=1

σg | pn |2


.

Figure 3.   Absorptance against the truncated order N. The operating frequency and incident angle are 2.5 THz 
and θ = 60◦ , respectively. The dotted curve in green colour is obtained by conventional FMM; the dashed curve 
in black colour is calculated by this approach (FMM incorporating LBFs); the dashed curve in red, blue and 
magenta colours individually correspond to h = wg/20000 , h = wg/2000 , and h = wg/200 , respectively, for the 
FMM with ABC20.
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Figure 5 depicts the absolute value of Ex(x, z = 0) , which was normalized to the incident Ex , versus x in a unit 
cell on the graphene grating surface. The red dotted curve is calculated based on FMM with ABC, while the solid 
curve in blue colour is obtained using FMM incorporating LBFs. The region for x ∈ [0, 20µm] is the graphene 
strip, and is otherwise the slit region. Although the Gibbs phenomenon, an overshoot (oscillating) of a Fourier 
series occurring at jump discontinuities, is obvious in red dotted curve based on FMM with ABC, the vanishing 
current density ( σgEx ) at the strip edges and exponentially growth in Ex around the slit edges can still be clearly 
observed. Contrarily, owing to the two local basis functions, given in Eqs. (23) and (24), inherently satisfy the 
individual edge condition, the Gibbs phenomenon is removed, as shown in the blue solid curve. Although not 
shown here, the case of N = 35 shares almost the same profile with the case of N = 100 ; this means that only a 
few LBFs is needed to expand Ex . Notably, in this case the FMM with ABC can achieve almost the same result 
of absorptance for the case of N = 100 ; however, it can not reflect the essence of field nature around the gra-
phene strip edges. Additionally, the operating frequency 2.5 THz is near the absorption peak; the incident wave 
is resonant with the graphene current Jx along the x-direction. Therefore, the induced current exhibits the first 
normal mode (standing wave) pattern. It is very similar to the current induced on a radio-frequency (RF) dipole 
antenna excited at its first resonant frequency.

Since the approach of FMM incorporating LBFs can effectively remove the Gibbs phenomenon, it should 
be in a good position to observe the effect of incident angles on the electric field ( Ex ) distribution over the 

Figure 4.   Absorptance versus frequency calculated by this approach and FMM with ABC for h = wg/2000
20; 

the incident angle is 60°; the number of truncated order is denoted as N. The curves in blue and yellow colours 
correspond to the results obtained by FMM with ABC of N = 35 and N = 100 , respectively. The red and purple 
colours are for the cases of N = 35 and N = 100 based on our approach FMM incorporating LBFs.

Figure 5.   Comparison of |Ex(x, z = 0)| , normalized to the incident Ex in a unit cell on the graphene grating 
surface using the FMM with ABC (dotted curve in red colour) and our approach incorporating LBFs in FMM 
(solid curve in blue colour). The operating frequency and incident angle are 2.5 THz and θ = 0◦ , respectively. 
The truncated order is N = 100 . The region for x ∈ [0, 20µm] is in the graphene strip; otherwise is in the slit 
region.
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graphene-strip grating surface. In Fig. 6a and b, the absolute value of Ex(x, z = 0) normalized to the incident Ex 
on the graphene grating surface against x-axis was demonstrated for the five cases with different incident angles 
including 0°, 15°, 30°, 45°, and 60°, respectively. Fig. 6a shows the electric field strength over the graphene strip, 
while Fig. 6b shows that in the slit region at z = 0 . As shown in Fig. 6a, the induced Ex (or Jx/σg ) on the graphene 
strip changes insignificantly as θ is increasing from 0° to 30°, while its peak is decreasing as the incident angle 
increases up to 45° and 60°. Interestingly to find that the current distribution is almost symmetric with respect 
to the graphene strip centered at x = 10µm even for the oblique incidence. As was reported in literature13, the 
resonance effects are in connection with the leaky plasmonic modes existing in individual graphene strip but 
with weak coupling between strips. Such a normal mode is a source-free solution; therefore, its mode pattern is 
almost independent of the incident angle. Contrarily, the asymmetric distribution is observed in the slit region 
for oblique incidence, which maybe caused by unbound waves with continuous spectrum.

Conclusion
In this research, the three approaches including the conventional FMM, FMM with ABC, and our approach 
incorporating LBFs in FMM were implemented to examine the convergence behaviour of absorptance with 
respect to a periodic array of parallel graphene strips obliquely incident by a TM-polarized plane wave. Because 
of the individual local basis functions inherently satisfying the electric-field edge condition at graphene-strip 
and slit edges, the Gibbs phenomenon due to the Fourier expansion of global basis functions (space harmonic) 
in conventional FMM disappears. Furthermore, the convergence rate of the present approach is superior to the 
other two methods. Additionally, a new admittance matrix is obtained in the present approach while the whole 
formulation can still fit into the standard procedure of FMM. Significantly, the inverse rule and ABC for FMM 
are no longer needed. Such an approach can drastically reduce the required number of space harmonics and is 
more efficient for scattering analysis of stacked multiple graphene gratings.
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