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Highly improved convergence
approach incorporating edge
conditions for scattering analysis
of graphene gratings

Ruey-Bing Hwang

This research developed an effective and efficient approach for improving the slow convergence in
the scattering analysis of a one-dimensional graphene grating, made of a periodic array of parallel
graphene strips, illuminated by a TM-polarized plane wave. Specifically, the electric fields over the
graphene strips and slit regions in a unit cell are individually expressed as an expansion of local basis
functions inherently satisfying edge conditions. Interestingly, convergence rate is highly improved
compared to the customary and modified Fourier modal method. Additionally, with the aid of local
basis functions, the Gibbs phenomenon occurring at both edges of graphene strip can be removed.

The plane wave scattering by a one-dimensional (1D) grating made up of dielectric or metallic mediums has
been intensively and extensively studied. Some numerical methods such as the rigorous coupled-wave analysis
(RCWA)', the modal theory for dielectric and finitely conducting gratings?, and the modal transmission-line
method*™ were developed to accurately calculate scattering characteristics of gratings. Moreover, graphene-based
grating composed of graphene sheet has been a continued research interest®' in both theoretical studies and
practical applications in recent years.

In the RCWA method, both the permittivity function of a periodic medium and electromagnetic fields are
expanded into Fourier series and Floquet-Fourier series, respectively. Therefore, the electromagnetic boundary-
value problem can be converted into an eigenvalue problem. Such an approach is efficient in handling the grating
with an arbitrary profile and a finite stack of multiple gratings, as well. However, the RCWA method® is known
to be slowly converging for 1D metallic gratings in TM polarization (magnetic-field vector parallel to the grat-
ing vector). Fortunately, the inverse rule, by invoking adequate Fourier series of the permittivity and reciprocal
permittivity functions of a periodic medium to reformulate the eigenvalue problem, was developed to achieved
a highly improved convergence rate for the scattering analysis of a metallic grating in TM polarization'>-'8. Addi-
tionally, the Floquet modes in a periodic medium with the unit cell composed of a dielectric slab and a metal
layer having finite conductivity can be determined by solving the dispersion equation'®. However, finding their
complex roots is a difficult task. Consequently, use of Fourier series expansion to calculate Floquet modes in a
periodic medium, in general, is the most reliable and effective approach in handling a diffraction grating problem.

In this paper, we aimed at studying the numerical convergence of plane wave scattering by a graphene grating
in TM polarization. Here, the structure under study is a 1D periodic array of graphene strips (ribbons) deposited
on a dielectric substrate. The graphene sheet is assumed to be near-zero thickness (the thickness of mono-layer
graphene is 0.335nm); therefore, the electromagnetic fields are merely in the upper and lower homogeneous
mediums, as shown in Fig. 1. Due to the periodicity along the x-axis, electric and magnetic fields can be pre-
sented in the standard form of Floquet-Fourier series (or Rayleigh expansions). Moreover, the electrical property
of graphene strips can be modeled with a surface conductivity (og). Consequently, the graphene conductivity
function in a unit cell is o (x) = o on graphene strip and o (x) = 0 otherwise, which can be further expressed
as a Fourier series. Furthermore, two electromagnetic boundary conditions including (1) the continuous of tan-
gential electric fields across the graphene grating, and (2) the discontinuity of tangential magnetic fields across
the graphene grating caused by the conduction current induced on graphene strips should be applied at the
interface between two adjacent homogeneous mediums. Alternatively, such a problem amounts to imposing a
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Figure 2. Derivation of approximate boundary condition in the graphene and slit regions.

periodic boundary condition on the tangential electric- and magnetic-fields at an interface between two uniform
mediums. Moreover, the periodic boundary condition is obtained by expanding the graphene conductivity into
a Fourier series expansion. The Laurent’s rule!® then can be applied for Fourier factorization of the conduction
current o (x)Ex (x, z = 0). By matching the Fourier coeflicient corresponding to the same harmonic, an infinite set
of linear equations for the input-output relation of the diffraction-order amplitudes are determined*>”*. Notably,
such an approach is termed as Fourier modal method (FMM) throughout this paper.

Unfortunately, the poor convergence occurs in conventional FMM for the scattering analysis of periodic
arrays of graphene ribbons reported in the literature!*?. Furthermore, the inverse rule by including the recipro-
cal function1/o (x) into the FMM is not applicable because o (x) is zero outside the graphene ribbon. To resolve
this problem, the author?® proposed an approximate boundary condition (ABC) that takes into account the
effective conductivity due to the displacement current in slit region without graphene. The effective conductiv-
ity is non-zero everywhere; therefore, the inverse rule can be successfully applied. Although FMM with ABC
convincingly achieves numerical convergence, the convergent value varies in accordance with the enclosed-loop
height (h), shown in Fig. 2, used to model the effective conductivity in slit region. Unfortunately, it is difficult
to give a general criterion for h.

In this research, the respective local basis functions (LBFs) taking into account the electric-field edge condi-
tions over the graphene-strip and slit regions in a unit cell are developed to replace the global basis functions
(Floquet-Fourier series in a homogeneous medium). As will become clear later on, the tangential electric-field
expanded by the local basis functions exhibits the fidelity of discontinuous behaviour, which is not seen in
the conventional FMM, enabling a fast convergence in the scattering analysis of graphen-strip gratings in TM
polarization.

This paper is organized as follows. We begin with the mathematical formulation using the conventional FMM
that is taken as a general framework for theoretical analysis. Moreover, ABC is employed to reformulate the
FMM by invoking the inverse rule. Additionally, the present approach, namely, FMM incorporating LBFs, will
be comprehensively elaborated. Finally, convergence behaviour will be examined for the three aforementioned
methods. Specifically, electric field distribution on graphene grating surface will be demonstrated for various
incident conditions.

Structure configuration and surface conductivity model of graphene
Figure 1 shows structure configuration of a 1D graphene grating consisting of a periodic array of parallel gra-
phene strips. The strip is infinite in extent along the y-axis and the electromagnetic fields have no variation
along that direction. The strip width and period along the x-axis are denoted as wy and dy., respectively. The
graphene layer is assumed to be zero thickness and characterized by a surface conductivity. Additionally, the
1D graphene strip array is sandwiched by two semi-infinite homogeneous mediums designed as ¢4 for z > 0
and e_ for z < 0, respectively. A plane wave with magnetic field H(x,z) = yH, is impinging on the array; its
incident angle is designated as 6.

Incidentally, graphene conductivity (og = Gintra + Ointer), having a close-form expression for the condition
| e |>> kgT, consists of both the intraband (oj,s,) and interband (o7,z.) terms!!:
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where -e is the electron charge, £ is the reduced Planck constant, y is a phenomenological carrier scattering rate,
. is the chemical potential, kp is Boltzmann’s constant, and T is the ambient temperature.

Fourier modal method
In a homogeneous medium, the electric and magnetic field components of TM polarization in the presence of
periodicity dy along the x-axis can be represented by Rayleigh expansions (or Floquet-Fourier series) in the form

n=+o00

Hy(x,2) = > Li(2)yn(x), 3)
n=-+o0o
Ex2) = Y Va@yn), (4)

with v, (x) is named as the nth space harmonic given below

exp(—jkxnx)
L (5)

Function v, (x) forms an orthonormal set on x € [0, dy] satisfying

Yn(x) =

dy
V()Y (X)dx = . (6)
0
Parameter §,,, is the Kronecker delta function, and ky, = k,./é_ sin @ + n2m/d,. Functions V,(z) and I,,(2),
satisfying transmission line equation, are the voltage and current amplitudes of the n'" space harmonic, respec-
tively. Their general solutions can be written in the form®

Vu(2) = ay exp(—jkznz) + by exp(+jkznz), (7)

I(2) =Y, [an exp(—jkznz) — by eXP("‘]‘kznz)} > (8)

with the propagation constant along the z-axis k;, = \/k2¢; — k2, and wave admittance Y, = we,&;s/kz, in an
infinite medium with relative dielectric constant &;. Parameters a, and b, usually are termed as the amplitudes
of the forward- and backward- propagating waves of the n'" diffraction order, respectively.

Owing to the zero thickness approximation of the graphene grating, discontinuity in the tangential compo-
nent of magnetic fields at the interface (graphene grating surface) between two uniform mediums equals to the
conduction current induced on the graphene strips array, yielding

Hy(x,z=07) — Hy(x,z = 07) = 0 (x)Ex(x,z = 0), )

where graphene conductivity o (x) is a periodic function that can be expressed as a Fourier series

o, for x € graphene .
o= { g for x € glitp = ZO” exp(jn2mx/dy). (10)
n

We first substitute magnetic field H, in Eq. (3) and conductivity function o (x) in Eq. (10) into Eq. (9) together
with the electric field E, on the graphene grating surface approximated by the Floquet-Fourier expansion in Eq.
(4). Using Laurent’s rule'® and equaling the same Fourier coefficient corresponding to the same harmonic on
both sides, one obtains the system of linear equations

n=-+00 n=-+00
> WO —LODH] = D YemnVa(0), (11)

where index m is running from negative to positive infinity.
Equation (11) can be expressed in a compact matrix form, one obtains

1(07) = I(0) = [[Y,]1V(0), (12)

where [[Y]]is the Toeplitz matrix with (m, n) entry 0, given in Eq. (10); the nth element in column vectors
I1(0%)and V(0) respectively are I, (0%) and V,,(0).

The matrix [[Yg]]in Eq. (12) establishes a relationship between voltage and current waves across the grating
layer; it is the so-called admittance matrix in microwave engineering’. Equation (12) is also regarded as the
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input-output relation among incident, reflected and transmitted diffraction-order amplitudes with respect to a
graphene grating.

Moreover, due to continuous of E, at z = 0, Eq. (4) arrives at V,,(0™) = V,(01); its vector form can be writ-
ten as follow:

V(") =V (07) = V(0). (13)

Furthermore, substitution of I(0") = [[Y+]]V.(0") (no downward waves in the upper medium) and Eq. (13)
into Eq. (12), one obtains

107) = [[Yin]1V.(07), (14)

where the input admittance matrix looking into the interface in lower medium is defined as
[[Yinll = [[Ye1] + [[Y+]].

Here the incident and reflected wave vectors, defined at z = 07 in the lower medium, are individually denoted
as column vectors g and b whose elements are a,, and by, respectively. Since the voltage and current wave vectors
atz = 0~ can be writtenas V(07) = a4+ band I(07) = [[Y_]](a — b) with their components given in Egs. (7)
and (8), the relationship between g and b can be obtained through Eq. (14). One obtains

b=[[T1la (15)
where [[T"]]is termed as the reflection matrix written below
[T = AY=1 + [[YiuID ' ALY=1] = [[Yin D). (16)

Matrices [[Y1]] and [[Y_]] are denoted as the admittance matrices in the upper and lower uniform mediums,
respectively; both are diagonal matrices with their n" diagonal entry given as
% + _ WEYEL

n

kov/ 64+ —e_ sin 6 (17)

Since only the transmitted (upward) waves are present in the upper medium, the voltage vector in the upper
medium at z = 0T is written as V.(07) = ¢. By V(07) = a + b together with Eq. (13), one obtains

c= (U1 +[TDa = [[T]]a (18)

where c is a column vector with element ¢, at the »” entry Symbol [[T]] is termed as a transmission matrix
defined at the output surface of grating (z = 07); [[I]] is the identity matrix.

Notably, for a graphene grating incident by a single plane wave, the wave vector g is known and usually defined
asag = land a, = 0 for n # 0. The amplitude of each reflected and transmitted diffraction order can then be
obtained via Egs. (15) and (18).

Moreover, the time average Poynting power along the z-axis over a grating period is defined as

> Vu@If (z)} .

(19)
Therefore, the incident-, reflected- and transmitted- power are obtained as follows: Pj, = lYO_,

dy dy
Po(z) = %Re { /0 Ex(x,2)H] (x,z)dx] = %Re {ZZ V(@I (2) /0 Y)Y, (x)dx} = %Re

Pref = fRe {Z Y, |by |2}, and Py, = 1 sRe {Z Y, lcn |2}, respectively. The absorptance can be obtained by evaluat-

ing eaps = 1 — Pref /Pinc — Prx/Pinc.

Notably, the mathematical formulation in FMM is rigorous and the result is exact when the space harmonic
index n runs from — 0o to + 0o; however, they have to be truncate into [N, +N] in numerical computation,
where N is denoted as truncated order. The total number of space harmonics is then designated as Ny, equal
to2N + 1.

Fourier modal method with approximate boundary condition

As reported in the literature!> 16, the slow convergence in the RCWA for TM polarization is not caused by the
Fourier series expansion but the form where the Fourier series of the permittivity and the reciprocal permit-
tivity functions are utilized. The same problem also occurs in graphene gratings with thickness of almost zero.
Nevertheless, the inverse rule'> !¢ is not applicable in the graphene grating because 1/0 (x) goes to infinity in the
slit region. The approximate boundary condition on periodic arrays of graphene ribbons was proposed to replace
o (x) by the effective conductivity function: o g (x) incorporating the contribution of displacement current® in
slit region. In doing so, the reciprocal function 1/o, (x) exists everywhere. More precisely, by Ampere’s law with
Maxwell’s modification, the discontinuity in magnetic fields intensity (H) on the graphene grating between two
uniform mediums equals to the sum of conduction- and displacement-current. At the left-hand side of Fig. 2, the
line integral over the graphene strip equals to the conduction current flowing along the x-axis; while it equals to
the displacement current filled in the rectangular box at the right-hand side figure. Combining these two results,
Eq. (9) can be rewritten as®

Hy(x,z=07) — Hy(x,z = 0) = 0 (x) Ex(x,z = 0), (20)

where the effective conductivity at z = 01is
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oo (x) = 0 (x) + jweh. (21)

Parameter o (x) is the graphen conductivity function given in Eq. (10) and & = (¢4 + £_)/2. Parameter h is the
height of the rectangular enclosed loop in Fig. 2.

Now, the reciprocal function 1/0, (x) exists everywhere as well as its Fourier expansion. By the standard
procedure of FMM in the previous section incorporating inverse rule’, we obtain the same input-output relation
in Eq. (12) but with different admittance matrix, [[ Y]] = [[Zg]]_ » where the (m, n) entry of [[Z,]]is given below:

x=d. .
© / 1 jm —n)2mw
Zmn = exp| x]dx. 22

x=0 Ueﬁ'(x) P dy (22)

Once the admittance matrix is obtained, the standard procedure of FMM in the previous section can be applied
to calculate the reflection, transmission and absorption efficiencies.

Fourier modal method incorporating local basis functions

Although FMM with ABC can improve the convergence rate, the parameter A is still a core factor affecting the
value of convergence, as will be demonstrated in the next section. Moreover, the criterion for determining the
appropriate i remains to be studied in detail. So far, we have implemented a computer program based on FMM
with ABC for calculating the scattering characteristics of a graphene grating as well as the electric-field (E)
distribution on the graphene grating surface. Let us skip ahead to the numerical result concerning a graphene-
strip grating normally incident by a TM-polarized plane wave. Figure 5 shows the distribution of E, (red dotted
curve obtained using FMM with ABC) over the graphene-strip (x € [0,20]) and slit (x € [20, 70]) regions. It is
obvious to see jump discontinuities occurring around x = 0 and x = 20um; wherein E, (or ], /o) vanishes close
to strip edges. In fact, induced current vanishes at strip edges can be explained physically as follows.

Referring to Fig. 1, at x = w; in the slit region, magnetic field component Hy, must be continuous across the
interface dueto J,(x = w},z = 0) = 0, namely,H x=wlz=0")= Hy(x = wl,z = 01). Moreover, because
of Hy(x = w ,2=07) = Hy(x = w, ,z = 07 )inthelower mediumand H, (x = w;},z = 07) = H,(x = wg,z= 0h)
in the upper medium, we have H. (x =w,,z2=07) =Hx=w,,z= 0™"), resulting in the vanished induced

current density Jy(x = w, z = 0) = 0, that is, van-

g’ g ?
ishing E, at the edge. Additionally, the vanishing current at metal-strip edges was reported in the research of a
metal-strip grating illuminated by a plane wave in TM polarization'?, but unfortunately the distribution of E, in
the slit region was not shown in that paper. Regarding the electric field in the slit region, an exponential growth of
E, around the slit edges can be observed (red dotted curve) in Fig. 5. Alternatively, as is well know, TM- polar1zed
electric field near the edge of a thin sheet is proportional to p~'/2 and becomes singular as p approaches zero®'
where p is defined as the radius (in the polar coordinate system) with its original point locating at the edge.

Nevertheless, the Gibbs phenomenon taking place near the discontinuities reveals that the customary global
basis of Floquet-Fourier series is inappropriate for expanding the field directly on the graphene grating surface. In
view of that, it is essential to construct the local basis functions inherently satisfying the field nature in respective
regions. Furthermore, the criterion for choosing basis functions contains: (1) to use only a few basis functions
to approach the correct solution, and (2) to have closed forms in the overlap integral between the local basis
functions and the space harmonic in Eq. (5).

More specifically, the sin-based local basis function vanishing at its both ends for any harmonic order is used
to expand E, over the graphene strip, which is given as

2 . nm(x— xig))
&n (x) = Wi sin Wi’ (23)
g g
® @®

where wy = x,°" — x°’; the graphene strip belongs to the region of [x1 ,x2 ] index n is ranging from 1 to N,.

On the other hand, in the slit region, we have the singular basis functions with singularities at its two edges,
which are commonly used to approximate the current parallel to the edges in a micro-strip line*’. They are
expressed as follows:

z=0) obtamed via Eq. (9); therefore we have E, (x =

nﬂ(x x(SJ)

Vn
sn(x) = 4 / (24)
J (we/2)? — Oy

x—x

wherex 9) = (x © 4 x(s)) /2and ws = xé s) x1 ; ), the slit is in the region of [x ,x2 )] Parametery, = 2forn =0
and y, = 1for n # 0; index n runs from 0 to Ny — 1, Notably, the denominator in s,(x) approximates ,/ws./p
at the strip edge where x = wg + o (x © — = wgand xé S — ), which confirms the electric-field edge condition
described previously. Notably, Egs. (23) and (24) both are expressed in the general form for easy extension to
the case with multiple graphene strips in a period.

In a unit cell on the graphene grating surface (at z = 0), Ex(x) can be written as
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N,
Zg Pngn(x) for x € graphene
Eox) = { =L - (25)
> gusn(x) for x € slit
n=0
Parameters Ny and N; represent the number of basis in the graphene strip and slit regions, respectively.
Due to electromagnetic boundary condition, E, must be continuous at the interface between graphene grating
and uniform medium at z = 0. Therefore, equality of Egs. (4) and (25) gives

Ng
n=+N > pngn(x) for x € graphene
Y Va Oy = o= : (26)
n=—N > gusn(x) for x € slit

n=0

By multiplying the complex conjugate of ¥,,, (x) on both sides of Eq. (26) and taking integration over one period,
we obtain

n=+N Ng Ns—1
> Va@Wm@ 1Y) =Y pu(¥m @ 1ga(0) + Y (Wm0 Isn (), (27)
n=—N n=1 n=0

where integer m is ranging from -N to +N. The notation of (a(x)|b(x)) = fod" a(x)b(x)dx is defined as the overlap
integral of functions a(x) and b(x) in the range of [0, di]. By the orthogonality of ¥, (x) in Eq. (6) and the closed
form solutions of overlap integral, the above equation becomes

Ny Ni—1
Vin(0) = ZPnGmn + Z nSmn» (28)
n=1 n=0

with

G :(wm(x)”gn(x)) = &e"'kﬂ""gg> . [ej””/zsinc(aznwg/Z) + e_j””/zsinc(oc,;nwg/Z)], (29)

=5\ 4

S =(Um (@) [sn () = %1 /J—Zakxmxi” [T Bwe2) + e (B /D], (30)

where ﬁfn:n = kym £+ nmw/wsand ain = kxm &£ n /wg; function J, () is the zero order Bessel function of the first
kind; function sinc(x) is the unnormalized sinc function defined as sinc(x) = sin(x)/x. Parameter n is the index
of the local basis function.

Equation 28 can be rewritten as a matrix-vector form:

V(0) = [[Gllp + [[S1lq = [[[GI] [[S11] [%j . (31)

Vector pisa Ng-by-1 column vector with its nth element p; g, is the nth element in column vector q of size N
-by-1. Here, the sub-matrix [[G]] and [[S]] have the size Nyo-by-Ng and Nyos-by-Ns, respectively. Specifically, Nyor,
N and N; satisfy the relationship: Nyos = Ny + N;. Moreover, the ratio between N, and N; equals to the ratio of wy

to ws> %, therefore, we have Ny = round([Nior - wg/(wg 4+ ws)]and Ny = Nty — Ng; the operator round|.] rounds
a real number towards the nearest integer. In doing so, we have a square matrix [[G]] [[S]] of size Niot-by-No.
Substituting of Egs. (3) and (25) into Eq. (9), we obtain

n=+N Ng
D a(07) = LOD)Wa(x) = Y 0gpugn(x). (32)
n=—N n=1

Multiplying v (x) on both sides of Eq. (32) and taking the integration over one period along the x-axis, one
obtains

n=+N N
D (07) = L@ 1Ym0 W) =Y 0gpn (W) Ign(x)). (33)
n=—N n=1

By invoking orthogonality and Eq. (29), the system of linear equations in Eq. (33) can be expressed in terms of
matrix-vector form. One obtains

L(07) — I(07) = [a,[[G1] [[0]]] E , (34)

where [[0]] is a null matrix of size Ny,-by-N, and matrix [Gg [[G1 [[0]]} is a square matrix of size Niot-by-Nyor.
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Figure 3. Absorptance against the truncated order N. The operating frequency and incident angle are 2.5 THz
and 0 = 60°, respectively. The dotted curve in green colour is obtained by conventional FMM; the dashed curve
in black colour is calculated by this approach (FMM incorporating LBFs); the dashed curve in red, blue and
magenta colours individually correspond to h = wg /20000, h= wg /2000, and h = wg /200, respectively, for the
FMM with ABC%.

After performing matrix operations with Eqs. (31) and (34), we obtain the Eq. (12) with a new admittance
matrix of size Nyy¢-by-Ny, given below

[[Yg]l = [oglIGI [1011] [11GN [1sn] ™", (35)

where the new admittance matrix in Eq. (35) is a square matrix of size Niot-by-Nyor.

Here, we obtain a totally different admittance matrix while the input-output relation in Eq. (12) remains the
same. The same procedure in FMM can be applied to calculate the reflect and transmit amplitudes of each dif-
fraction order. Once the voltage V (0) = [[T]]a is obtained, the expansion coefficients of local basis functions,
p and g in Eq. (31) can be readily determined, as well as the distribution of E on the graphene strip and slit.
~ Furthermore, the power dissipated on the graphene strips array can be directly determined by

n=Ng

1
Pops. = ERe ; Og | Pn |2 . (36)

Numerical results and discussion

A free-standing graphene-strip grating is taken as an example to examine the convergence behaviour for the three
approaches. The parameters of graphene are ;1 = 0.39eV,T = 300K, and iy = 0.658 meV (relaxation time of
charge carriers T = 1/2y = 0.5ps). The period and strip width are d; = 70 wm and wy, = 20 jum, respectively.
The upper and lower semi-infinite mediums are free space with e = e_ = &,,.

We first calculate the absorptance against the truncated order N running from 1 to 200. In Fig. 3, the three
methods, including the conventional FMM, FMM with ABC, and the present approach FMM incorporating
LBFs, were employed to carry out the convergence test. Three different enclosed-loop heights (k) in FMM with
ABC are considered: w, /200 (magenta dashed curve), wg /2000 (blue dashed curve) and w, /20000 (red dashed
curve). As was widely reported in literature'>-'2, the conventional FMM (green dotted curve) indeed runs into
the serious problem of oscillating convergence behaviour. On the other hand, the FMM with ABC can improve
the convergence rate; however, the convergent value changes with h accordingly. Interestingly, the result with
h = wg /2000 approaches to that of our method. Apparently, the convergence rate of our approach (black dashed
curve) is superior to the other two methods; even only a few number of truncated order is needed to achieve
the numerical convergence.

Additionally, the absorption versus frequency for both convincing methods including the FMM with ABC
and our approach are demonstrated in Fig. 4. Because of oscillating convergence in the conventional FMM, its
result is unreliable and was neglected here. The aforementioned graphene and structure parameters are used in
this example. The graphene grating is obliquely incident by a TM-polarized wave with incident angle 60°. The
enclosed-loop height (h = w,/2000) is chosen since it shares approximately the same convergence value with
that of our approach in Fig. 3. Two truncated orders (N) are used to examine the performance of numerical
convergence. It is obvious to see that FMM with ABC (yellow solid curve) and our approach (purple solid curve)
agree very well for the case of N = 100. Specifically, the result of our approach with N = 35 (red solid curve)
coincides with those of N = 100. However, the result obtained by FMM with ABC for N = 35 (blue solid curve)
shows apparent discrepancy, particularly in the higher frequency range. Additionally, the Wood’s anomalous
taking place at 2.3 THz can be observed in both approaches. We may conclude that compared to FMM with ABC,
our approach can achieve numerical convergence even if only a few truncated orders is used.
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Figure 4. Absorptance versus frequency calculated by this approach and FMM with ABC for h = w, /2000%;
the incident angle is 60°; the number of truncated order is denoted as N. The curves in blue and yellow colours
correspond to the results obtained by FMM with ABC of N = 35and N = 100, respectively. The red and purple
colours are for the cases of N = 35and N = 100 based on our approach FMM incorporating LBFs.
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Figure 5. Comparison of |Ex(x, z = 0)|, normalized to the incident E, in a unit cell on the graphene grating
surface using the FMM with ABC (dotted curve in red colour) and our approach incorporating LBFs in FMM
(solid curve in blue colour). The operating frequency and incident angle are 2.5 THz and 8 = 0°, respectively.
The truncated order is N = 100. The region for x € [0, 20 wm] is in the graphene strip; otherwise is in the slit
region.

Figure 5 depicts the absolute value of E, (x, z = 0), which was normalized to the incident E,, versus x in a unit
cell on the graphene grating surface. The red dotted curve is calculated based on FMM with ABC, while the solid
curve in blue colour is obtained using FMM incorporating LBFs. The region for x € [0,20um]is the graphene
strip, and is otherwise the slit region. Although the Gibbs phenomenon, an overshoot (oscillating) of a Fourier
series occurring at jump discontinuities, is obvious in red dotted curve based on FMM with ABC, the vanishing
current density (0 E,) at the strip edges and exponentially growth in E, around the slit edges can still be clearly
observed. Contrarily, owing to the two local basis functions, given in Egs. (23) and (24), inherently satisfy the
individual edge condition, the Gibbs phenomenon is removed, as shown in the blue solid curve. Although not
shown here, the case of N = 35 shares almost the same profile with the case of N = 100; this means that only a
few LBFs is needed to expand E,. Notably, in this case the FMM with ABC can achieve almost the same result
of absorptance for the case of N = 100; however, it can not reflect the essence of field nature around the gra-
phene strip edges. Additionally, the operating frequency 2.5 THz is near the absorption peak; the incident wave
is resonant with the graphene current J, along the x-direction. Therefore, the induced current exhibits the first
normal mode (standing wave) pattern. It is very similar to the current induced on a radio-frequency (RF) dipole
antenna excited at its first resonant frequency.

Since the approach of FMM incorporating LBFs can effectively remove the Gibbs phenomenon, it should
be in a good position to observe the effect of incident angles on the electric field (Ey) distribution over the
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Figure 6. Distribution of normalized Ey on the graphene grating surface in a unit cell for various
incident angles with the operating frequency 2.6 THz: (a) |Ex(x, z = 0)/E}'*| on graphene strip, and (b)
|Ex(x,z = 0)/E*| over slit.

graphene-strip grating surface. In Fig. 6a and b, the absolute value of Ex (x, z = 0) normalized to the incident Ey
on the graphene grating surface against x-axis was demonstrated for the five cases with different incident angles
including 0°, 15°, 30°, 45°, and 60°, respectively. Fig. 6a shows the electric field strength over the graphene strip,
while Fig. 6b shows that in the slit region at z = 0. As shown in Fig. 6a, the induced E (or ] /0,) on the graphene
strip changes insignificantly as 6 is increasing from 0° to 30°, while its peak is decreasing as the incident angle
increases up to 45° and 60°. Interestingly to find that the current distribution is almost symmetric with respect
to the graphene strip centered at x = 10 um even for the oblique incidence. As was reported in literature'?, the
resonance effects are in connection with the leaky plasmonic modes existing in individual graphene strip but
with weak coupling between strips. Such a normal mode is a source-free solution; therefore, its mode pattern is
almost independent of the incident angle. Contrarily, the asymmetric distribution is observed in the slit region
for oblique incidence, which maybe caused by unbound waves with continuous spectrum.

Conclusion

In this research, the three approaches including the conventional FMM, FMM with ABC, and our approach
incorporating LBFs in FMM were implemented to examine the convergence behaviour of absorptance with
respect to a periodic array of parallel graphene strips obliquely incident by a TM-polarized plane wave. Because
of the individual local basis functions inherently satisfying the electric-field edge condition at graphene-strip
and slit edges, the Gibbs phenomenon due to the Fourier expansion of global basis functions (space harmonic)
in conventional FMM disappears. Furthermore, the convergence rate of the present approach is superior to the
other two methods. Additionally, a new admittance matrix is obtained in the present approach while the whole
formulation can still fit into the standard procedure of FMM. Significantly, the inverse rule and ABC for FMM
are no longer needed. Such an approach can drastically reduce the required number of space harmonics and is
more efficient for scattering analysis of stacked multiple graphene gratings.
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