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Two potential equilibrium states

in long-term soil respiration activity
of dry grasslands are maintained

by local topographic features

Szilvia Foti%2*?, Janos Balogh?, Bernadett Gecse?, Krisztina Pintér2, Marianna Papp?,
Péter Koncz?, Levente Kardos*, David Ménok* & Zoltan Nagy'-?

Soil respiration of grasslands is spatio-temporally variable reflecting the changing biological activities
of the soil. In our study we analysed how the long-term soil respiration activities of dry grasslands
would perform in terms of resistance and resilience. We also investigated how terrain features are
responsible for response stability. We conducted a 7-year-long spatial study in a Hungarian dry
grassland, measuring soil respiration (R,), soil temperature (T;) and soil water content (SWC) along

15 measuring campaigns in 80 x 60 m grids and soil organic carbon content in 6 of the occasions.

Two proxy variables were introduced to grasp the overall R, activity, as well as its temporal stability:
average rankR,, the temporal average R, rank of a measuring position from the campaigns revealed
the persistent spatial pattern of R, while rangeR,, the range of ranks of the positions from the
campaigns described the amplitude of the R, response in time, referring to the response stability in
terms of resistance or resilience. We formulated a hypothetic concept of a two-state equilibrium to
describe the performance of the long-term R; activity: R, activity with smaller rangeR,, that is both the
lower elevation positions with larger rankR; (“state I”) and the higher elevation positions with smaller
rankR; (“state 11”) correspond to an equilibrium state with several terrain attributes being responsible
for the equilibrium responses. Majority of the measuring positions was belonging to none of these
equilibrium states. These positions showed higher rangeR, for medium rankR,, suggesting resilience
(not resistance) as a major strategy for this ecosystem.

Grasslands exchange large quantities of greenhouse gases between the soil and the atmosphere. Uncertainties
related to greenhouse gas flux estimates originate partly from the fact that these fluxes are spatio-temporally
highly variable!->.

Seasonal and diurnal fluctuations of these fluxes, e.g., soil respiration (R;) and its components are partly tem-
perature (T;) driven® but temporal changes in soil moisture (SWC), plant biomass, photosynthetic performance®
and litterfall also play a significant role in modifying the overall picture. Also, R, and its main abiotic drivers,
T, and SWC, show substantial horizontal heterogeneity at different spatial scales**~'*, which is made even more
complex by the interaction of the explanatory variables (e.g., cooling effect of soil moisture*'>'*). These point to
the relevance of spatial studies with temporal replicates!*.

Although the actual value and spatial distribution of the pattern-generating factors are responsible for the
observed spatial pattern of R, the functioning of ecosystems takes place through dynamically changing, form-
ing and transforming spatial patterns'>'*-'°, which are worth further investigations. Furthermore, the stability
of ecosystem functions and the existence of persistent patterns are of high significance as these patterns are
sustained by long-term climatic, surface relief and soil conditions and characterise the system’s most general
responses, resulting from both resistant and resilient ecosystem responses.
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| Stability
The ability of a system to
respond to external
[fluctuations. The system is
considered stable if it —
| can’t be altered, or is able
to return to its initial
equilibrium after

—If unaltered:

Persistence

The time a variable (in our
case soil respiration) is

altered to another
value/equilibrium. The
value is maintained by
long-term driving forces.

Resistance

The measure how little the
variable of interest (soil
respiration) is changed

following disturbance. In

unchanged before being

proxy: rankR, pattern in
space - average, long-term
soil respiration around
which all the actual values
fluctuate

proxy: small rangeR, (at
smallest and largest
rankR;), the fluctuation of
the actual values is
modest

this case, the system is
only slightly altered.

disturbance.

If altered by ot
" disturbance: | Resilience
—_— The ability of the system
to recover after
disturbance, and in this
case, the system is more
strongly altered. One
measure of this ability is
the amplitude which
measures how far a
system moved from the
equilibrium.

proxy: large rangeR; (at
medium rankR.), the
system is farther altered
from the persistent state

Figure 1. Definitions of the key theoretical concepts and the corresponding proxy variables used in this study.

The key concepts of ecological stability, such as persistence, resistance and resilience are properties hard to
quantify and are always context-dependent**?!. Following the concepts found in literature**->, we will use those
terms as defined in Fig. 1 (see proxy variables in Methods later on). An ecological system is always exposed
to a certain level of disturbance, e.g., related to global changes****. In general, an equilibrium system would
respond with different amplitude and response time than a perturbed system?*??, whether in nutrient cycling
or in community dynamics®.

Digital elevation models (DEM) are frequently used not only in landform classification?’~*! or soil mapping?
but in ecological studies'®** as well. Detailed spatial analysis of DEM help to capture relevant information
about the terrain surface elements, which can have important ecological effects. The slopes and altitudinal
differences can be closely related to surface runoft, water accumulation, snow movement or subsurface bio-
physical processes'®*!*, which influence e.g., vegetation patterns or plant species abundance, diversity and
distribution®*****, The aspect as a measure of slope orientation captures different physical and subsequent bio-
logical effects related to predominant wind direction and solar radiation (north- and south-facing slopes differ
in the duration of shade, snow cover, vegetation period*, or a west-facing slope would be warmer than an east-
facing slope late in the afternoon), both affecting landscape formation and microclimate characteristics. Other
terrain attributes like local mean elevation, standard deviation of elevation within a specific area or topographic
position index (TPI) used in our study revealed no co-varying aspects® of the surface.

Compared to the use of DEM in the above-mentioned studies, the effects of the terrain features on the spa-
tial patterns of grassland soil respiration were scarcely studied. Cultivated areas, grazed or restored grassland
vegetation types with different aspects and slope positions have mostly been analysed for soil organic carbon,
total nitrogen or other nutrient distribution/accumulation/erosion as well as patterns of above and belowground
biomass**~*’. These studies provided evidence for the effects of these terrain features on the differences in the
spatial patterns of the soil nutrients or plant biomass, both influencing R spatio-temporally.

The complexity of the terrain and the study scale have important consequences on the terrain attributes.
An ecological phenomenon and an underlying mechanism can have different spatial scales, as in some cases a
neighbouring effect can rather act than a single factor at one particular position***!. Matching scales has to be
explorative®, since it has to be taken into account that some characteristics disappear at broader scales” and that
the relative importance of an attribute may change across scales®. The picture becomes even more complex if
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Figure 2. Kriged patterns of stability proxies, rankR; (a) and rangeRs (b), as well as of background factors,
meanSOC (%, ¢) and meanSWC (%, d).

we consider the fact that an ecological function can be influenced by different terrain characteristics*? and that
an attribute may be involved in different biophysical effects.

In our study we conducted a long-term (7-year-long) spatial investigation in a piece of semi-natural grazed
grassland in Hungary. The finely undulating (no more than 1.5 m elevation differences within the study site)
surface in our study site is formed through the combined effects of wind, water erosion and drought, resulting
in uneven soil nutrient (soil organic carbon, SOC) and water distributions together with different above-ground
biomass covers between crests and depressions'®. We measured R, T, and SWC along 15 measuring campaigns
in 80 x 60 m grids and SOC in 6 of these occasions. Some of these datasets have already been used for detailed
geostatistical analysis with a different focus (**: effects of grassland management on CO, and N,O flux spatial
patterns). Our current research question formulated on the basis of spatial samplings (15 occasions) was how
soil respiration activity of the grasslands would respond to a range of environmental constraints in terms of
resistance and resilience in the longterm, and whether the terrain features were responsible for differences in
response stability. We hypothesized on the basis of our previous work'® that lower micro-elevation levels (surface
depressions), rather than the crests, could be responsible for more stable R, activities in general through the effect
of more persistent water availability even under drought.

Results

Spatial patterns of stability proxies and background variables. Figure 2 a, b show the spatial dis-
tribution of our two proxy variables, the average rank of R; per position (rankR;) and of the range of the ranks
per position (rangeR,) in kriged maps. The middle to southern areas were found to have the largest, whilst the
north-eastern areas the smallest rankR; values, whereas a slightly different pattern was characteristic for rangeR,
with some additional north-western large values. Similarly, larger average soil organic carbon content (mean-
SOC) and average soil water content (meanSWC) (Fig. 2 ¢, d) were detected at the western-middle-southern
regions and smaller at the north-eastern part of the study site.
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Figure 3. Direct correlation between TPI and stability proxy, rangeR, at less smoothed DEMs, DEM1-2 for
datasets A (black symbols and line) and S (blue symbols and line, see the information later on). The correlations
were significant at p=0.0076 and p =0.0172 levels, although they were weak, r>=0.09, r>=0.42 for A and S (see
the information later on), respectively.

(a) meanSOC | meanSWC | (b) rankR; rangeR,
ALT A: neg ALT M: neg, Cl: neg
mALT | A: neg mALT M: neg
TPI TPI Cl: neg A: neg, S: neg
SD A: neg A: neg SD CI: neg, C5: pos
S1 A:neg A: neg Sl ClI: neg, C5: pos
North | A: pos North C4: neg
East A: pos East
meanSOC | A: pos, C4: pos
meanSWC | A: pos, Cl: pos, C4: pos, C5: pos

Table 1. (a) Statistically significant (p < 0.05) linear correlation between terrain attributes, ALT, mALT, TP],
SD, Sl, North, East and background factors, meanSOC, meanSWC for A dataset. (b) Statistically significant (p
< 0.05) linear correlation between terrain attributes, background factors and stability proxies, rankR, rangeR
in A dataset and in the subgroups (see codes in the text). Regular letters mean scale-independent correlations
(valid for DEM1-5), italic underlined letters mean correlations valid for less smooth DEMs (DEM1-2 or 1-3),
“pos” and “neg” indicate the sign of the correlation.

Correlations between stability proxies and background variables along DEMs: entire data-
set. We investigated the potential direct effects of the different terrain attributes (local mean elevation
(mALT), standard deviation of elevation (SD), topographic position index (TPI), slope (SI), Easterness and
Northness (East, North)) on the spatial distributions of our proxy variables by using the terrain attributes origi-
nating from differently smoothed DEM rasters. DEM1 was the original, 0.2 m resolution model, while DEMs
2-6 were progressively smoothed by a factor of two resulting in different resolution DEM rasters (DEM2: 0.4 m,
DEMS3: 0.8 m, DEM4: 1.6 m, DEM5: 3.2 m, DEM6: 6.4 m, respectively), and finally DEM7 met the resolution of
the field measuring campaigns (10 m). The terrain attributes were filtered out from the rasters for the 78 measur-
ing positions of the sampling grid.

On the basis of the correlation analysis we found an important difference in terrain attribute features between
DEM 5 and 6, especially in SD, SI, North and East. All subsequent results are then based on DEMs 1-5, which
were found to be more similar to each other and to the original DEM1. The maps of terrain attributes with the
box blur kernel from DEM1-5 can be found in the Supplementary Information (SI) together with the descriptions
and calculations. As we couldn’t find any of the blur kernels superior to the other when considering correlations,
the results hereafter are only presented for the box blur kernel calculations for simplicity.

When we considered the entire dataset (named hereafter: “A” dataset), we could only find significant cor-
relation between rangeR, and TPI at less smoothed DEMs but the correlation was very weak (black symbols
and line in Fig. 3).

Any other correlation between the proxies and the terrain attributes could only be deduced indirectly from
the positive correlations between rankR; and meanSOC, meanSWC (cf. Table 1b). These correlations were scale-
independent, i.e., we detected them at every DEMs. In general, the larger the soil carbon content and soil moisture
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at a position (cf. Figure 2¢,d, showing quite similar patterns to the proxy patterns in the figure upper row), the
larger the R, activity detected and the opposite was true for lower carbon content and soil moisture positions.

As we investigated the background of these correlations more thoroughly in dataset A in terrain attributes
(cf. the maps in SI, Table 1a), we found that meanSOC showed negative correlation with ALT, mALT, SD and
SI, while positive with North and East at DEMs 1-5. Similarly, meanSWC correlated negatively to SD, SI, except
for DEMS5. Several terrain attributes were then responsible for the meanSOC patterns, i.e., higher absolute
elevation and neighbouring surface heterogeneity, as well as steeper slope positions facing more South-West
could be characterized with lower meanSOC. The opposite features were characteristic for higher meanSOC
level positions on lower elevations with lesser neighbouring heterogeneity and gentle slopes facing mostly North
and East. Similarly, meanSWC was higher at smaller surface heterogeneity with more gentle slopes, while lower
at more heterogeneous surfaces with steeper slopes. rankR; followed these patterns with higher R; activity in
the middle-southern part of the study area, while, in contrast, lower R activities were characteristic at lower
meanSOC and meanSWC at the north, north-east facing locations in the study site, mainly on local ridges as
found on the basis of the direct TPI correlations.

Correlations between stability proxies and background variables along DEMs: subgroups.  We
also checked the correlations within different data subgroups corresponding to specific rankR, or meanSOC
categories because we hypothesized that these kinds of groupings could enable us to grasp some important
characteristics of the stability.

Subgroups:

® Subgroups were created on the basis of rankR,+ SD: S (Smaller than mean-sd), M (Middle between
mean + SD), L (Larger than mean + SD).
e (I, C2, C3, C4, C5 (from the smallest to the largest meanSOC quintiles).

Direct correlation between terrain attributes and proxies showed considerable variation depending on the
subgroups and variables (Table 1b collects scale-independent correlations, valid at almost each of the DEMs
between 1 and 5, or scale-dependent ones, valid only in several of the less smoothed DEMs 1, 2, 3).

It seems that the meanSOC pattern related negatively to ALT, mALT detected in dataset A could have acted
as a driver for the negative rankR; and ALT, mALT correlations in the groups M and C1. It was in subgroup
C1 that TPI, SD and Sl acted negatively on rankR; as well, most probably more directly through the patterns
generated by terrain attributes in meanSWC. Further negative correlations were found between rangeR, and
TPl in S data (see also blue symbols and line in Fig. 2), like in dataset A (cf. Fig. 3 black symbols and line), as
well as between rangeR; and North in C4. Accordingly in the long run, local valleys but mostly constant slope
positions (with TPI close to zero, cf. blue symbols in Fig. 3) with lower neighbouring surface heterogeneity and
gentle slopes with more elevated meanSOC and meanSWC could be characterized with larger R; activity with
higher variability (through the negative TPI-rangeR; correlation) in these subgroups per se, similarly to dataset
A. The opposite was likely to be the case for local ridges.

The subgroups mentioned here were restricted groups of measuring positions, where carbon content in
the soil was the lowest of all (C1) or, as in subgroup S, coincided with low meanSOC levels (Fig. 4), and low
meanSWC levels as well.

Furthermore, measuring positions, grouped by either on the basis of rankR; or on the basis of meanSOC,
occupied more or less well delimited spatial areas within the sampling grid (Fig. 5, positions coloured accord-
ing to C1-C5, where e.g., C5 category, indicated with asterisk occupied the lowest altitudinal positions, C4 was
found mostly around C5, while C1 category could be found along the edges of the study area on the crests),
which would also be characteristically different in respect of the terrain attributes, especially in SD, S, as found
by the correlations (cf. Table 1).

Finally, rangeR, was fitted to rankR; using the following equation:

e*(‘ﬂlﬂkRsf/L)z/202
>

rangeRs; = a X
ge%s oa/2m

(1)

where y is the mean rankR, (42.61), o is the standard deviation of rankR, (25.38), and a (4,291.73) is a model
parameter. The correlation, approaching a bell-shaped curve (Fig. 6, both the curve and the model parameters
are statistically highly significant, p <0.0001), visualized together with the subgroups showed that both low and
high rankR; could be associated with small rangeR, with larger stability and a typically resistant response, while
middle values of rankR, corresponded to larger rangeR, with a more flexible, resilient response of R, activity.
Furthermore, it was also showed that rankR, categories more or less fitted to C1-C5 meanSOC categories (cf.
square symbols of C1 in S-M-group regions, C2 in M, while asterisks mostly in the upper half of the rankR,
range), giving strong evidence of SOC as a controlling factor in R stability. The smallest and the largest rankR,
values could correspond to the largest potential stability (in terms of resistance) in the activities, rankR, being
either low in general (cf. Fig. 2a north and north-east regions) due to low meanSOC and meanSWC (Fig. 2¢,d)
or high (cf. Figure 2a more the middle and southern regions within the study plot) in the opposite cases. On the
other hand, medium rankR with larger rangeR; overlapped spatially with C2-C3 and M groups with medium
meanSOC levels, and these positions showed a more resilient response.
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Figure 4. Density plots of meanSOC and meanSWC while grouping the measuring positions according to their
rankR category (S-M-L groups) or meanSOC content (C1-C5 groups).

Discussion

In our analysis we tried to grasp the persistence, as well as resistance/resilience in soil respiration activity, which
is regarded as an important ecophysiological functioning of ecosystems. We used two proxies derived from spa-
tial replicate measurements from several years to analyse stability in R; dynamics. R, has an inherent temporal
variability due to its environmental control through spatio-temporally varying and co-varying factors®!%*?, R
is also exposed to disturbances, which can be either defined as a “sudden shock” % or as a constant disturbance
regime like shifts in climatic conditions due to global changes (e.g., nighttime or daytime warming, change in
amount or timing of precipitation etc.***). Our study site is characteristically exposed to the latter, experienc-
ing frequent droughts and heatwaves in summer demonstrated mostly by NDVI data (Fig. 8a), coinciding with
earlier predictions to our East-Central European region**.

We revealed the spatial pattern of long-term, persistent R, functioning by mapping the average rank of R, in
space from a series of measurements. We could conclude that rankR; calculated from 15 measurements, irre-
spective of the actual environmental conditions and plant biomass levels, enabled us to describe the long-term
average functioning, while rangeR, allowed us to have an insight into the dynamics of this process. Spatial pat-
terns have already been found to be similar to a certain degree!>'®!8 but the pattern similarities are assumed to
be more qualitative than quantitative®” in the long run. rankR, showed a general picture of the spatial R, activity
but did not provide information about the stability of the process. rangeR; could be more informative in terms
of stability. As it corresponds to the amplitude (if there is an alteration) of R, response in time or to the efficiency
component of disturbance response® it can indeed be defined as a measure of the stability in R, response. Smaller
rangeR; means more resistant R, activities against the environmental conditions, mostly drought in our region.
Larger rangeR, could correspond to a more flexible response, reflecting resilient R, activities.

However, our results based on the correlations of our proxies and the terrain attributes as well as on the bell-
shaped curve relation between rankR, and rangeR, suggest the existence of two types of resistant responses with
smaller rangeR;: one at lower elevations with high meanSOC, meanSWC at gentle slopes with large rankR,, and
another at higher elevations, at local ridges with lower levels of meanSOC and meanSWC, at steeper slopes and
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Figure 5. Digital elevation model of the study plot in Bugac, Hungary (coordinates refer to the Uniform
National Projection System (m)) with the sampling positions in the 80 x 60 m grid coloured according to their
meanSOC from C1 to C5. Green square represents the position of the eddy covariance station. Marginal plots in
grey show the mean surface elevation by x and y coordinates. Notice that the largest altitudinal difference was no
more than ~ 1.5 m within the study plot.
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Figure 6. Bell-shaped curve correlation between rankR; and rangeR visualized together with the two series of
subgroups, S-M-L created on the basis of rankR categories, C1-C5 created on the basis of meanSOC categories.
Equation and parameters of the curve are in the main text.

increased surface rugosity with lower rankR,. The first type of response coincided with our hypothesis based
on our previous work'® that R activity would be more stable at lower elevations where water availability is more
constant. However, the other type was a new finding in our system but theoretically equally meaningful because
complex systems can have several equilibrium states'**%.

In order to characterize the complexity of our system we can rely on the terrain attribute analysis. It was
finally restricted to DEMs 1-5 as DEM smoothness was found to have significant effects on terrain attributes**

>
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slope, aspect, curvature, size of catchment area, which were all found to be affected by DEM resolution but also
by the vertical precision. We found significant variability of the terrain attributes within our study area (cf. SI
Figs. 1-3) which implies substantial spatial differences both in the environmental conditions and in community
structure®®3***, Thus, this spatial variability in the conditions may simultaneously cover the effects the system
generally faces and those experienced due to the disturbances. Slope differences were found to be responsible for
the water regime in general®**, while aspect for incoming solar radiation and for the surface formation by wind*.

Finally, we came to the conclusion that the equilibrium state in our system was dynamic?’. Todman et al*?
stated that several “smaller-scale domains of attraction” could exist in complex systems. We concluded that both
lower elevation positions with larger rankR; (“state I’) and higher elevation positions with smaller rankR; (“state
I1”) but both characterized with smaller rangeR, could correspond to an equilibrium state. This theory can also
rely on the observations that wet and dry soil moisture patterns with transitory phases between them character-
istically occur*>*. Wet state is a result of non-local forces, acting on excess water supply, while dry state is locally
driven by soil properties, incoming radiation and vegetation?’. Although semiarid regions are in the dry state
most of the time**, our C5 positions could correspond to a generally wetter or at least more transitory state which
has a generally larger soil moisture variability with some intervention of the above-mentioned non-local forces.
C1 and § are typically more locally controlled especially if we consider the importance of TPI in these places:
local ridges are the most exposed to sunlight and evapotranspiration is strong. These differences in water avail-
ability between the two equilibrium states together with meanSOC differences are well demonstrated in Fig. 4
showing that generally C1-C5 and S-M-L subgroups experience different levels of meanSWC and meanSOC.

On the basis of these observations we attempted to formulate a concept (Fig. 7) concerning the stability of Ry
activity by trying to grasp the terrain features and background factor characteristics as surrogates’'.

Several terrain attributes were responsible for the meanSOC, meanSWC patterns which were found to be
the direct spatial drivers of R; activity. Higher absolute elevation (mALT) and neighbouring surface heterogene-
ity (SD), as well as steeper slope (SI) positions (Fig. 7 right part: “State II”) could be characterized with lower
meanSOC, meanSWC, mostly on local ridges together with a more resistant response, while the opposite fea-
tures (Fig. 7 left part, “State I”) were characteristic of higher meanSOC, meanSWC level positions with lower
elevations (mALT) with lesser degree of neighbouring heterogeneity (SD) and gentle slopes (SI), but also with a
more resistant response through a generally larger R, activity. Intermediate levels of the background factors and
no specific terrain features characterized the positions (Fig. 7, middle part), where a more resilient R, response
was detected.

Methods

Site description. The study site is in the Kiskunsig National Park, near Bugac (46.69° N, 19.6° E, 114 m
a.s.l.), according to a long-term research permission (Grant No: 60960-1-11/2015). The vegetation, which is a
semi-arid sandy grassland, is dominated by Festuca pseudovina Hack. ex Wiesb., Carex stenophylla Wahlbg. and
Cynodon dactylon L. Pers. The prevailing wind direction is North-West and the surface is slightly undulating.
The mean annual precipitation and temperature was 585 mm and 10.6 °C, respectively, for 15 years following the
establishment of the eddy-covariance station in 2002. According to the FAO classification*® the soil type is Cher-
nozem with a relatively high organic carbon content, the soil texture is a sandy loam with a sand:silt:clay ratio of
81:11:8% in the topsoil layer®. The study plot had been under extensive grazing for decades. Grazing intensity
was 0.66 +0.18 Hungarian Grey cattle animal ha™ year™! for the previous few years. The grazing period usually
lasted from May to June and from late August to the end of November. The grassland may potentially turn into a
source of carbon in drought years*® with the annual Net Ecosystem carbon Exchange (NEE) ranging from -212.6
(sink, 2004) to+91.2 (source, 2009) g C m™ for the previous 15 years®*2,

Measured variables. The study site was monitored in the vegetation periods between 2012 and 2018 along
15 measuring campaigns (19-10-2012, 08-05-2013, 26-06-2013, 14-10-2013, 07-05-2014, 28-05-2014, 25-09-
2014, 09-06-2015, 20-11-2015, 24-10-2016, 02-06-2017, 24-08-2017, 03-11-2017, 17-05-2018, 16-08-2018) simi-
larly to a former study'®.

Soil respiration (R, umol CO, m~2 s7!) was measured by means of closed chamber systems (Licor 6,400,
LiCor, Inc. Lincoln, NE, USA and EGM-4 PPSystems, Amesbury, USA) at 78 sampling locations (arranged as a
80 x 60 m grid'®) in each measurement campaign. Target CO, concentration was set by placing the soil chamber
on its side on the ground to monitor the CO, concentration over the surface. Collars were not used with the soil
gas exchange chambers (area of 78.54 cm?) to minimize disturbance®*** since both measuring systems performed
well without collars®. Although the sampling positions remained relatively constant for the duration of the
experiment, a shift of a few centimetres was applied when selecting the actual patch for each measurement. The
standing biomass was removed 1.5 h before starting the soil respiration measurements. To minimize the effects
of diurnal temporal patterns the measurements were started at noon and lasted ~ 1.5 h for the grid.

Soil water content (SWC, %) was measured at the same spots as the CO, gas fluxes by time domain reflec-
tometry (ML2, Delta-T Devices Co., Cambridge, UK; FieldScout TDR300 Soil Moisture Meter, Spectrum Tech-
nologies, IL-USA) in the top 0-5-cm layer of the soil. The measurements were performed usually after the R,
measurements in all positions in one run. Soil temperature (T, °C) was determined at a depth of 5 cm by a digital
soil thermometer near the R, chambers parallel with the R measurements. The soil organic carbon content (SOC,
%) of the bulked soil samples from the upper 10 cm was determined by sulfochromic oxidation/loss on ignition.

Environmental conditions during the study period. Meteorological data were available from the
eddy covariance system functioning at Bugac continuously from 2002. The yearly average air temperature, sum
of precipitation and NEE data for the study period are shown in Table 2.
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Figure 7. The concept of the two equilibrium states and the potential factors influencing the stability of spatial
pattern of R, activity. mALT, TPI and SD “surfaces” presented here were cut as an example from the marginal
plots of their similar raster visualizations as DEM in Fig. 5. n.s.: not specified.

Yearly average air temperature (°C) | Yearly precipitation sum (mm) | NEE (g Cm2year™)
2012 10.7 431 +37.9
2013 10.8 590 -63.5
2014 11.4 813 -38.4
2015 11.2 523 -79.8
2016 10.6 584 -79.5
2017 10.7 654 -49.8
2018 11.7 578 -39.1

Table 2. Meteorological conditions and sink-source activity of the grassland during the study years.
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Measuring campaigns

Figure 8. (a) Course of daily average temperature (blue), daily precipitation sum (grey) and broad-band NDVI
(green) along the study years. Brown sticks show the spatial measuring occasions. (b) Boxplot groups of SWC
(blue), T, (grey) and R, (green) data along the measuring campaigns.

Annual precipitation sum was lower by 27% in the driest (2012) and higher by 39% in the wettest (2014)
year of the study period than the fifteen-year average (585 mm). This variability in water availability resulted in
a source activity of +37.9 g C m™? year! in 2012, while in a general sink activity between —38.4 and -79.8 g C
m™2 year™ for the period 2013-2018.

Daily average temperature, precipitation sum and broad-band normalized difference vegetation index
(NDVI)* are presented in Fig. 8a with the measuring campaigns for the entire study period between 2012 and
2018. The first measuring campaign was usually scheduled for the spring-early summer active periods, the
second was in the period of summer drought, while the third was in autumn, often along a re-greening period.
Several very intensive precipitation events could be distinguished. The actual R; of the measuring campaigns
covered wide ranges of the potential activity with different variability from time to time due to a corresponding
variability in SWC and T (Fig. 8b).

Stability proxies for resistance/resilience interpretation. In order to gain an insight into the stabil-
ity of the R, patterns we first calculated the average rank of soil respiration (rankR;) for the measuring positions
on the basis of the full dataset. This way we could grasp the long-term, persistent distribution of the spatial
positions with low or high R; activities. The calculation relied on ranking the measured values from the 1st (the
smallest value) to the 78th (the largest value), then averaging the 15 campaigns for each position. Small rankR
value corresponds to a generally low R activity in the position, while large rankR, value means a generally more
significant R, activity in that particular position. Another proxy was rangeR, which we calculated as the differ-
ence between the maximum and minimum rank (rankR; ) for a position, giving low values with more stable
patterns, because the R, rank was found to be more constant for the duration of the measuring campaigns, i.e.
these positions showed considerable resistance against environmental constraints. Large rangeR, values referred
to more variability in R; activity as well as more resilient functioning.

DEM processing and terrain attribute calculations. Digital elevation models (DEM) contain bare-
earth elevation data in raster grids. Raster data can be processed by different image processing operations, which
serve to extract information from the objects, which is a reasonable approach to capture relevant structures
when performed at different scales. Pyramid image processing is a multi-scale approach when the image is pro-
cessed by smoothing and subsampling steps in several runs. We used a specific case of pyramid image processing
along the terrain attribute calculations, called the “mixed scaling”", when DEM is smoothed and subsampled

SCIENTIFIC REPORTS |

(2020) 10:14307 |

https://doi.org/10.1038/s41598-020-71292-4



www.nature.com/scientificreports/

and the calculated terrain attributes are upscaled. This method was found to result in fewer artifacts and more
straightforward patterns than other techniques*'.

In our study, we implemented?® the method on a 0.2 by 0.2 m input DEM raster (originating from laser
scanning) as follows:

1. DEM was progressively smoothed, i.e., aggregated by a factor of two, resulting in six different resolution
DEM rasters along a geometric series between 0.2 and 6.4 m (DEM1: 0.2 m, DEM2: 0.4 m, DEM3: 0.8 m,
DEM4: 1.6 m, DEMS5: 3.2 m, DEM6: 6.4 m), and another scale was also calculated to meet the resolution of
the measuring campaigns (10 m, DEM?7)

2. Terrain analysis was performed on each of the DEMs, giving firstly a series of terrain attribute rasters with
different raster cell sizes/resolutions

3. Terrain attributes were then disaggregated, or upscaled to the original resolution of DEMI, resulting in dif-
ferently smoothed terrain features with the same raster cell sizes

Six terrain attributes were calculated following the guidelines™ for the best characterization of the surface with
the least potential co-variance between the selected attributes and the ones which were found to be applicable
for a range of terrain complexities:

local mean elevation (mALT),

standard deviation of elevation (SD),
topographic position index (TPI),

slope (SI),

Easterness and Northness (East, North).

Details about the calculations can be found in SI.

Spatial data processing. In order to visualize stability proxies we performed variography and kriging.
The steps of the spatial data processing, detailed description of variography, kriging and leave-one-out cross-
validation can be found in the SI (as well as some results, which are only background information for the main
focus of the present article). In brief, we performed variogram analysis first®’-%? on rankR,, rangeR,, SWC and
SOC data. The criterions for variogram model selection were the residual sum of squares (model with maximum
SSErr from exponential, Gaussian and spherical), the Nash-Sutcliffe model efficiency coefhicient (E>0.5), and
the range of autocorrelation, a (the best fit with a within the spatial scale of the study site, i.e., 2 <maximum
distance of the diagonal of the rectangle that spans the data locations). Two kinds of kriging methods were used
for mapping the variables, ordinary kriging (OK), and kriging with external drift (KED). Kriging results were
evaluated by means of the leave-one-out cross-validation method®®, and as the error estimates for OK and KED
didn’t show important differences (in terms of cross-validation errors, i.e., normalized root mean squared error
(nRMSE), mean error (meanErr) and mean squared deviation ratio (MSDR)) but we lack OK map for rangeR;
because we lack valid variograms, the presented maps are KED maps.

Data availability
The datasets generated and/or analysed during the current study are publicly available at Figshare repository
(https://doi.org/10.6084/m9.figshare.12608393).
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