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Two potential equilibrium states 
in long‑term soil respiration activity 
of dry grasslands are maintained 
by local topographic features
Szilvia Fóti1,2*, János Balogh2, Bernadett Gecse2, Krisztina Pintér1,2, Marianna Papp2, 
Péter Koncz3, Levente Kardos4, Dávid Mónok4 & Zoltán Nagy1,2

Soil respiration of grasslands is spatio-temporally variable reflecting the changing biological activities 
of the soil. In our study we analysed how the long-term soil respiration activities of dry grasslands 
would perform in terms of resistance and resilience. We also investigated how terrain features are 
responsible for response stability. We conducted a 7-year-long spatial study in a Hungarian dry 
grassland, measuring soil respiration (Rs), soil temperature (Ts) and soil water content (SWC) along 
15 measuring campaigns in 80 × 60 m grids and soil organic carbon content in 6 of the occasions. 
Two proxy variables were introduced to grasp the overall Rs activity, as well as its temporal stability: 
average rankRs, the temporal average Rs rank of a measuring position from the campaigns revealed 
the persistent spatial pattern of Rs, while rangeRs, the range of ranks of the positions from the 
campaigns described the amplitude of the Rs response in time, referring to the response stability in 
terms of resistance or resilience. We formulated a hypothetic concept of a two-state equilibrium to 
describe the performance of the long-term Rs activity: Rs activity with smaller rangeRs, that is both the 
lower elevation positions with larger rankRs (“state I”) and the higher elevation positions with smaller 
rankRs (“state II”) correspond to an equilibrium state with several terrain attributes being responsible 
for the equilibrium responses. Majority of the measuring positions was belonging to none of these 
equilibrium states. These positions showed higher rangeRs for medium rankRs, suggesting resilience 
(not resistance) as a major strategy for this ecosystem.

Grasslands exchange large quantities of greenhouse gases between the soil and the atmosphere. Uncertainties 
related to greenhouse gas flux estimates originate partly from the fact that these fluxes are spatio-temporally 
highly variable1–5.

Seasonal and diurnal fluctuations of these fluxes, e.g., soil respiration (Rs) and its components are partly tem-
perature (Ts) driven6 but temporal changes in soil moisture (SWC7), plant biomass, photosynthetic performance8 
and litterfall also play a significant role in modifying the overall picture. Also, Rs and its main abiotic drivers, 
Ts and SWC, show substantial horizontal heterogeneity at different spatial scales4,9–13, which is made even more 
complex by the interaction of the explanatory variables (e.g., cooling effect of soil moisture4,11,14). These point to 
the relevance of spatial studies with temporal replicates14.

Although the actual value and spatial distribution of the pattern-generating factors are responsible for the 
observed spatial pattern of Rs, the functioning of ecosystems takes place through dynamically changing, form-
ing and transforming spatial patterns13,15–19, which are worth further investigations. Furthermore, the stability 
of ecosystem functions and the existence of persistent patterns are of high significance as these patterns are 
sustained by long-term climatic, surface relief and soil conditions and characterise the system’s most general 
responses, resulting from both resistant and resilient ecosystem responses.
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The key concepts of ecological stability, such as persistence, resistance and resilience are properties hard to 
quantify and are always context-dependent20,21. Following the concepts found in literature20–23, we will use those 
terms as defined in Fig. 1 (see proxy variables in Methods later on). An ecological system is always exposed 
to a certain level of disturbance, e.g., related to global changes22,24,25. In general, an equilibrium system would 
respond with different amplitude and response time than a perturbed system20,22, whether in nutrient cycling 
or in community dynamics26.

Digital elevation models (DEM) are frequently used not only in landform classification27–31 or soil mapping32 
but in ecological studies18,33 as well. Detailed spatial analysis of DEM help to capture relevant information 
about the terrain surface elements, which can have important ecological effects. The slopes and altitudinal 
differences can be closely related to surface runoff, water accumulation, snow movement or subsurface bio-
physical processes19,31,34, which influence e.g., vegetation patterns or plant species abundance, diversity and 
distribution30,33,34. The aspect as a measure of slope orientation captures different physical and subsequent bio-
logical effects related to predominant wind direction and solar radiation (north- and south-facing slopes differ 
in the duration of shade, snow cover, vegetation period34, or a west-facing slope would be warmer than an east-
facing slope late in the afternoon), both affecting landscape formation and microclimate characteristics. Other 
terrain attributes like local mean elevation, standard deviation of elevation within a specific area or topographic 
position index (TPI) used in our study revealed no co-varying aspects35 of the surface.

Compared to the use of DEM in the above-mentioned studies, the effects of the terrain features on the spa-
tial patterns of grassland soil respiration were scarcely studied. Cultivated areas, grazed or restored grassland 
vegetation types with different aspects and slope positions have mostly been analysed for soil organic carbon, 
total nitrogen or other nutrient distribution/accumulation/erosion as well as patterns of above and belowground 
biomass36–40. These studies provided evidence for the effects of these terrain features on the differences in the 
spatial patterns of the soil nutrients or plant biomass, both influencing Rs spatio-temporally.

The complexity of the terrain and the study scale have important consequences on the terrain attributes. 
An ecological phenomenon and an underlying mechanism can have different spatial scales, as in some cases a 
neighbouring effect can rather act than a single factor at one particular position34,41. Matching scales has to be 
explorative31, since it has to be taken into account that some characteristics disappear at broader scales29 and that 
the relative importance of an attribute may change across scales35. The picture becomes even more complex if 

Figure 1.   Definitions of the key theoretical concepts and the corresponding proxy variables used in this study.
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we consider the fact that an ecological function can be influenced by different terrain characteristics42 and that 
an attribute may be involved in different biophysical effects31.

In our study we conducted a long-term (7-year-long) spatial investigation in a piece of semi-natural grazed 
grassland in Hungary. The finely undulating (no more than 1.5 m elevation differences within the study site) 
surface in our study site is formed through the combined effects of wind, water erosion and drought, resulting 
in uneven soil nutrient (soil organic carbon, SOC) and water distributions together with different above-ground 
biomass covers between crests and depressions18. We measured Rs, Ts and SWC along 15 measuring campaigns 
in 80 × 60 m grids and SOC in 6 of these occasions. Some of these datasets have already been used for detailed 
geostatistical analysis with a different focus (18: effects of grassland management on CO2 and N2O flux spatial 
patterns). Our current research question formulated on the basis of spatial samplings (15 occasions) was how 
soil respiration activity of the grasslands would respond to a range of environmental constraints in terms of 
resistance and resilience in the longterm, and whether the terrain features were responsible for differences in 
response stability. We hypothesized on the basis of our previous work18 that lower micro-elevation levels (surface 
depressions), rather than the crests, could be responsible for more stable Rs activities in general through the effect 
of more persistent water availability even under drought.

Results
Spatial patterns of stability proxies and background variables.  Figure 2 a, b show the spatial dis-
tribution of our two proxy variables, the average rank of Rs per position (rankRs) and of the range of the ranks 
per position (rangeRs) in kriged maps. The middle to southern areas were found to have the largest, whilst the 
north-eastern areas the smallest rankRs values, whereas a slightly different pattern was characteristic for rangeRs 
with some additional north-western large values. Similarly, larger average soil organic carbon content (mean-
SOC) and average soil water content (meanSWC) (Fig. 2 c, d) were detected at the western-middle-southern 
regions and smaller at the north-eastern part of the study site.

Figure 2.   Kriged patterns of stability proxies, rankRs (a) and rangeRs (b), as well as of background factors, 
meanSOC (%, c) and meanSWC (%, d).



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:14307  | https://doi.org/10.1038/s41598-020-71292-4

www.nature.com/scientificreports/

Correlations between stability proxies and background variables along DEMs: entire data‑
set.  We investigated the potential direct effects of the different terrain attributes (local mean elevation 
(mALT), standard deviation of elevation (SD), topographic position index (TPI), slope (Sl), Easterness and 
Northness (East, North)) on the spatial distributions of our proxy variables by using the terrain attributes origi-
nating from differently smoothed DEM rasters. DEM1 was the original, 0.2 m resolution model, while DEMs 
2–6 were progressively smoothed by a factor of two resulting in different resolution DEM rasters (DEM2: 0.4 m, 
DEM3: 0.8 m, DEM4: 1.6 m, DEM5: 3.2 m, DEM6: 6.4 m, respectively), and finally DEM7 met the resolution of 
the field measuring campaigns (10 m). The terrain attributes were filtered out from the rasters for the 78 measur-
ing positions of the sampling grid.

On the basis of the correlation analysis we found an important difference in terrain attribute features between 
DEM 5 and 6, especially in SD, Sl, North and East. All subsequent results are then based on DEMs 1–5, which 
were found to be more similar to each other and to the original DEM1. The maps of terrain attributes with the 
box blur kernel from DEM1-5 can be found in the Supplementary Information (SI) together with the descriptions 
and calculations. As we couldn’t find any of the blur kernels superior to the other when considering correlations, 
the results hereafter are only presented for the box blur kernel calculations for simplicity.

When we considered the entire dataset (named hereafter: “A” dataset), we could only find significant cor-
relation between rangeRs and TPI at less smoothed DEMs but the correlation was very weak (black symbols 
and line in Fig. 3).

Any other correlation between the proxies and the terrain attributes could only be deduced indirectly from 
the positive correlations between rankRs and meanSOC, meanSWC (cf. Table 1b). These correlations were scale-
independent, i.e., we detected them at every DEMs. In general, the larger the soil carbon content and soil moisture 

Figure 3.   Direct correlation between TPI and stability proxy, rangeRs at less smoothed DEMs, DEM1-2 for 
datasets A (black symbols and line) and S (blue symbols and line, see the information later on). The correlations 
were significant at p = 0.0076 and p  = 0.0172 levels, although they were weak, r2 = 0.09, r2 = 0.42 for A and S (see 
the information later on), respectively.

Table 1.   (a) Statistically significant (p < 0.05) linear correlation between terrain attributes, ALT, mALT, TPI, 
SD, Sl, North, East and background factors, meanSOC, meanSWC for A dataset. (b) Statistically significant (p 
< 0.05) linear correlation between terrain attributes, background factors and stability proxies, rankRs, rangeRs 
in A dataset and in the subgroups (see codes in the text). Regular letters mean scale-independent correlations 
(valid for DEM1-5), italic underlined letters mean correlations valid for less smooth DEMs (DEM1-2 or 1–3), 
“pos” and “neg” indicate the sign of the correlation.

(a) meanSOC meanSWC (b) rankRs rangeRs

ALT A: neg ALT M: neg, C1: neg

mALT A: neg mALT M: neg

TPI TPI C1: neg A: neg, S: neg

SD A: neg A: neg SD C1: neg, C5: pos

Sl A: neg A: neg Sl C1: neg, C5: pos

North A: pos North C4: neg

East A: pos East

meanSOC A: pos, C4: pos

meanSWC A: pos, C1: pos, C4: pos, C5: pos
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at a position (cf. Figure 2c,d, showing quite similar patterns to the proxy patterns in the figure upper row), the 
larger the Rs activity detected and the opposite was true for lower carbon content and soil moisture positions.

As we investigated the background of these correlations more thoroughly in dataset A in terrain attributes 
(cf. the maps in SI, Table 1a), we found that meanSOC showed negative correlation with ALT, mALT, SD and 
Sl, while positive with North and East at DEMs 1–5. Similarly, meanSWC correlated negatively to SD, Sl, except 
for DEM5. Several terrain attributes were then responsible for the meanSOC patterns, i.e., higher absolute 
elevation and neighbouring surface heterogeneity, as well as steeper slope positions facing more South-West 
could be characterized with lower meanSOC. The opposite features were characteristic for higher meanSOC 
level positions on lower elevations with lesser neighbouring heterogeneity and gentle slopes facing mostly North 
and East. Similarly, meanSWC was higher at smaller surface heterogeneity with more gentle slopes, while lower 
at more heterogeneous surfaces with steeper slopes. rankRs followed these patterns with higher Rs activity in 
the middle-southern part of the study area, while, in contrast, lower Rs activities were characteristic at lower 
meanSOC and meanSWC at the north, north-east facing locations in the study site, mainly on local ridges as 
found on the basis of the direct TPI correlations.

Correlations between stability proxies and background variables along DEMs: subgroups.  We 
also checked the correlations within different data subgroups corresponding to specific rankRs or meanSOC 
categories because we hypothesized that these kinds of groupings could enable us to grasp some important 
characteristics of the stability.

Subgroups:

•	 Subgroups were created on the basis of rankRs ± SD: S (Smaller than mean-sd), M (Middle between 
mean ± SD), L (Larger than mean + SD).

•	 C1, C2, C3, C4, C5 (from the smallest to the largest meanSOC quintiles).

Direct correlation between terrain attributes and proxies showed considerable variation depending on the 
subgroups and variables (Table 1b collects scale-independent correlations, valid at almost each of the DEMs 
between 1 and 5, or scale-dependent ones, valid only in several of the less smoothed DEMs 1, 2, 3).

It seems that the meanSOC pattern related negatively to ALT, mALT detected in dataset A could have acted 
as a driver for the negative rankRs and ALT, mALT correlations in the groups M and C1. It was in subgroup 
C1 that TPI, SD and Sl acted negatively on rankRs as well, most probably more directly through the patterns 
generated by terrain attributes in meanSWC. Further negative correlations were found between rangeRs and 
TPI in S data (see also blue symbols and line in Fig. 2), like in dataset A (cf. Fig. 3 black symbols and line), as 
well as between rangeRs and North in C4. Accordingly in the long run, local valleys but mostly constant slope 
positions (with TPI close to zero, cf. blue symbols in Fig. 3) with lower neighbouring surface heterogeneity and 
gentle slopes with more elevated meanSOC and meanSWC could be characterized with larger Rs activity with 
higher variability (through the negative TPI-rangeRs correlation) in these subgroups per se, similarly to dataset 
A. The opposite was likely to be the case for local ridges.

The subgroups mentioned here were restricted groups of measuring positions, where carbon content in 
the soil was the lowest of all (C1) or, as in subgroup S, coincided with low meanSOC levels (Fig. 4), and low 
meanSWC levels as well.

Furthermore, measuring positions, grouped by either on the basis of rankRs or on the basis of meanSOC, 
occupied more or less well delimited spatial areas within the sampling grid (Fig. 5, positions coloured accord-
ing to C1–C5, where e.g., C5 category, indicated with asterisk occupied the lowest altitudinal positions, C4 was 
found mostly around C5, while C1 category could be found along the edges of the study area on the crests), 
which would also be characteristically different in respect of the terrain attributes, especially in SD, Sl, as found 
by the correlations (cf. Table 1).

Finally, rangeRs was fitted to rankRs using the following equation:

where µ is the mean rankRs (42.61), σ is the standard deviation of rankRs (25.38), and a (4,291.73) is a model 
parameter. The correlation, approaching a bell-shaped curve (Fig. 6, both the curve and the model parameters 
are statistically highly significant, p < 0.0001), visualized together with the subgroups showed that both low and 
high rankRs could be associated with small rangeRs with larger stability and a typically resistant response, while 
middle values of rankRs corresponded to larger rangeRs with a more flexible, resilient response of Rs activity. 
Furthermore, it was also showed that rankRs categories more or less fitted to C1–C5 meanSOC categories (cf. 
square symbols of C1 in S-M-group regions, C2 in M, while asterisks mostly in the upper half of the rankRs 
range), giving strong evidence of SOC as a controlling factor in Rs stability. The smallest and the largest rankRs 
values could correspond to the largest potential stability (in terms of resistance) in the activities, rankRs being 
either low in general (cf. Fig. 2a north and north-east regions) due to low meanSOC and meanSWC (Fig. 2c,d) 
or high (cf. Figure 2a more the middle and southern regions within the study plot) in the opposite cases. On the 
other hand, medium rankRs with larger rangeRs overlapped spatially with C2-C3 and M groups with medium 
meanSOC levels, and these positions showed a more resilient response.

(1)rangeRs = a×
1

σ
√
2π

e−(rankRs−µ)2/2σ 2

,
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Discussion
In our analysis we tried to grasp the persistence, as well as resistance/resilience in soil respiration activity, which 
is regarded as an important ecophysiological functioning of ecosystems. We used two proxies derived from spa-
tial replicate measurements from several years to analyse stability in Rs dynamics. Rs has an inherent temporal 
variability due to its environmental control through spatio-temporally varying and co-varying factors4,10,43. Rs 
is also exposed to disturbances, which can be either defined as a “sudden shock” 20 or as a constant disturbance 
regime like shifts in climatic conditions due to global changes (e.g., nighttime or daytime warming, change in 
amount or timing of precipitation etc.22,24). Our study site is characteristically exposed to the latter, experienc-
ing frequent droughts and heatwaves in summer demonstrated mostly by NDVI data (Fig. 8a), coinciding with 
earlier predictions to our East-Central European region44.

We revealed the spatial pattern of long-term, persistent Rs functioning by mapping the average rank of Rs in 
space from a series of measurements. We could conclude that rankRs calculated from 15 measurements, irre-
spective of the actual environmental conditions and plant biomass levels, enabled us to describe the long-term 
average functioning, while rangeRs allowed us to have an insight into the dynamics of this process. Spatial pat-
terns have already been found to be similar to a certain degree15,16,18 but the pattern similarities are assumed to 
be more qualitative than quantitative45 in the long run. rankRs showed a general picture of the spatial Rs activity 
but did not provide information about the stability of the process. rangeRs could be more informative in terms 
of stability. As it corresponds to the amplitude (if there is an alteration) of Rs response in time or to the efficiency 
component of disturbance response20 it can indeed be defined as a measure of the stability in Rs response. Smaller 
rangeRs means more resistant Rs activities against the environmental conditions, mostly drought in our region. 
Larger rangeRs could correspond to a more flexible response, reflecting resilient Rs activities.

However, our results based on the correlations of our proxies and the terrain attributes as well as on the bell-
shaped curve relation between rankRs and rangeRs suggest the existence of two types of resistant responses with 
smaller rangeRs: one at lower elevations with high meanSOC, meanSWC at gentle slopes with large rankRs, and 
another at higher elevations, at local ridges with lower levels of meanSOC and meanSWC, at steeper slopes and 

Figure 4.   Density plots of meanSOC and meanSWC while grouping the measuring positions according to their 
rankRs category (S-M-L groups) or meanSOC content (C1–C5 groups).
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increased surface rugosity with lower rankRs. The first type of response coincided with our hypothesis based 
on our previous work18 that Rs activity would be more stable at lower elevations where water availability is more 
constant. However, the other type was a new finding in our system but theoretically equally meaningful because 
complex systems can have several equilibrium states19,22.

In order to characterize the complexity of our system we can rely on the terrain attribute analysis. It was 
finally restricted to DEMs 1–5 as DEM smoothness was found to have significant effects on terrain attributes29,46, 

Figure 5.   Digital elevation model of the study plot in Bugac, Hungary (coordinates refer to the Uniform 
National Projection System (m)) with the sampling positions in the 80 × 60 m grid coloured according to their 
meanSOC from C1 to C5. Green square represents the position of the eddy covariance station. Marginal plots in 
grey show the mean surface elevation by x and y coordinates. Notice that the largest altitudinal difference was no 
more than ~ 1.5 m within the study plot.

Figure 6.   Bell-shaped curve correlation between rankRs and rangeRs visualized together with the two series of 
subgroups, S-M-L created on the basis of rankRs categories, C1–C5 created on the basis of meanSOC categories. 
Equation and parameters of the curve are in the main text.
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slope, aspect, curvature, size of catchment area, which were all found to be affected by DEM resolution but also 
by the vertical precision. We found significant variability of the terrain attributes within our study area (cf. SI 
Figs. 1–3) which implies substantial spatial differences both in the environmental conditions and in community 
structure30,33,34. Thus, this spatial variability in the conditions may simultaneously cover the effects the system 
generally faces and those experienced due to the disturbances. Slope differences were found to be responsible for 
the water regime in general31,34, while aspect for incoming solar radiation and for the surface formation by wind34.

Finally, we came to the conclusion that the equilibrium state in our system was dynamic22. Todman et al22 
stated that several “smaller-scale domains of attraction” could exist in complex systems. We concluded that both 
lower elevation positions with larger rankRs (“state I”) and higher elevation positions with smaller rankRs (“state 
II”) but both characterized with smaller rangeRs could correspond to an equilibrium state. This theory can also 
rely on the observations that wet and dry soil moisture patterns with transitory phases between them character-
istically occur45,47. Wet state is a result of non-local forces, acting on excess water supply, while dry state is locally 
driven by soil properties, incoming radiation and vegetation47. Although semiarid regions are in the dry state 
most of the time45, our C5 positions could correspond to a generally wetter or at least more transitory state which 
has a generally larger soil moisture variability with some intervention of the above-mentioned non-local forces. 
C1 and S are typically more locally controlled especially if we consider the importance of TPI in these places: 
local ridges are the most exposed to sunlight and evapotranspiration is strong. These differences in water avail-
ability between the two equilibrium states together with meanSOC differences are well demonstrated in Fig. 4 
showing that generally C1–C5 and S-M-L subgroups experience different levels of meanSWC and meanSOC.

On the basis of these observations we attempted to formulate a concept (Fig. 7) concerning the stability of Rs 
activity by trying to grasp the terrain features and background factor characteristics as surrogates31.

Several terrain attributes were responsible for the meanSOC, meanSWC patterns which were found to be 
the direct spatial drivers of Rs activity. Higher absolute elevation (mALT) and neighbouring surface heterogene-
ity (SD), as well as steeper slope (Sl) positions (Fig. 7 right part: “State II”) could be characterized with lower 
meanSOC, meanSWC, mostly on local ridges together with a more resistant response, while the opposite fea-
tures (Fig. 7 left part, “State I”) were characteristic of higher meanSOC, meanSWC level positions with lower 
elevations (mALT) with lesser degree of neighbouring heterogeneity (SD) and gentle slopes (Sl), but also with a 
more resistant response through a generally larger Rs activity. Intermediate levels of the background factors and 
no specific terrain features characterized the positions (Fig. 7, middle part), where a more resilient Rs response 
was detected.

Methods
Site description.  The study site is in the Kiskunság National Park, near Bugac (46.69° N, 19.6° E, 114 m 
a.s.l.), according to a long-term research permission (Grant No: 60960-1-11/2015). The vegetation, which is a 
semi-arid sandy grassland, is dominated by Festuca pseudovina Hack. ex Wiesb., Carex stenophylla Wahlbg. and 
Cynodon dactylon L. Pers. The prevailing wind direction is North-West and the surface is slightly undulating. 
The mean annual precipitation and temperature was 585 mm and 10.6 °C, respectively, for 15 years following the 
establishment of the eddy-covariance station in 2002. According to the FAO classification48 the soil type is Cher-
nozem with a relatively high organic carbon content, the soil texture is a sandy loam with a sand:silt:clay ratio of 
81:11:8% in the topsoil layer49. The study plot had been under extensive grazing for decades. Grazing intensity 
was 0.66 ± 0.18 Hungarian Grey cattle animal ha−1 year−1 for the previous few years. The grazing period usually 
lasted from May to June and from late August to the end of November. The grassland may potentially turn into a 
source of carbon in drought years50 with the annual Net Ecosystem carbon Exchange (NEE) ranging from -212.6 
(sink, 2004) to + 91.2 (source, 2009) g C m−2 for the previous 15 years51,52.

Measured variables.  The study site was monitored in the vegetation periods between 2012 and 2018 along 
15 measuring campaigns (19-10-2012, 08-05-2013, 26-06-2013, 14-10-2013, 07-05-2014, 28-05-2014, 25-09-
2014, 09-06-2015, 20-11-2015, 24-10-2016, 02-06-2017, 24-08-2017, 03-11-2017, 17-05-2018, 16-08-2018) simi-
larly to a former study18.

Soil respiration (Rs, µmol CO2 m−2 s−1) was measured by means of closed chamber systems (Licor 6,400, 
LiCor, Inc. Lincoln, NE, USA and EGM-4 PPSystems, Amesbury, USA) at 78 sampling locations (arranged as a 
80 × 60 m grid18) in each measurement campaign. Target CO2 concentration was set by placing the soil chamber 
on its side on the ground to monitor the CO2 concentration over the surface. Collars were not used with the soil 
gas exchange chambers (area of 78.54 cm2) to minimize disturbance53,54 since both measuring systems performed 
well without collars55. Although the sampling positions remained relatively constant for the duration of the 
experiment, a shift of a few centimetres was applied when selecting the actual patch for each measurement. The 
standing biomass was removed 1.5 h before starting the soil respiration measurements. To minimize the effects 
of diurnal temporal patterns the measurements were started at noon and lasted ~ 1.5 h for the grid.

Soil water content (SWC, %) was measured at the same spots as the CO2 gas fluxes by time domain reflec-
tometry (ML2, Delta-T Devices Co., Cambridge, UK; FieldScout TDR300 Soil Moisture Meter, Spectrum Tech-
nologies, IL-USA) in the top 0–5-cm layer of the soil. The measurements were performed usually after the Rs 
measurements in all positions in one run. Soil temperature (Ts, °C) was determined at a depth of 5 cm by a digital 
soil thermometer near the Rs chambers parallel with the Rs measurements. The soil organic carbon content (SOC, 
%) of the bulked soil samples from the upper 10 cm was determined by sulfochromic oxidation/loss on ignition.

Environmental conditions during the study period.  Meteorological data were available from the 
eddy covariance system functioning at Bugac continuously from 2002. The yearly average air temperature, sum 
of precipitation and NEE data for the study period are shown in Table 2.
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Figure 7.   The concept of the two equilibrium states and the potential factors influencing the stability of spatial 
pattern of Rs activity. mALT, TPI and SD “surfaces” presented here were cut as an example from the marginal 
plots of their similar raster visualizations as DEM in Fig. 5. n.s.: not specified.

Table 2.   Meteorological conditions and sink-source activity of the grassland during the study years.

Yearly average air temperature (°C) Yearly precipitation sum (mm) NEE (g C m−2 year−1)

2012 10.7 431  + 37.9

2013 10.8 590  − 63.5

2014 11.4 813  − 38.4

2015 11.2 523  − 79.8

2016 10.6 584  − 79.5

2017 10.7 654  − 49.8

2018 11.7 578  − 39.1
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Annual precipitation sum was lower by 27% in the driest (2012) and higher by 39% in the wettest (2014) 
year of the study period than the fifteen-year average (585 mm). This variability in water availability resulted in 
a source activity of + 37.9 g C m−2 year−1 in 2012, while in a general sink activity between −38.4 and −79.8 g C 
m−2 year−1 for the period 2013–2018.

Daily average temperature, precipitation sum and broad-band normalized difference vegetation index 
(NDVI)50 are presented in Fig. 8a with the measuring campaigns for the entire study period between 2012 and 
2018. The first measuring campaign was usually scheduled for the spring-early summer active periods, the 
second was in the period of summer drought, while the third was in autumn, often along a re-greening period. 
Several very intensive precipitation events could be distinguished. The actual Rs of the measuring campaigns 
covered wide ranges of the potential activity with different variability from time to time due to a corresponding 
variability in SWC and Ts (Fig. 8b).

Stability proxies for resistance/resilience interpretation.  In order to gain an insight into the stabil-
ity of the Rs patterns we first calculated the average rank of soil respiration (rankRs) for the measuring positions 
on the basis of the full dataset. This way we could grasp the long-term, persistent distribution of the spatial 
positions with low or high Rs activities. The calculation relied on ranking the measured values from the 1st (the 
smallest value) to the 78th (the largest value), then averaging the 15 campaigns for each position. Small rankRs 
value corresponds to a generally low Rs activity in the position, while large rankRs value means a generally more 
significant Rs activity in that particular position. Another proxy was rangeRs which we calculated as the differ-
ence between the maximum and minimum rank (rankRs ) for a position, giving low values with more stable 
patterns, because the Rs rank was found to be more constant for the duration of the measuring campaigns, i.e. 
these positions showed considerable resistance against environmental constraints. Large rangeRs values referred 
to more variability in Rs activity as well as more resilient functioning.

DEM processing and terrain attribute calculations.  Digital elevation models (DEM) contain bare-
earth elevation data in raster grids. Raster data can be processed by different image processing operations, which 
serve to extract information from the objects, which is a reasonable approach to capture relevant structures 
when performed at different scales. Pyramid image processing is a multi-scale approach when the image is pro-
cessed by smoothing and subsampling steps in several runs. We used a specific case of pyramid image processing 
along the terrain attribute calculations, called the “mixed scaling”41, when DEM is smoothed and subsampled 

Figure 8.   (a) Course of daily average temperature (blue), daily precipitation sum (grey) and broad-band NDVI 
(green) along the study years. Brown sticks show the spatial measuring occasions. (b) Boxplot groups of SWC 
(blue), Ts (grey) and Rs (green) data along the measuring campaigns.
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and the calculated terrain attributes are upscaled. This method was found to result in fewer artifacts and more 
straightforward patterns than other techniques41.

In our study, we implemented56 the method on a 0.2 by 0.2 m input DEM raster (originating from laser 
scanning) as follows:

1.	 DEM was progressively smoothed, i.e., aggregated by a factor of two, resulting in six different resolution 
DEM rasters along a geometric series between 0.2 and 6.4 m (DEM1: 0.2 m, DEM2: 0.4 m, DEM3: 0.8 m, 
DEM4: 1.6 m, DEM5: 3.2 m, DEM6: 6.4 m), and another scale was also calculated to meet the resolution of 
the measuring campaigns (10 m, DEM7)

2.	 Terrain analysis was performed on each of the DEMs, giving firstly a series of terrain attribute rasters with 
different raster cell sizes/resolutions

3.	 Terrain attributes were then disaggregated, or upscaled to the original resolution of DEM1, resulting in dif-
ferently smoothed terrain features with the same raster cell sizes

Six terrain attributes were calculated following the guidelines35 for the best characterization of the surface with 
the least potential co-variance between the selected attributes and the ones which were found to be applicable 
for a range of terrain complexities:

•	 local mean elevation (mALT),
•	 standard deviation of elevation (SD),
•	 topographic position index (TPI),
•	 slope (Sl),
•	 Easterness and Northness (East, North).

Details about the calculations can be found in SI.

Spatial data processing.  In order to visualize stability proxies we performed variography and kriging. 
The steps of the spatial data processing, detailed description of variography, kriging and leave-one-out cross-
validation can be found in the SI (as well as some results, which are only background information for the main 
focus of the present article). In brief, we performed variogram analysis first57–62 on rankRs, rangeRs, SWC and 
SOC data. The criterions for variogram model selection were the residual sum of squares (model with maximum 
SSErr from exponential, Gaussian and spherical), the Nash–Sutcliffe model efficiency coefficient (E > 0.5), and 
the range of autocorrelation, a (the best fit with a within the spatial scale of the study site, i.e., a < maximum 
distance of the diagonal of the rectangle that spans the data locations). Two kinds of kriging methods were used 
for mapping the variables, ordinary kriging (OK), and kriging with external drift (KED). Kriging results were 
evaluated by means of the leave-one-out cross-validation method58, and as the error estimates for OK and KED 
didn’t show important differences (in terms of cross-validation errors, i.e., normalized root mean squared error 
(nRMSE), mean error (meanErr) and mean squared deviation ratio (MSDR)) but we lack OK map for rangeRs 
because we lack valid variograms, the presented maps are KED maps.

Data availability
The datasets generated and/or analysed during the current study are publicly available at Figshare repository 
(https​://doi.org/10.6084/m9.figsh​are.12608​393).
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