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Quasi-bound states in an NPN-type
nanometer-scale graphene

quantum dot under a magnetic
field

Yueting Pan?, Haijiao Jit, Xin-Qi Li%3 & Haiwen Liu'**

We solve the quasi-bound state-energy spectra and wavefunctions of an NPN-type graphene quantum
dot under a perpendicular magnetic field. The evolution of the quasi-bound state spectra under

the magnetic field is investigated using a Wentzel-Kramers-Brillouin approximation. In numerical
calculations, we also show that the twofold energy degeneracy of the opposite angular momenta
breaks under a weak magnetic field. As the magnetic field strengthens, this phenomenon produces

an observable splitting of the energy spectrum. Our results demonstrate the relation between the
quasi-bound state-energy spectrum in graphene quantum dots and magnetic field strength, which is
relevant to recent measurements in scanning tunneling microscopy.

Graphene has promising prospects in condensed matter physics owing to its extraordinary properties, such as
Klein tunneling, Zitterbewegung motion, and minimum quantum conductance'™. These properties allow the
investigation and realization of exotic relativistic quantum phenomena’. Although Klein tunneling precludes
the capture of relativistic quasi-particles in graphene, the energy barrier in graphene nano-structures such as PN
junctions can induce quasi-bound states with finite lifetimes®. Quasi-bound states in graphene quantum dots and
other graphene constrained systems have been prominently studied in theoretical works®~, and experiments'®-'4.
For example, the found quasi-bound states are related to the atomic collapse states that have been found for the
Coulomb problem""".

The quantum Hall effect in graphene systems under a magnetic field has been widely studied recently. Mean-
while, in graphene quantum dots under a magnetic field, the quasi-bound states coexist with the magnetic field,
resulting in interesting physical phenomena. Thus far, graphene quantum dots under magnetic fields have been
studied in previous works'®-22, however qualitative semi-classical and numerical analyses can help us to interpret
the energy spectra and physical properties of graphene quantum dots under magnetic fields more completely.

In this paper, we study the wavefunction, local density of states (LDOS) and energy spectrum of an NPN-type
circular graphene quantum dot under a magnetic field. The numerical results are based on the Wentzel-Kram-
ers—Brillouin (WKB) approximation. Comparing the zero-field results of the WKB approximation with rigorous
analytical results, we find energy degeneracy in the opposite angular momenta. Next, the energy spectra under
different magnetic fields are obtained by the WKB approximation. Increasing the magnetic field breaks the
energy degeneracy of the opposite angular momenta, leading to increasingly obvious splitting in the spectrum.
This LDOS splitting is also observable in experiments.

The remainder of this paper is organized as follows. First, we model a graphene quantum dot under a mag-
netic field by the Dirac equation and numerically solve the wavefunction and quasi-bound states spectrum by
the WKB approximation. The analytical solution without a magnetic field is also presented. After evolving the
energy spectrum under a magnetic field, we conclude the study and highlight its relevance to recent experiments.

Modeling and radial function
We consider an NPN-type graphene quantum dot in a perpendicularly upward homogeneous magnetic field.

The Dirac equation of this system is given by*-2:
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Figure 1. Energy band of an NPN-type graphene quantum dot with Fermi energy Er and potential V(r). Quasi-
bound states are formed in section P, and the substrate is section N, where the V(r) is higher in section P than in

section N.
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where the Fermi velocity is set to ve = 1, and o, is the Pauli matrices. Fig. 1>%%!! shows the centrally symmetric
step potential V(r) generated in the NPN-type circular graphene quantum dot:

_ [ Vo, r<R

Vi) = {0, r > R. 2)
where R is the radius of the graphene quantum dot, P, is the generalized momentum, and A, is the vector

potential generated by the perpendicular magnetic field B along the z-axis, calculated as Ay = — %,Ay = %.
The wavefunction is assumed as ¥/ (r, @, t) = ﬁ e~ Et/Bay (1, ), where E = Ep — Epis the difference between
the Fermi energy Er and the Dirac-point energy Ep. The eigenfunction of the total angular momentum / takes

the form:
1 [ F(r)elle

Yi(r, ) = NG ( G(r)ei+De (3)
where [ is the angular momentum quantum number. Further, using Py & iPy = —ieT[ha, + (%ago - %)],

the equation can be recast as

1
hd—F - (W+?)F+(E— V(r)G =0; (4)

dr r

dG (l + %)h eBr
dr

h— 4 + 2) G—(E—V(r)F=0. (5)

In the next section, we solve the coupled differential equations in Egs. (4) and (5) using the WKB approximation.

WKB solutions in the presence and absence of a magnetic field

WKB approximation.

In the absence of a magnetic field, the energy spectra of a disc can be accurately

described by the Bessel function''; however, finding the rigorous solution of a graphene quantum dot under a
magnetic field is considerably difficult. Thus, we apply the WKB approximation® to a quantum dot under a mag-

netic field. To obtain the WKB form, we substitute (I + %)h in Eqs. (4) and (5) bym =1+ % = :I:%, :I:%, :I:% e

and retain the /1 in front of the differential sign as the expansion parameter?. In matrix form, this becomes

where

We then suppose

F(r) F(r)
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E(r) = B(ne'; Gr) = T, (8)
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in which B(r) is the difference factor between the upper- and lower-component wavefunctions, and y(r) is the
local phase®®. Writing y(r) as a Taylor expansion

y(r) =Y W'ya(r), )
n=0
the solution reads
2
)’(’)(r)=:i:\/(E—V(V))2— (%—Fi;r) = +qo(r), (10)
s i) ivV'(r)
nn=rm T aE=—vey
_Uifp_ﬁ_ W”<T+@N (n
2y 2 2 E-V()\r 2
=ig(r) £ q1(r),
in which
=— L [m_eB_ V) (m, eBril b
D= 2qo(r) |2 2 E-V(r)\r 2 ’ (12)
(=200 VO

S 25 2E—- V()
d d
= i In(y/qo0(r)) — P In(\/E — V(r)).

The detailed derivation from Egs. (4) and (5) to Eq. (13) is given in Part 1 of the supplementary material. Finally,
the phase function is obtained by integration, retaining the terms up to order A:

y) = [ b + hyico)]
—/rdr + (r)—i—ihiln <\/ (r))
a 4o dr o
—ih% In <\/E - V(r)) + hql(r)} (14)
=ihln (,/qo(r)> —ihln («/E - V(r))
:I:/ dr(qo(r) + hql(r)).

The radial wave function can then be written as

F(r) =C %ei% [ dr[qo()+hqi ()]

VI(E = V(r)go(r)

B
y [? + S = 1) £i(q0n) + () |
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where C is the normalization factor.

(15)

Effective potential and quasi-bound states.
In the following, we set /i = 1 for convenience. To consider the effective momentum, we state > = —Uegr + Ee
and 2 = Ueg — Eefr, where Eeg = E? is the effective energy and Ueg (r, E) = 2EV (r) — V2(r) + 5+ ezﬂ)2 is
the effective potential. Figure 2a shows that the side view of a graphene quantum dot can be divided into four
regions along the r axis: I (inside), II (inside), III (outside), and IV (outside). Based on the relation between U
and E.g, we can also distinguish four situations as shown in Table 1.

This paper focuses only on situation (2), which accommodates quasi-bound states. In situation (2), the turn-
ing points ry and r_ at which U.g = Eg are correspondingly given by
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Situation Solution of the wavefunction
(1) E? > (% + #)2 Plane wave solutions
(2) 2eBm < E* < (% + #)2 Quasi-bound state solutions
(3) 2EVy— V3 + (2 + 4R 2 < E? < 2¢Bm Bound state solutions
) B2 < 2EVy — V2 + (%2 + ER)? No solution

Table 1. Relation between the effective potential Ug and effective energy Eg, indicating the four situations
corresponding to different kinds of wavefunction solutions; notably, quasi-bound states exist in situation (2).
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Figure 2. (a) Effective energy E,g(blue curve) and effective potential U,g(red curve) of a graphene
quantum dot with radius R. The plot can be divided into four regions along the r axis (I, IL, III, and

IV), in which the quasi-bound states exist in region II. Panels (b-d) plot the _ versus B relations for

m = =£1/2,43/2,and £ 5/2, respectively(R = 4nm). These plots are related to the width of the energy
spectrum. The corresponding quasi-bound states become bound states when B exceeds the critical magnetic
field strength B, (B. |u=1/2~ 1.1T for m=1/2; in the higher angular momentum channels, we obtain

B, |m:3/2% 28TandBc |m:5/2% 66T).

|E — V| — \/(E — Vo)? — 2¢Bm
ry = ,
+ B (17)
|E| — VE? — 2eBm
e e (18)

Panels (b), (c), and (d) of Fig. 2 plot the dependences of r_ on B for m = +1/2,43/2,and % 5/2, respectively,
with R = 4nm.
The wavefunction in the classical allowed region II then follows from Egs. (15) and (16):
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4
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Gu(r) = Ne't -V cos (/ dr(qo(r) + qu(r)) — Z>’ (20)
qgo(r) re 4

where N is the normalization factor, and the phase factor %T is obtained by the Airy function.
In the classical forbidden regions I and III in Fig. 2a, the wavefunction damps exponentially. The radial
wavefunction inside the quantum dot can be written as

1 ( Fi(n)
NAWET! )” =T+

F(r) '
NG G[](f))’r+ <r<R

The functions F7(r) and G;(r) in Eq. (21) are given in Part 2 of the Supplementary Material. The radially-averaged
LDOS is |y/"|2.

At this time, the relation between the angular momentum number m and the peak energies of the quasi-bound
states can be determined by the quantization rule, explicitly given by

(21)

|~

R
/ [q0mn(r) + qimu(N]dr = nw +60,n=10,1,2..., (22)

T+m,n

where gom,» () and g1, (r) are the functions of the quasi-bound states energy E, .. They are defined by Egs. (10)
and (12), respectively. By applying the quantization rule to Eq. (21), we obtain the relation between E,; ,, and the
quantum number 7, which can be interpreted as the radial quantum number. 6 € (0, ) is determined by n, m,
and R (actually, it largely depends on the shape of U,g, which is also related to m, n, and R)%.

The width Iy, , of the energy spectrum in the quasi-stationary state is obtained as?’

1

fR Enm—=V(r)
Jrimn Gomn(r)

o (Tempn -
Ty = e 2k [qOm,n(7)+q1m,n(7)Jd7, (23)

where 7, , and r_,, , are determined by Eqs. (17) and (18), respectively, E = Ej, su, Gom,n (), and Gim,n (1) are
momenta in the classical forbidden region, as defined by Eq. (S.9) of the supplementary material. The broadening
effect mainly originate from the Klein tunneling of Dirac particle. Thus, in our system, the quasi-bound states
in the central region have finite life time due to the Klein tunneling, in other words, such quasi-bound state can
be called a resonance state.

The above analysis refers to situation (2). When E2 < 2¢Bm, B reaches the critical magnetic field strength

2
B. = z}i—m (obtained by rearranging Eq. (18)). The situation then transitions from situation (2) to situation (3),

in which the quasi-bound states become bound states. Notably, B, and m have the same sign; thus, when the
magnetic field points upward along the z-direction, B, exists only when m > 0.

In the following section, we analyze the relation between the energy Ey , of the quasi-bound states and the
angular momentum m for the case n = 0.

Numerical results and discussion
In the absence of a magnetic field, the analytical wavefunction of a quasi-bound state with angular momentum
m is given by'":

1

. 1 .
myana __ Im 2 Tmelmgﬂ

m I1B=0 _\/E
Ty (ge
i sgn(q) Im_‘_% (qr)e%‘z

g (24)
0<r<R
The transmissivity is

@ (6]
]m% (kR)Hm+% (kR) — ]er% (kR)Hmi%(kR)

Jou 1 @OH) | (kR) = sgn(kq)] 1 (QRH | (kR)’
2 2

Tml32y = (25)
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Figure 3. LDOS and energy spectra of quasi-bound states calculated by the WKB approximation. The
quasi-bound energy levels of them = £1/2,£3/2,and £ 5/2 . . . states of the graphene quantum dot with
R = 4nm, Vo = 0.42eV, Ep = —0.09¢V depend on the magnetic field strength B. Panels (a)-(f) show the
WKB-approximated LDOS inside the graphene quantum dot under different B fields: (a) m = £1/2,B =0,
(bym==+1/2,B=1T,(¢c)m = £3/2,B =0, (d) m = £3/2,B = 10T, (¢) m = £5/2,B = 0, and

(f)m = £5/2, B = 15T. Panel (g) plots the peak values in the energy spectra as B changes from 0 to

30T, m = +1/2,4+3/2,and +5/2.
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Figure 4. Evolution of LDOS for different angular momenta. Increasing the magnetic field breaks the energy-
level degeneracy of the NPN-type graphene quantum dot. Rows (A)—-(D) show the three-dimensional LDOS
maps of the graphene quantum dot with R = 4nm, Vy = 0.42eV, and Ep = —0.09¢V under different magnetic
field strengths: (A) m = 1/2, B =0,0.5,1T (B¢|m=1/2 ~ 1.1T), (B)m = —1/2, B =0, 1, 5T (no Bc|n=—1/2),
(C)m =3/2, B=0,15,28T (Bc|m=3/2 &~ 28.2T), and (D) m = —3/2, B = 0,15, 28T (no B¢|;n=—3/2). When
m > 0, the energy level shifts in the negative direction and becomes narrower; when m > 0, it moves in the
positive direction and widens.

whereq = (E — Vo)/h, k =E/h (ve = 1),],, +1 is the Bessel function of the first kind, and H M ! is the Hankel’s

function of the first kind. The LDOS inside the graphene quantum dot with no magnetic ﬁeld is then obtained
by noting that |y, |p—g ngomus| oc LDOS(r, E).

Notably, for graphene quantum dots without a magnetic field, the spectra of the step-potential and smooth-
potential systems share the same features®. A comparison of WKB solution and the exact solution when B = 0 is
presented in the Part 3 of the supplementary material. Furthermore, we consider the LDOS and energy spectrum
for B # 0. The solution can be obtained by Eqgs. (21) and (22), and the phase shift 6 is determined by comparing the
WKB-approximated energy level at B = 0 with the analytical solution at B = 0. Panels (a)-(f) of Fig. 3 show the
quasi-bound energy levels of m = +1/2,m = £3/2, andm = +£5/2 as the magnetic field B changes from 0 to 30T
upward along the z-axis. The other parameters are R = 4nm, Vy = 0.42eV, Er = E + Ep, andEp = —0.09¢V'.
Increasing B along the z-axis relieved the degeneracy of £m: for m > 0, the energy levels E,, ,, reduced and the
bandwidths become increasingly acute until B exceeded B; for m < 0, the energy levels E,, ,, enlarged and the
bandwidths broadened. Fig. 3(g) provides the evolutionary processes of the energy levels as the magnetic field
B varied. For a given magnetic field strength, increasing the| m |yielded a more remarkable change in E;; ;..

Using the results of Fig. 3, Egs. (21), and (22), we can obtain the transmittance of the graphene quantum dot
under a magnetic field. Considering the transmittance as the initial value of the evolution atr = R, and applying
Egs. (4) and (5) as the radial evolution equations, we obtained the three-dimensional radial-energy-transmittance
LDOS map of the graphene quantum dot under a magnetic field. The results are shown in Fig. 4, which directly
reveals the main energy-evolution features in the quasi-bound state of the NPN-type graphene quantum dot

Scientific Reports |

(2020) 10:20426 | https://doi.org/10.1038/s41598-020-77357-8 nature research



www.nature.com/scientificreports/

under a perpendicular magnetic field: As shown in Fig. 4A and B, the energy degeneracy at &m and B = 0 was
relieved at larger B. When m = 3/2, the quasi-bound state energy moved in the negative direction and exhibited
sharp resonances at magnetic field strengths above B. |,,=3/2~ 28.2T. Meanwhile, when m = —3/2, the energy
shift in the quasi-bound state was positive and the energy levels broadened. The evolution of the quasi-bound
energy level E,, , depends on the quantization rule given by Eq. (21), and r_ is responsible for the energy width
I,n as shown in Eq. (22). Both of these restriction conditions depend on the magnetic strength B. The LDOS
atm = £1/2 and m = £3/2 exhibited similar features, and B, |,=1/2~ 1.1T (see Fig. 4 (C), (D)). Moreover,
enlarging the |m| broadened the energy spectrum by bringing the effective energy closer to the top of the effec-
tive potential barrier, thereby increasing the critical magnetic field.

Conclusion

This paper discussed the evolution of the quasi-bound energy spectrum of an NPN-type graphene quantum dot
under a perpendicular magnetic field. The wavefunction was approximately solved using the WKB method. The
magnetic field broke the twofold degeneracy of =m, thereby splitting the energy spectrum and inducing sharp
resonances at higher magnetic strengths. The numerical results are relevant to recent experimental results'*?'.
Our method can effectively reveal the evolution of the quasi-bound states in graphene quantum dots placed in
magnetic fields.
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