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Quasi‑bound states in an NPN‑type 
nanometer‑scale graphene 
quantum dot under a magnetic 
field
Yueting Pan1, Haijiao Ji1, Xin‑Qi Li2,3 & Haiwen Liu1*

We solve the quasi-bound state-energy spectra and wavefunctions of an NPN-type graphene quantum 
dot under a perpendicular magnetic field. The evolution of the quasi-bound state spectra under 
the magnetic field is investigated using a Wentzel–Kramers–Brillouin approximation. In numerical 
calculations, we also show that the twofold energy degeneracy of the opposite angular momenta 
breaks under a weak magnetic field. As the magnetic field strengthens, this phenomenon produces 
an observable splitting of the energy spectrum. Our results demonstrate the relation between the 
quasi-bound state-energy spectrum in graphene quantum dots and magnetic field strength, which is 
relevant to recent measurements in scanning tunneling microscopy.

Graphene has promising prospects in condensed matter physics owing to its extraordinary properties, such as 
Klein tunneling, Zitterbewegung motion, and minimum quantum conductance1–4. These properties allow the 
investigation and realization of exotic relativistic quantum phenomena3. Although Klein tunneling precludes 
the capture of relativistic quasi-particles in graphene, the energy barrier in graphene nano-structures such as PN 
junctions can induce quasi-bound states with finite lifetimes5. Quasi-bound states in graphene quantum dots and 
other graphene constrained systems have been prominently studied in theoretical works5–9, and experiments10–14. 
For example, the found quasi-bound states are related to the atomic collapse states that have been found for the 
Coulomb problem15–17.

The quantum Hall effect in graphene systems under a magnetic field has been widely studied recently. Mean-
while, in graphene quantum dots under a magnetic field, the quasi-bound states coexist with the magnetic field, 
resulting in interesting physical phenomena. Thus far, graphene quantum dots under magnetic fields have been 
studied in previous works18–22, however qualitative semi-classical and numerical analyses can help us to interpret 
the energy spectra and physical properties of graphene quantum dots under magnetic fields more completely.

In this paper, we study the wavefunction, local density of states (LDOS) and energy spectrum of an NPN-type 
circular graphene quantum dot under a magnetic field. The numerical results are based on the Wentzel–Kram-
ers–Brillouin (WKB) approximation. Comparing the zero-field results of the WKB approximation with rigorous 
analytical results, we find energy degeneracy in the opposite angular momenta. Next, the energy spectra under 
different magnetic fields are obtained by the WKB approximation. Increasing the magnetic field breaks the 
energy degeneracy of the opposite angular momenta, leading to increasingly obvious splitting in the spectrum. 
This LDOS splitting is also observable in experiments.

The remainder of this paper is organized as follows. First, we model a graphene quantum dot under a mag-
netic field by the Dirac equation and numerically solve the wavefunction and quasi-bound states spectrum by 
the WKB approximation. The analytical solution without a magnetic field is also presented. After evolving the 
energy spectrum under a magnetic field, we conclude the study and highlight its relevance to recent experiments.

Modeling and radial function
We consider an NPN-type graphene quantum dot in a perpendicularly upward homogeneous magnetic field. 
The Dirac equation of this system is given by23–25:
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where the Fermi velocity is set to vF = 1 , and σµ is the Pauli matrices. Fig. 15,6,8,11 shows the centrally symmetric 
step potential V(r) generated in the NPN-type circular graphene quantum dot:

where R is the radius of the graphene quantum dot, Pµ is the generalized momentum, and Aµ is the vector 
potential generated by the perpendicular magnetic field B along the z-axis, calculated as Ax = − By

2 ,Ay = Bx
2 .

The wavefunction is assumed as ψ(r,ϕ, t) = 1√
2π

e−iEt/�ψl(r,ϕ), where E = EF − ED is the difference between 
the Fermi energy EF and the Dirac-point energy ED . The eigenfunction of the total angular momentum l takes 
the form:

where l is the angular momentum quantum number. Further, using Px ± iPy = −ie±iϕ[�∂r ± ( i�r ∂ϕ − eBr
2 )], 

the equation can be recast as

In the next section, we solve the coupled differential equations in Eqs. (4) and (5) using the WKB approximation.

WKB solutions in the presence and absence of a magnetic field
WKB approximation.  In the absence of a magnetic field, the energy spectra of a disc can be accurately 
described by the Bessel function11; however, finding the rigorous solution of a graphene quantum dot under a 
magnetic field is considerably difficult. Thus, we apply the WKB approximation26 to a quantum dot under a mag-
netic field. To obtain the WKB form, we substitute (l + 1

2 )� in Eqs. (4) and (5) by m ≡ l + 1
2 = ± 1

2 ,±
3
2 ,±

5
2 · · · 

and retain the � in front of the differential sign as the expansion parameter27. In matrix form, this becomes

where

We then suppose
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)

ψ(r, t) = 0,
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Figure 1.   Energy band of an NPN-type graphene quantum dot with Fermi energy EF and potential V(r). Quasi-
bound states are formed in section P , and the substrate is section N , where the V(r) is higher in section P than in 
section N.
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in which β(r) is the difference factor between the upper- and lower-component wavefunctions, and y(r) is the 
local phase28. Writing y(r) as a Taylor expansion

the solution reads

in which

The detailed derivation from Eqs. (4) and (5) to Eq. (13) is given in Part 1 of the supplementary material. Finally, 
the phase function is obtained by integration, retaining the terms up to order �:

The radial wave function can then be written as

where C is the normalization factor.

Effective potential and quasi‑bound states. 
In the following, we set � = 1 for convenience. To consider the effective momentum, we state q2 = −Ueff + Eeff  
and q̃2 = Ueff − Eeff  , where Eeff = E2 is the effective energy and Ueff (r,E) = 2EV(r)− V2(r)+ (mr + eBr

2 )2 is 
the effective potential. Figure 2a shows that the side view of a graphene quantum dot can be divided into four 
regions along the r axis: I (inside), II (inside), III (outside), and IV (outside). Based on the relation between Ueff  
and Eeff  , we can also distinguish four situations as shown in Table 1.

This paper focuses only on situation (2), which accommodates quasi-bound states. In situation (2), the turn-
ing points r+ and r− at which Ueff = Eeff  are correspondingly given by

(9)y(r) =
∞
∑

n=0

�
nyn(r),

(10)y′0(r) = ±

√

(E − V(r))2 −
(

m

r
+ eBr

2

)2

≡ ± q0(r),

(11)

y′1(r) =
iy′′0 (r)

2y′0(r)
+ iV ′(r)

2(E − V(r))

− 1

2y′0(r)

[

m

r2
− eB

2
− V ′(r)

E − V(r)

(

m

r
+ eBr

2

)]

≡ iζ(r)± q1(r),

(12)q1(r) =− 1

2q0(r)

[

m

r2
− eB

2
− V ′(r)

E − V(r)

(

m

r
+ eBr

2

)]

;

(13)
ζ(r) = y′′0 (r)

2y′0(r)
+ V ′(r)

2(E − V(r))

= d

dr
ln(

√

q0(r))−
d

dr
ln(

√

E − V(r)).

(14)

y(r) =
∫ r

dr
[

y′0(r)+ �y′1(r)
]

=
∫ r

dr

[

± q0(r)+ i�
d

dr
ln
(

√

q0(r)
)

−i�
d

dr
ln
(

√

E − V(r)
)

± �q1(r)

]

= i� ln
(

√

q0(r)
)

− i� ln
(

√

E − V(r)
)

±
∫ r

dr
(

q0(r)+ �q1(r)
)

.

(15)

F(r) = C
1

√

(E − V(r))q0(r)
e±

i
�

∫ r
dr[q0(r)+�q1(r)]

×
[

m

r
+ eBr

2
− �ζ(r)± i

(

q0(r)+ �q1(r)
)

]

;

(16)G(r) = C

√

E − V(r)

q0(r)
e±

i
�

∫ r
dr[q0(r)+�q1(r)],



4

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20426  | https://doi.org/10.1038/s41598-020-77357-8

www.nature.com/scientificreports/

Panels (b), (c), and (d) of Fig. 2 plot the dependences of r− on B for m = ±1/2,±3/2, and ± 5/2 , respectively, 
with R = 4nm.

The wavefunction in the classical allowed region II then follows from Eqs. (15) and (16):

(17)r+ =
∣

∣

∣

∣

∣
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√
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∣
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∣

∣

∣

∣

|E| −
√
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∣

∣

∣

∣

∣

.

Table 1.   Relation between the effective potential Ueff  and effective energy Eeff  , indicating the four situations 
corresponding to different kinds of wavefunction solutions; notably, quasi-bound states exist in situation (2).

Situation Solution of the wavefunction

(1) E
2
>

(

m

R
+ eBR

2

)2 Plane wave solutions

(2) 2eBm < E
2 ≤

(

m

R
+ eBR

2

)2 Quasi-bound state solutions

(3) 2EV0 − V
2
0
+

(

m

R
+ eBR

2

)2
< E

2 ≤ 2eBm Bound state solutions

(4) E
2
< 2EV0 − V

2
0
+

(

m

R
+ eBR

2

)2 No solution

Figure 2.   (a) Effective energy Eeff (blue curve) and effective potential Ueff (red curve) of a graphene 
quantum dot with radius R. The plot can be divided into four regions along the r axis (I, II, III, and 
IV), in which the quasi-bound states exist in region II. Panels (b–d) plot the r− versus B relations for 
m = ±1/2,±3/2, and ± 5/2, respectively(R = 4nm ). These plots are related to the width of the energy 
spectrum. The corresponding quasi-bound states become bound states when B exceeds the critical magnetic 
field strength Bc ( Bc |m=1/2≈ 1.1T for m=1/2; in the higher angular momentum channels, we obtain 
Bc |m=3/2≈ 28TandBc |m=5/2≈ 66T).
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where N is the normalization factor, and the phase factor iπ4  is obtained by the Airy function.
In the classical forbidden regions I and III in Fig. 2a, the wavefunction damps exponentially. The radial 

wavefunction inside the quantum dot can be written as

The functions FI (r) and GI (r) in Eq. (21) are given in Part 2 of the Supplementary Material. The radially-averaged 
LDOS is |ψ in

m |2.
At this time, the relation between the angular momentum number m and the peak energies of the quasi-bound 

states can be determined by the quantization rule, explicitly given by

where q0m,n(r) and q1m,n(r) are the functions of the quasi-bound states energy En,m . They are defined by Eqs. (10) 
and (12), respectively. By applying the quantization rule to Eq. (21), we obtain the relation between En,m and the 
quantum number n, which can be interpreted as the radial quantum number. θ ∈ (0,π) is determined by n, m, 
and R (actually, it largely depends on the shape of Ueff  , which is also related to m, n, and R)29.

The width Ŵm,n of the energy spectrum in the quasi-stationary state is obtained as27

where r+m,n and r−m,n are determined by Eqs. (17) and (18), respectively, E = En,m , q̃0m,n(r) , and q̃1m,n(r) are 
momenta in the classical forbidden region, as defined by Eq. (S.9) of the supplementary material. The broadening 
effect mainly originate from the Klein tunneling of Dirac particle. Thus, in our system, the quasi-bound states 
in the central region have finite life time due to the Klein tunneling, in other words, such quasi-bound state can 
be called a resonance state.

The above analysis refers to situation (2). When E2 ≤ 2eBm , B reaches the critical magnetic field strength 
Bc = E2

2em (obtained by rearranging Eq. (18)). The situation then transitions from situation (2) to situation (3), 
in which the quasi-bound states become bound states. Notably, Bc and m have the same sign; thus, when the 
magnetic field points upward along the z-direction, Bc exists only when m > 0.

In the following section, we analyze the relation between the energy E0,m of the quasi-bound states and the 
angular momentum m for the case n = 0.

Numerical results and discussion
In the absence of a magnetic field, the analytical wavefunction of a quasi-bound state with angular momentum 
m is given by11:

The transmissivity is
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Figure 3.   LDOS and energy spectra of quasi-bound states calculated by the WKB approximation. The 
quasi-bound energy levels of the m = ±1/2,±3/2, and ± 5/2 . . . states of the graphene quantum dot with 
R = 4nm, V0 = 0.42eV , ED = −0.09eV depend on the magnetic field strength B. Panels (a)–(f) show the 
WKB-approximated LDOS inside the graphene quantum dot under different B fields: (a) m = ±1/2,B = 0 , 
(b) m = ±1/2,B = 1T , (c) m = ±3/2,B = 0 , (d) m = ±3/2,B = 10T , (e) m = ±5/2,B = 0 , and 
(f) m = ±5/2,B = 15T . Panel (g) plots the peak values in the energy spectra as B changes from 0 to 
30T,m = ±1/2,±3/2, and ± 5/2.
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where q = (E − V0)/�, k = E/� (vF = 1) , Jm± 1
2
 is the Bessel function of the first kind, and H(1)

m± 1
2

 is the Hankel’s 
function of the first kind. The LDOS inside the graphene quantum dot with no magnetic field is then obtained 
by noting that |ψ in

m |B=0,rigorous|2 ∝ LDOS(r, E).
Notably, for graphene quantum dots without a magnetic field, the spectra of the step-potential and smooth-

potential systems share the same features30. A comparison of WKB solution and the exact solution when B = 0 is 
presented in the Part 3 of the supplementary material. Furthermore, we consider the LDOS and energy spectrum 
for B  = 0 . The solution can be obtained by Eqs. (21) and (22), and the phase shift θ is determined by comparing the 
WKB-approximated energy level at B = 0 with the analytical solution at B = 0 . Panels (a)–(f) of Fig. 3 show the 
quasi-bound energy levels of m = ±1/2,m = ±3/2, andm = ±5/2 as the magnetic field B changes from 0 to 30T 
upward along the z-axis. The other parameters are R = 4nm, V0 = 0.42eV , EF = E + ED , andED = −0.09eV  . 
Increasing B along the z-axis relieved the degeneracy of ±m : for m > 0 , the energy levels En,m reduced and the 
bandwidths become increasingly acute until B exceeded Bc ; for m < 0 , the energy levels En,m enlarged and the 
bandwidths broadened. Fig. 3(g) provides the evolutionary processes of the energy levels as the magnetic field 
B varied. For a given magnetic field strength, increasing the | m | yielded a more remarkable change in En,m.

Using the results of Fig. 3, Eqs. (21), and (22), we can obtain the transmittance of the graphene quantum dot 
under a magnetic field. Considering the transmittance as the initial value of the evolution at r = R , and applying 
Eqs. (4) and (5) as the radial evolution equations, we obtained the three-dimensional radial-energy-transmittance 
LDOS map of the graphene quantum dot under a magnetic field. The results are shown in Fig. 4, which directly 
reveals the main energy-evolution features in the quasi-bound state of the NPN-type graphene quantum dot 

Figure 4.   Evolution of LDOS for different angular momenta. Increasing the magnetic field breaks the energy-
level degeneracy of the NPN-type graphene quantum dot. Rows (A)–(D) show the three-dimensional LDOS 
maps of the graphene quantum dot with R = 4nm, V0 = 0.42eV , and ED = −0.09eV under different magnetic 
field strengths: (A) m = 1/2, B = 0, 0.5, 1T (Bc|m=1/2 ≈ 1.1T) , (B) m = −1/2, B = 0, 1, 5T ( no Bc|m=−1/2 ), 
(C) m = 3/2, B = 0, 15, 28T (Bc|m=3/2 ≈ 28.2T) , and (D) m = −3/2, B = 0, 15, 28T ( no Bc|m=−3/2). When 
m > 0 , the energy level shifts in the negative direction and becomes narrower; when m > 0 , it moves in the 
positive direction and widens.



8

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20426  | https://doi.org/10.1038/s41598-020-77357-8

www.nature.com/scientificreports/

under a perpendicular magnetic field: As shown in Fig. 4A and B, the energy degeneracy at ±m and B = 0 was 
relieved at larger B. When m = 3/2 , the quasi-bound state energy moved in the negative direction and exhibited 
sharp resonances at magnetic field strengths above Bc |m=3/2≈ 28.2T . Meanwhile, when m = −3/2 , the energy 
shift in the quasi-bound state was positive and the energy levels broadened. The evolution of the quasi-bound 
energy level Em,n depends on the quantization rule given by Eq. (21), and r− is responsible for the energy width 
Ŵm,n as shown in Eq. (22). Both of these restriction conditions depend on the magnetic strength B. The LDOS 
at m = ±1/2 and m = ±3/2 exhibited similar features, and Bc |m=1/2≈ 1.1T (see Fig. 4 (C), (D)). Moreover, 
enlarging the |m| broadened the energy spectrum by bringing the effective energy closer to the top of the effec-
tive potential barrier, thereby increasing the critical magnetic field.

Conclusion
This paper discussed the evolution of the quasi-bound energy spectrum of an NPN-type graphene quantum dot 
under a perpendicular magnetic field. The wavefunction was approximately solved using the WKB method. The 
magnetic field broke the twofold degeneracy of ±m , thereby splitting the energy spectrum and inducing sharp 
resonances at higher magnetic strengths. The numerical results are relevant to recent experimental results14,31. 
Our method can effectively reveal the evolution of the quasi-bound states in graphene quantum dots placed in 
magnetic fields.
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