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Convolutional autoencoder based 
model HistoCAE for segmentation 
of viable tumor regions in liver 
whole‑slide images
Mousumi Roy1*, Jun Kong2, Satyananda Kashyap3, Vito Paolo Pastore3, Fusheng Wang1, 
Ken C. L. Wong3 & Vandana Mukherjee3*

Liver cancer is one of the leading causes of cancer deaths in Asia and Africa. It is caused by the 
Hepatocellular carcinoma (HCC) in almost 90% of all cases. HCC is a malignant tumor and the most 
common histological type of the primary liver cancers. The detection and evaluation of viable tumor 
regions in HCC present an important clinical significance since it is a key step to assess response of 
chemoradiotherapy and tumor cell proportion in genetic tests. Recent advances in computer vision, 
digital pathology and microscopy imaging enable automatic histopathology image analysis for cancer 
diagnosis. In this paper, we present a multi-resolution deep learning model HistoCAE for viable tumor 
segmentation in whole-slide liver histopathology images. We propose convolutional autoencoder 
(CAE) based framework with a customized reconstruction loss function for image reconstruction, 
followed by a classification module to classify each image patch as tumor versus non-tumor. The 
resulting patch-based prediction results are spatially combined to generate the final segmentation 
result for each WSI. Additionally, the spatially organized encoded feature map derived from small 
image patches is used to compress the gigapixel whole-slide images. Our proposed model presents 
superior performance to other benchmark models with extensive experiments, suggesting its efficacy 
for viable tumor area segmentation with liver whole-slide images.

Liver is a visceral organ frequently targeted by cancer metastasis. Hepatocellular carcinoma (HCC) is the most 
common histological type of primary liver cancers with hepatocellular differentiation. Tumors are known to 
have multiple cellular and stromal components such as, tumor cells, inflammatory cells, blood vessels, acellular 
matrix, tumor capsule, fluid, mucin, or necrosis. The viable tumor regions are more active and responsive regions 
inside the tissue area. In clinical practice, tissue samples are used to assess chemoradiotherapy response rates 
and tumor cell proportions in genetic tests. Therefore, there is a strong but unmet need to accurately evaluate 
viable tumor. Pathologists often use a semi-quantitative grading system for the residual tumor burden estimation. 
Thanks to recent advancement in digital pathology, whole slide images (WSI) of tumor tissues can now be quan-
titatively and automatically analyzed with microscopy image analysis algorithms that complement traditional 
manual tissue examinations1. MICCAI grand challenge 2019 has prepared a well-annotated dataset to address 
this specific problem2. With the recent emergence of deep learning methods for medical image analysis, tumor 
segmentation in liver WSIs can be well addressed by deep learning models that conduct patch-wise classifications 
or pixel-wise semantic segmentation. The most popular semantic segmentation framework is FCN3 consisting of 
down-sampling layers to extract image features and up-sampling layers to generate the segmentation mask. UNet4 
is another widely used segmentation model introducing the skip connections from down-sampling layers to up-
sampling layers to preserve the information for high-resolution images. By contrast, the patch-based methods 
partition the large WSIs into small image patches and classify each patch as either tumor or non-tumor5,6. A CNN 
is used7 to extract features from each patch and assign a prediction score. Based on the prediction score map in 
WSIs, breast metastasis cancer is segmented. As contextual information from one fixed resolution may not be 
enough to detect the tumor regions accurately, multiple methods have addressed this shortcoming by incorporat-
ing multi-scale contextual information into the patch-wise classification model8. Convolutional auto-encoder 
(CAE) and Convolutional neural network (CNN) have been integrated for finger vein verification, where CAE 
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is used to learn the feature codes from finger vein images and the CNN is used to classify finger vein from the 
learned feature codes9. A multi-model network G-EyeNet is proposed with a deep CAE and a traditional CNN10. 
These two components jointly optimize the network to minimize both image reconstruction and classification 
error based on a multi-task learning procedure. An unsupervised method is proposed to find contrast patterns 
between normal and malignant images11. However, these existing methods are not sufficient for viable tumor 
segmentation, as they use the standard CAE structure designed with standard MSE based loss function. We notice 
MSE loss by itself results in blurry reconstructed images that lead to a lower patch-based tumor classification 
accuracy. In addition, these frameworks have mostly single resolution and are implemented on low resolution 
images. For our histopathology dataset, we need to incorporate more spatial details as well as detailed structural 
information. Therefore, multi-resolution based framework is preferred.

In this study, we propose an automated deep learning-based model, named HistoCAE, for segmentation of 
viable tumors in liver WSIs. Specifically, we establish a multi-resolution CAE based framework for image recon-
struction, followed by a classification module that labels each image patch as either tumor or non-tumor. The 
resulting patch-based prediction results are assembled spatially to generate the final segmented tumor regions 
in a WSI. Unlike these aforementioned methods, we propose a customized reconstruction loss function for 
better image reconstruction and tumor segmentation. Besides, our architecture can incorporate features from 
multi-resolution images for tumor segmentation. We systematically compare the segmentation performance of 
our model with that of benchmark models (i.e. ResNet-101 and U-Net) at multiple image magnifications. Our 
proposed model presents superior performance than other benchmark models, suggesting its efficacy for viable 
tumor segmentation using liver WSIs.

Methods
Architecture of HistoCAE.  We combine supervised and unsupervised methods for learning class con-
ditional data-driven feature distributions and propose a convolutional autoencoder (CAE) based method to 
learn the structural feature of liver histopathology images. Our proposed HistoCAE network consists of an 
autoencoder module hCAE = {hE , hD} for learning image features and a classifier module hCL = {hE , hC} for 
supervised classification. The encoder component hE has four convolutional layers, while the decoder hD has 
four deconvolution layers. Each convolutional layer consists of a convolution operation (stride 1) with ReLU 
as non-linear activation function followed by batch normalization and a second convolution operation (stride 
2) with ReLU activation followed by batch normalization. Instead of using pooling operation, we explicitly use 
stride 2 to reduce the feature map size after each convolutional layer. In our study, we notice that pooling opera-
tions cause spatial information loss, leading to deteriorated image reconstruction results. The decoder module 
hD is trained to reconstruct the original input with the encoded latent vector from the encoder hE . The filter used 
for convolution operation is of 3× 3 in size. The depth of each layer in the encoder module hE is 16, 32, 64 and 
64, respectively. The last layer represents the bottleneck layer. The encoded latent vector at the bottleneck block 
has the dimension of 16× 16× 64 . The bottleneck block is connected to the classifier module hC that has one 
convolutional layer. A softmax classifier is associated with the classifier module hC that classifies each encoded 
vector from hE in the latent space. The HistoCAE network structure is illustrated in Fig. 1. The detailed descrip-
tion of the network structure is presented in Table S1 (Supplement).

Figure 1.   Schema of model architecture: HistoCAE model consists of an Encoder-Deocder module for patch 
reconstruction and a CNN Classifier module for tumor classification at 10 × image magnification.
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Reconstruction loss formulation.  For image reconstruction, the loss function plays a significant role for 
the reconstruction result quality assessment. The reconstruction loss lR is usually defined by the mean squared 
error (MSE) that measures the differences between the input and reconstructed image:

where M is the total number of images in the batch, N is the number of pixels in each input image, xij represents 
the j-th pixel value of i-th original image and x̂ij represents the value of j-th pixel of i-th reconstructed image. 
However, MSE loss causes the generation of a blurry reconstructed image with significant structural information 
loss from the original image12. As the cellular structures provides key information to liver cancer diagnosis11, we 
make autoencoders learn and retain such key information by including the Structural Similarity (SSIM) index 
in the loss function: lSSIM

(
xij , x̂ij

)
= 1− SSIM(xij , x̂ij) . The SSIM based loss term encourages autoencoders to 

maintain the structural information in image patches:

where l(·) , c(·) and s(·) in Eq. 2 are the luminance, contrast and structural comparison functions, respectively; 
α,β and γ represent the component weights 11.

We compare the performance of models trained with different combinations of loss functions and experi-
mentally find the optimal joint reconstruction loss function lR defined as a a weighted sum of MSE, SSIM and 
Mean Absolute Error (MAE): lR = α × lMSE + β × lSSIM + γ × lMAE  where, the weight values α,β and γ are 
hyper-parameters determined by rigorous experimentations as α = β = γ  = 0.5. Here, lMAE is defined as

As regular CNN architectures flatten a two-dimensional image to a vector representation, they are subject 
to spatial information loss and do not fully learn the image feature representations. Similarly, a typical vanilla 
autoencoder itself is subject to spatial information loss, thus not suitable for complex image feature learning and 
image reconstruction due to its shallow structure. By contrast, a CAE is equipped with a sliding window and 
multiple hidden layers in the network essential for learning the spatial features accurately. Additionally, a CAE is 
good at learning image feature representations in a much lower dimensional feature space via several sequential 
layers of convolutional operations and striding. In our study, the original patch size of 256 × 256 × 3 is reduced 
to 16 × 16 × 64 after the encoding computation. The resulting feature maps from patches can be organized by the 
original spatial arrangement as depicted in Fig. S1(A) (Supplement). In this way, it generates the compressed 
representation (i.e. the feature map) of a gigapixel whole-slide image and retains the semantic information in a 
lower dimensional space13. As a way to assess the CAE learning performance, the image reconstruction perfor-
mances of models trained with different reconstruction loss functions are measured by SSIM and presented in 
Fig. S1(B) (Supplement).

Giga‑pixel image compression by encoded feature map representation.  Another benefit of 
using autoencoder based classifier HistoCAE is to generate the compressed representation of gigapixel whole-
slide images. A giga-pixel image is a 3-dimensional array typically with more than one billion pixels. Such images 
are widely captured and used in the field of computational pathology, remote sensing, satellite imaging among 
others. It is computationally infeasible to feed the whole slide image data to a CNN model directly for training. 
Therefore, the encoder-decoder module hCAE of HistoCAE can help compress a giga-pixel image into a highly 
compact representation for further analysis. This size reduction is achieved by mapping images from low-level 
pixel space to a higher-level latent space using neural networks13. The goal is to retain the semantic informa-
tion with a reduced representation of a giga-pixel image by shrinking its spatial dimensions and growing along 
the feature directions as depicted in Fig. S1(A) (Supplement). This method works as follows. First, a gigapixel 
image is divided into a set of high-resolution patches. Next, each high-resolution patch is compressed using a 
neural network (e.g. hE in our model) that maps every image into a lower-dimensional embedding feature map. 
Finally, each feature map can be placed into an array according to the original spatial arrangement such that the 
neighboring feature map in the array represents the neighbor patches in the original image. CAE is one type of 
autoencoder specifically designed to learn the compact representation of a given image data manifold. In our 
study, we use the encoded feature map ( 16× 16× 64 in size) generated from hE of hCAE module to represent the 
corresponding high-resolution image of 256× 256× 3 in size. The lower-dimensional feature vectors generated 
from hE module can remove the spurious details from patches. By this technique, the gigapixel images can be 
reduced by size before they are provided to a CNN model for further analysis by transfer learning. We represent 
a giga-pixel whole-slide image as I ∈ R

M×N×3 where M and N represent the total number of rows and columns 
in I . We compress I into a more compact representation I ′ by two steps. First, the WSI I is divided into set of 
several high-resolution patches P = {pij} where pij is sampled from the i th row and j th column of a uniform 
grid of square patches of size 256 with a stride value of 256 throughout I . Next, each patch pij is compressed as 
a set of low-dimensional encoded feature maps of size 16× 16× 64 independently by the hCAE module. This 
is a more powerful technique for image compression compared to the classical approaches14. Although some 
studies15,16 have provided to other networks the extracted features from neural network in the context of transfer 
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learning and representation learning, we exploit the extracted features from the encoder-decoder module hCAE 
to perform viable tumor segmentation task in this study.

Viable tumor segmentation.  The extracted feature map from the encoder is provided to the CNN network 
hC that is followed by a softmax classifier for final classification. We use 0.7 dropout value for the fully connected 
layers in the CNN module to prevent overfitting. This technique can also help reduce the training parameters by 
randomly omitting hidden neurons. The probability of random neuron omission is another hyper-parameter to 
be set manually. We set it to be 0.7 in this study. The classification loss is a cross-entropy function that measures 
the difference between the actual and prediction label of the image: lC = − 1

M

∑M
c=1

(
yc log

(
ŷc
))

 where M is 
the total number of images in the current batch; yc and ŷc  represent the actual and predicted label of the c-th 
image in the batch. The learned weights for encoder hE during encoder-decoder module hCAE training are used 
to initialize the weights of encoder hE for encoder-classifier module hCL training and next update the whole hCL 
module without fixing the encoder hE weights. Finally, the patch-based prediction results from HistoCAE model 
are spatially combined to generate the tumor segmentation masks for viable tumor regions in a WSI.

Multi‑resolution extension: MR‑HistoCAE.  As a step further, we next aggregate contextual informa-
tion from patches of 5 ×, 10 × and 20 × magnifications to generate tumor segmentation result at the highest mag-
nification (i.e. 20 ×) that retains finer tissue histology details on tumor edges. This Multi-Resolution HistoCAE 
network (MR-HistoCAE) helps leverage contexts from both wide field-of-views and high-magnification images 
with tissue details useful for accurate viable tumor region detection.

In this model, three different encoder-decoder modules h1CAE , h2CAE and h3CAE are used to reconstruct the 
original image patches at 5 ×, 10 × and 20 × magnifications, respectively. Image patches centered at the same loca-
tion are extracted from three different magnifications. The resulting ground truth tumor masks are produced for 
three magnifications. Encoded feature maps from the bottleneck block of the separately trained autoencoders 
are passed to the classifier module hC . Specifically, each encoded feature map is connected to four convolutional 
layers. Each convolutional layer consists of one convolution operation with ReLU activation and stride 2, and 
the batch normalization. The sizes of the filters in the four convolutional layers are 128, 256, 512 and 512, respec-
tively. The output of last convolution layer is flattened into a vector of 512 in length. All three flattened vectors 
are concatenated into a single vector of length 1536 that is further connected to three fully connected dense 
layers. Each dense layer consists of a ReLU activation, a batch normalization, and a dropout layer. The last fully 
connected layer has a softmax function used for class label prediction. The dropout layer is applied only during 
the training stage and turned off for testing. Figure 2 demonstrates the schema of the proposed MR-HistoCAE 

Figure 2.   MRHistoCAE model aggregates patches at 5 × , 10 × and 20 × , respectively. The CAE module is same 
as the HistoCAE, but with the modified Classifier.
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model architecture. The MR-HistoCAE model is trained for multiple epochs to minimize both reconstruction 
and classification loss by the multi-task learning method17. Patch-based prediction results are finally assembled 
to generate the tumor segmentation mask for each WSI at the highest magnification (i.e. 20 ×).

Results
Datasets and evaluation metrics.  The dataset for this work comes from PAIP challenge 2019 that is a 
part of MICCAI 2019 grand challenges2. It includes 50 fully annotated H&E WSIs of liver tissue at 20 × magni-
fication. Fully annotated viable tumor area are provided by expert pathologists from Seoul National University 
Hospital, South Korea. All WSIs are stained by H&E and scanned by Aperio AT2 at × 20 power. Specifically, we 
follow the general guideline and split these images roughly into 70:20:10 for training, validation, and testing. 
Thus, we use 36 WSIs for training, eight for validation, and remaining six for testing. Due to their giga-pixel 
scale, WSIs cannot be directly provided to the deep learning models. As a pre-processing step, each WSI is parti-
tioned into non-overlapping patches of size 256× 256 at 5 ×, 10 × and 20 ×, respectively. Since we design the seg-
mentation task as a patch-wise classification, we need to generate the ground truth label from the viable tumor 
mask. A patch is only labeled as tumor if 30% or more of its region is covered by the tumor pixels. Otherwise, 
it is labeled as non-tumor. This is also considered as a pre-processing step. Dividing the image into patches also 
helps models learn local tumor environment, such as tumor cells, inflammatory cells, neoplastic vasculatures, 
and other small-scale histology structures. In total, 60,000 patches are used for training, 12,000 for validation 
and 21,019 for testing. No patches from training image data is used for validation or testing. We apply our tumor 
segmentation pipeline to images at each magnification separately. Additionally, we extend our framework to 
incorporate all three different magnification and develop multi-resolution framework for generating the seg-
mentation map at the highest magnification, i.e. 20 ×.

All pre-processing steps are performed with MATLAB 2018b software package18. After the deep learning-
based model training, the spatially ordered patch-based prediction results are assembled to generate the seg-
mentation result for WSIs. This step is illustrated in Fig. S4 (Supplement). All the data processing pipelines, 
and model training modules are run on IBM cluster with multiple CPU cores and 2 NVIDIA Tesla V100 GPUs. 
HistoCAE and baseline models, e.g. ResNet-101 and U-Net, are implemented on Keras and Tensorflow backend19 
with Tensorflow Version 1.9.0 and Tensorflow-GPU Version 1.13.1. For the encoder-decoder module training, 
data augmentation is implemented with Keras standard data augmentation library for random rotation, hori-
zontal and vertical flipping. The decoder and the softmax classifier are configured by ADAM20 optimizer with 
a learning rate of 0.0001 and beta value of 0.05. Five-fold cross-validation method is used during the training 
process. The encoder-decoder module hCAE is trained for 200 epochs with batch size of 64. This is followed by 
the encoder-classifier module hCL training for another 200 epochs with the same batch size. The classification 
results are evaluated with four metrics, namely precision, recall, F1-score, and testing accuracy. Testing accuracy 
is the ratio of number of correctly classified patches to the total number of patches in the test set. The WSI viable 
tumor segmentation performance is evaluated by the overall dice similarity score. The overall workflow is visu-
ally presented in Fig. S4 (Supplement).

Experimental results: quantitative comparison.  We present in Table 1 the patch-wise classification 
as well as WSI tumor segmentation performance of HistoCAE, its variations, benchmark models for classifica-
tion (i.e. ResNet-10121, VGGNet22, Google’s Inception V323, and DenseNet24) and state-of-the-art segmentation 
models (i.e. UNet4, SegNet25, DeepLabV326, PSPNet27, RefineNet28 and MobileUNet29) at 10 × magnification. The 
overall performances of segmentation models are worse than those of the classification models, due in large part 
to the complex vasculature structures in tumor masks. It is also noticed that tumor masks have irregular shapes, 
making it difficult to train the end-to-end segmentation pipeline. We used morphological operation to close 
the small blob regions less than or equal to 50 pixels in the ground truth mask before training the segmentation 
models. We carefully find this cutoff value so that we do not lose tumor structures or small vascular regions. 
As viable tumor regions are large in size, scattered over tissue domains, and do not show obvious patterns, we 
choose to construct the viable tumor segmentation mask with the patch-wise classification results. In HistoCAE 
model, the autoencoder helps initialize the classifier module hCL with proper weights through the prior unsuper-
vised training of hCAE module. Performances of classification model Inception V3 and DenseNet are comparable 
to that of our model HistoCAE, although the final viable tumor segmentation performance of HistoCAE1 is 
better than DenseNet and Inception V3 by the dice similarity coefficient. However, DenseNet and Inception V3 
have more complex and deeper network structures and need a much larger set of training data (e.g. ImageNet 
dataset etc.) without overfitting due to the large number of trainable parameters. In practice, it is often neces-
sary to use pre-trained weights to initialize such deep models and proceed with fine tuning for specific datasets 
especially when used for tasks with small sized dataset such as ours. By contrast, our model produces compa-
rable performance, but is much more simplified with substantially fewer number of network parameters than 
the state-of-the-art models. Therefore, our model is more robust for tumor segmentation in WSIs than other 
state-of-the-art methods. This is confirmed by a higher dice similarity value by experiments. Thus, our model is 
promising to be readily extended to other domain data without pre-training.

Note that models HistoCAE1, HistoCAE2, HistoCAE3, HistoCAE4, HistoCAE5, HistoCAE6 and Histo-
CAE7 are trained with reconstruction loss functions lR (i.e. MSE + SSIM + MAE), lMSE , lSSIM , lMAE , lMSE+SSIM , 
lMSE+MAE , lSSIM+MAE respectively. HistoCAE1 presents the best overall performance, due to the design of the 
balanced loss function. Such a loss function involving multiple loss components enables an enhanced feature 
distribution learning. Additionally, inclusion of SSIM loss in the reconstruction loss facilitates improved spatial 
information learning. When we only use either MSE, SSIM, or MAE loss alone, the resulting classification and 
tumor segmentation performance becomes worse. When we gradually add the terms, the resulting performance 
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is improved. For instance, the loss function of MSE + SSIM produces accuracy of 0.92 whereas the loss func-
tion of MSE + SSIM + MAE increases the accuracy to 0.95. Similarly, the WSI tumor segmentation performance 
assessed by dice value is improved from 0.56 for SSIM loss to 0.76 for SSIM + MAE based loss, and finally to 0.87 
for MSE + SSIM + MAE based loss.

With the HistoCAE model, we compare the classification and viable tumor segmentation performance at 5 ×, 
10 × and 20 × magnifications, and notice that the best patch-based classification and WSI tumor segmentation 
accuracy is achieved at 10 × magnification. The quantitative comparison result is shown in Table  S2 (Supplement). 
The model at 10 × resolution achieves the best performance by precision, recall, F1-score and dice similarity 
consistently. Therefore, we chose 10 × resolution for HistoCAE model. For the same reason, we compare His-
toCAE model and all variations with state-of-the art methods for classification and segmentation performance 
by evaluation metrics at 10 × magnification. We further spatially assemble the patch-based prediction results to 
generate tumor segmentation masks at 10 × magnification. Tumor boundaries are found to be coarse.

Thus, we test our multi-resolution model MR-HistoCAE at the highest magnification (i.e. 20 ×) that retains 
finer tissue histology details on tissue edges. The quantitative comparison result is presented in Table S3 (Sup-
plement). Supplementary Table S3 suggests that MR-HistoCAE has better performance than the HistoCAE at 
20 × . It also suggests that, MR-HistoCAE has comparable performance to HistoCAE at 10 × by all evaluation 
metrics. The resulting F1-scores from the MR-HistoCAE model with reconstruction loss lMSE are 0.95 and 0.91 
for non-tumor and tumor regions at 20 ×, respectively. The overall MR-HistoCAE classification accuracy at 20 × is 
0.94. By contrast, HistoCAE1 only yields 0.89 overall classification accuracy at 20 ×. By the quantitative results 
shown in Table S3 (Supplement), the most significant benefit of using MR-HistoCAE is that it can identify the 
finer boundaries at a much higher resolution (20 × versus 10 × ) while maintaining the same accuracy as the best 
performing HistoCAE.

Experimental results: visual comparison.  Figure 3 presents the visual comparison results from Histo-
CAE1, HistoCAE2, HistoCAE3, and baseline models for tumor segmentation in liver tissue WSIs. The classified 
patches are combined spatially to generate the whole slide tumor segmentation result for each model. Both tissue 
samples with connected tumor regions and those with numerous small scattered tumor regions are included in 
Fig. 3. We conclude from the visual results and low Dice Similarity in Table 1 that HistoCAE2, HistoCAE3 and 
the benchmark models tend to fail to match the ground truth mask. By contrast, the best model HistoCAE1 is 
able to produce results similar to the ground truth image and preserves tumor region shapes. The false positive 
regions are shown by green boxes in Fig. 3.

In Fig. 4, we demonstrate tumor borders identified at 20 × magnification by MR-HistoCAE model with contex-
tual and structural information from image patches at multiple magnifications (left) and results from HistoCAE1 
at 10 × magnification (middle). We notice that MR-HistoCAE is able to capture finer details of tumor edges in 
Fig. 4. (right) and retain more correctly classified regions at 20 × than 10 × magnification. The predicted tumor 

Table 1.   Quantitative evaluation of patch-based classification and tumor segmentation using 10 × images.

Model name Test accuracy

Precision Recall F1-Score Proportion of 
correct patches Dice similarityNon-tumor Tumor Non-tumor Tumor Non-tumor Tumor

Variations of our 
model

HistoCAE1
(MSE + SSIM + MAE 
loss)

0.95 0.96 0.93 0.95 0.95 0.96 0.94 0.94 0.87

HistoCAE2
(MSE loss) 0.93 0.95 0.91 0.93 0.93 0.94 0.92 0.93 0.83

HistoCAE3
(SSIM loss) 0.93 0.95 0.91 0.93 0.94 0.94 0.92 0.93 0.56

HistoCAE4
(MAE loss) 0.91 0.94 0.88 0.91 0.92 0.92 0.90 0.91 0.72

HistoCAE5
(MSE + SSIM loss) 0.92 0.94 0.91 0.93 0.91 0.93 0.91 0.92 0.72

HistoCAE6
(MSE + MAE loss) 0.93 0.94 0.94 0.96 0.91 0.95 0.93 0.93 0.77

HistoCAE7
(SSIM + MAE loss) 0.93 0.94 0.93 0.95 0.92 0.95 0.93 0.93 0.76

Classification models

ResNet-101 0.93 0.96 0.91 0.93 0.94 0.95 0.93 0.94 0.84

Vgg19 0.57 0.57 0 1 0 0.73 0 – –

DenseNet 0.96 0.95 0.94 0.97 0.94 0.96 0.95 – 0.80

InceptionV3 0.95 0.95 0.96 0.97 0.93 0.96 0.95 – 0.77

Segmentation 
models

U-Net – – – – – – – – 0.59

SegNet 0.82 0.80 0.82 0.77 – 0.73

DeepLabV3 0.73 0.88 0.73 0.72 – 0.67

PSPNet 0.79 0.88 0.79 0.78 – 0.72

RefineNet 0.84 0.89 0.84 0.83 – 0.75

Mobile-UNet 0.86 0.93 0.86 0.86 – 0.77
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regions at 20 × by multi-resolution based patch combination strategy are more similar to the ground truth than 
that from HistoCAE1, as HistoCAE1 is limited to information from a single 10 × magnification.

Figure 3.   Result comparison with proposed method and benchmark models: (a) Original WSIs; (b) 
Ground truth tumor mask; 10 × Segmentation result from (c) HistoCAE1, (d) HistoCAE2, (e) HistoCAE3, 
(f) ResNet-101 (false positive in green boxes), and (g) U-Net; (h) Segmentation result of MR-HistoCAE at 
20 × magnification.

Figure 4.   Identified tumor borders (left) by MR-HistoCAE at 20 × ; (middle) by HistoCAE1 at 10 × ; (right) in 
close-up views for comparison.
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Discussion
We propose a Convolutional Autoencoder (CAE) based classification model HistoCAE for segmentation of viable 
tumor in liver WSIs. The autoencoder module is trained for image reconstruction. The resulting feature map 
from each image patch through learning is used for tumor/non-tumor classification. The patch-based prediction 
result is spatially combined to generate the final tumor segmentation output for each WSI. To optimize CAE 
learning performance, we design a reconstruction loss function as a weighted sum of MSE, SSIM and MAE loss. 
This customized loss function helps better reconstruct the images by retaining detailed structural information. 
By contrast, reconstructed images from standard MSE based loss are blurred.

We further extend our model from HistoCAE to MR-HistoCAE by leveraging multi-resolution tissue infor-
mation. With multi-field views, it helps incorporate more spatial and detailed cellular information, resulting in 
substantially finer tumor borders recovery. Our models trained with different loss functions are intensively com-
pared with state-of-the-art classification models, i.e. ResNet-101, VGGNet, Google’s Inception V3, DenseNet and 
state-of-the-art segmentation models such as, U-Net, SegNet, DeepLabV3, PSPNet, RefineNet and MobileUNet. 
The superiority of our model performance suggests it is promising for accurate segmentation of liver tumors in 
histopathology WSIs clinically essential to personalized liver tumor treatment.

In this study, we present how supervised learning task (e.g. patch-based classification) can be achieved by 
leveraging unsupervised learning methods (e.g. CAE) and how the whole-slide image segmentation can be aggre-
gated from patch-based classification results. To our best knowledge, the application of unsupervised learning 
models (e.g. CAE) for segmentation of liver tumors in WSIs is not addressed in previous work. We are among 
the first to show that the application of autoencoder based classifier can be used for patch-based classification 
in a viable tumor segmentation task with whole-slide histopathology images. Unlike the standard autoencoder 
structures30, our customized hCAE module uses convolutional layers with stride 2 to reduce the feature map 
size. Compared with pooling operation resulting in information loss in each down-sampling stage, our method 
helps retain spatial information more accurately. We notice that pooling operations cause spatial information 
loss, leading to deteriorated image reconstruction results. Fig. S3 (Supplement) demonstrates that max-pooling 
based reconstruction is not able to recover any patch information in some cases and sometimes there is a rip-
pling effect in the reconstructed image.

The poor reconstruction result, in turn, decreases the classification accuracy. The convolution layer can pro-
actively and automatically learn properties, while pooling is a cheaper operation than convolution, both in terms 
of computation time and the number of parameters to be optimized. Max pooling (or other pooling operations) 
is a fixed operation. Replacing it with a strided convolution helps enhance the model’s expressiveness ability. The 
quantitative comparison results between max-pooling vs strided convolution are shown in Table S4(Supplement).

The segmentation of viable tumor regions in WSI using the proposed patch-based classification strategy 
is leveraged instead of direct segmentation as the state-of-the-art segmentation models are found inferior to 
patch-based classification strategy for our data. We conducted direct segmentation with several state-of-the-art 
segmentation frameworks, such as UNet, SegNet, DeepLabV3, RefineNet, PSPNet and MobileUnet. The quantita-
tive performance results are shown in the Table 1. We observe severe performance drops associated with direct 
segmentation methods when they are compared to the classification-based models. Very often, viable tumors are 
large in size, have irregular shapes, and are found with a large number of internal discontinuous spaces, mak-
ing it difficult to train the end-to-end segmentation pipeline. By the quantitative results, we notice that highly 
irregular vasculatures in the tumor masks devastate performances of methods using the pixel-wise segmentation 
strategy, such as U-Net. The resulting pixel-wise segmentation prediction accuracy by these methods is sub-
stantially contaminated by the presence of a large number of small tissue gaps and small vascular components 
(black regions) scattered over the viable tumor regions (red mask) as illustrated in Fig. S2 (Supplement). By the 
dice score, all segmentation methods we compared with have worse performance than the patch-based clas-
sification strategy. This well justifies our patch-based classification approach for segmentation of such irregular 
and disconnected tumor regions.

We compared the performance variance of state-of-the-art classification and segmentation models and His-
toCAE by ANOVA and Kruskal–Wallis method. Performing one-way ANOVA and Kruskal–Wallis for each 
metric across all models, we observe from Table S5 (Supplement) p-value < 0.05 for all metrics but dice similarity 
for ANOVA. When we perform pair-wise comparison, we observe there is significant difference between the 
segmentation (like DeepLab, PSPNet etc.) and classification models (DenseNet, ResnNet, HistoCAE1). However, 
the classification models do not show significant difference among themselves. Therefore, there is no statisti-
cally significant difference between HistoCAE1 (our model) and any of the classification models (DenseNet, 
Inception V3 etc.). However, the result difference is statistically significant when we compare HistoCAE1 with 
segmentation models (DeepLab, PSPNet etc.). For direct visual comparisons, the box plots of different metrics 
are demonstrated in Fig. S5 (Supplement).

We compare the performance of HistoCAE with its variations. We report the reconstruction accuracy of hCAE 
module by computing the SSIM value for each pair of images. The reconstructed images associated with three 
different loss functions lR , lMSE and lSSIM are illustrated in Fig. S1(B) (Supplement). The high SSIM value (SSIM 
value 0.78 for one such example patch) by lSSIM ensures the benefit of storing the low dimensional embedding 
vector that can save storage space. Large WSIs can thus be compressed and reconstructed from the encoded 
map. In future work, we will extend our patch-based classification approach further by replacing autoencoder 
structure with the generative adversarial network. The discriminator of the generative adversarial network can 
be designed to classify each patch as real or fake and tumor vs non-tumor at the same time whereas the goal of 
the generator module is to reconstruct the image patch as accurately as possible to confuse the discriminator. We 
will also dive deep into more complex patch combining strategy for multi-resolution patch-based result combina-
tion. Furthermore, we will investigate the efficacy of our HistoCAE model with other biomedical imaging data.
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Data availability
The dataset is available at public repository of PAIP 2019 challenge website. The code and implementation details 
are available in github31.
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