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Biperiodic superlattices
and transparent states in graphene

J.J. Alvarado-Goytia?, R. Rodriguez-Gonzalez?, J. C. Martinez-Orozco® &
I. Rodriguez-Vargas?™*

The transmission and transport properties of biperiodic graphene superlattices are studied
theoretically. Special attention is paid to the so-called transparent states of biperiodic superlattices. A
Dirac-like Hamiltonian is used to describe the charge carriers in graphene. The transfer matrix method
and the Landauer-Bittiker formalism are implemented to obtain the transmittance and conductance,
respectively. Similar results to those reported for Schrodinger electrons are obtained. However, in the
case of Dirac electrons the splitted bands and the transparent states associated to the biperiodicity
depend strongly on the angle of incidence as well as the character of the charge carriers. In fact, the
dynamic of the splitted bands and transparent states is inverted for holes. The origin of transparent
states is unveiled by obtaining an analytic expression for the transmittance. It is found that resonant
transmission through single and double barriers gives rise to transparent states. Regarding the
transport properties, it is possible to identify the fundamental changes caused by the biperiodicity.

In particular, it is found a splitting, shifting, and diminishment of the conductance peaks with respect
to the case of regular periodicity. This opens the door to corroborate experimentally the fundamental
characteristics of biperiodic gated graphene superlattices through transport measurements.

Semiconductor superlattices have been fundamental to demonstrate quantum size effects in artificial structures®2.
Moreover, the plethora of phenomena intrinsic to these structures are the basis of multiple device applications,
with quantum cascade lasers being a well-known example’. The vast majority of works are devoted to single-
period semiconductor superlattices. However, biperiodic or double period semiconductor superlattices have
some characteristics that are interesting from both the fundamental and technological standpoint. In particular,
the minibands are splitted into two subminibands, one of the subminibands presents narrow energy resonances
and the other broad energy ones. In addition, a special energy resonance named transparent state arises at the
edge of one of the subminibands. These characteristics were experimentally verified by Coquelin et al.** in finite
biperiodic GaAs/AlGaAs superlattices using hot electron spectroscopy. Later, Sprung et al.® studied theoreti-
cally the origin of transparent states in biperiodic superlattices. They found that the Bragg resonance turns into
a transparent state located close to the band edge of the low (high) energy subminiband when the first (second)
well is wider. Furthermore, the transparent state occurs at a fixed energy, regardless of the number of unit-cells
in the superlattice.

In the case of graphene, a periodic potential gives rise to extra Dirac points in the band structure and a highly
anisotropic propagation of the charge carriers”®. Extra Dirac points arise once the periodic electrostatic potential
surpasses a critical value. The extra Dirac points are located at the Fermi energy for the case of equal barrier-
well widths, and present an energy shift for unequal barrier-well widths. Furthermore, the group velocity of the
charge carriers in the extra Dirac points and even the original one is renormalized, becoming in extreme cases
zero in one direction and unchanged in another. The extra Dirac points have been experimentally confirmed in
lateral and moiré graphene superlattices”!°. This transition from isotropic to anisotropic properties is not exclu-
sive of the periodic modulation. For instance, graphene nanoribbons with different edge orientations exhibit
edge-dependent electronic and optical properties''~'*. Here, it is also important to mention that there are recent
breakthroughs in the fabrication of the so-called gated (electrostatic) graphene superlattices (GGSLs)'>'¢. One of
the most attractive aspects of this type of superlattice is the tunability that can be achieved through electrostatic
gating in contrast to moiré graphene superlattices. As in the case of semiconductor superlattices, most of the
works in graphene superlattices are devoted to the study of single-period structures. In fact, there are extensive
studies in electrostatic'’-2*20-23, magnetic**-?, and strain®*-** graphene superlattices. Regarding biperiodic super-
lattices in graphene the few works found in the literature address aspects related to the electron transport, band
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Figure 1. (a) Schematic representation of biperiodic graphene superlattices. Monolayer graphene is placed on
a supporting substrate such SiO; and nanostructured with metallic electrodes or top gates (TGs) in biperiodic
fashion. (b) Biperiodic potential profile along the superlattice axis. The superlattice unit-cell is composed of two
metallic electrodes (barriers) and two inequivalent free regions (wells). Vo and dp represent the height and width
of barriers, while dy; and dy, the width of the first and second well in the superlattice unit-cell, respectively.
Here, the number of superlattice periods is N = 3. The n and p type regions in the superlattice structure are
also highlighted. Depending on the energy of the incident charge carriers E;, it is possible to have three different
transport regions: for E; > V| transport mediated exclusively by electrons, for 0 < E; < V{ the transport is
owing to electrons and holes, and E; < 0 the transport is mediated only by holes.

structure, and resonant peak splitting®-*%. For instance, Huo et al.*® investigated the transmission properties of
biperiodic magnetic superlattices with asymmetric barriers, finding superior wave vector filtering characteristics
of biperiodic magnetic superlattices over single periodic ones. The same authors® studied the transport properties
of asymmetric biperiodic magnetic graphene superlattices for parallel and antiparallel magnetic configurations.
They found a giant magnetoresistance effect with a strong dependence on the asymmetry and interval of the
magnetic barriers. The superior wave filtering characteristics and the giant magnetoresistance effect of biperiodic
magnetic graphene superlattices are attractive for electron wave filters and magnetic reading devices, respectively.
Tashima et al.”” studied the generation of new Dirac cones in graphene under double-periodic potentials. They
found that the Dirac cones are generated sporadically following the Diophantine equation, in contrast to the
consecutive appearance of the Dirac cones in single-periodic potentials. They also found that the energy cutoff
of the linear dispersion relation in graphene is directly implicated in the generation of the sporadic Dirac cones.
Xu et al.*® investigate the resonant peak splitting in finite biperiodic magnetic graphene superlattices. General
expressions for the transmission probability and the resonant peaks were derived. They also found resonant peaks
splitting induced by the periodicity and a resonant peak related to the unit-cell of two barriers and two wells. The
unit-cell related peak unchanged as the period varies and drops quickly as the unit-cell asymmetry increases.
The splitting characteristics are also confirmed in the conductance and shot-noise. As it is documented there is
some progress in the understanding of the resonant peaks splitting in biperiodic magnetic graphene superlattices.
However, we consider that transparent states have not been studied in detail in biperiodic GGSLs (BPGGSLs).
Specifically, the role played by the angle of incidence, the character of the charge carriers (electrons-holes), and
the resonant characteristics within the unit-cell. Taking into account the relevance of BPGGSLs from both the
fundamental and technological standpoint, we consider that a thorough assessment of its characteristics, includ-
ing the transparent states, is necessary.

In this paper, we address biperiodic superlattices and transparent states in graphene. We first show the
general characteristics of biperiodic superlattices and transparent states for Dirac electrons, highlighting the
fundamental differences with respect to Schrodinger electrons. We then proceed to analyze the origin of the
transparent states. Our analysis is based on an analytic expression for the transmission coefficient. Finally, we
assess the impact of the biperiodic modulation on the transport properties. In particular, we analyze the linear-
regime conductance at zero temperature varying the degree of biperiodicity as well as correlating it with the
contour maps of the transmission.

Theoretical model

In Fig. 1a we show a schematic representation of BPGGSLs. It consists of monolayer graphene placed on a
supporting substrate such SiO, and top gates (TGs) arranged in biperiodic fashion. Two TGs alternated with
two free regions constitute the unit-cell of BPGGSLs. The biperiodic potential profile is shown in Fig. 1(b). As
can be noticed the two barriers in the unit-cell have the same height Vj and the same width dp, while the wells
have dissimilar widths dw and dy . The n and p type regions in the superlattice structure are also highlighted.
Depending on the energy of the incident charge carriers Ej, it is possible to have transport mediated exclusively
by electrons (E; > Vj), electrons and holes (0 < E; < Vj), and exclusively by holes (E; < 0).

The charge carriers in BPGGSLs can be described by the low-energy effective Hamiltonian

H=v5-p+ V(x), (1

where
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_ Vo for barriers
Vi) = { 0  for wells 2)

Here, vp is the Fermi velocity, p = (px. py) is the two-dimensional momentum and G = (oy, 0y) is the vector of
Pauli matrices related to the sublattice pseudospin.
The wave function and wave vector in the barriers are given as

1)017(.’6,)}) — Aﬁ_ ( V:— >eiqxx+iqyy +Ab_ ( Vl_ )efiqxeriqyy’ (3)

where

hvg (:I:qx + z'qy)
= 4
Vi E_ Vg (4)
and
1 2 2,2 .2

qx = hivp\/(E — Vo) —h Vidy- (5)

In the case of the wells and the left and right semi-infinite regions the wave function and wave vector are
given in similar fashion. Actually, we can obtain them by simply setting Vo = 0. In this case, we will use W as
superscript, u as bispinor coefficients and k = (ky, ky) as two-dimensional wave vector.

The transmission properties can be obtained with the help of the transfer matrix method. In fact, by requiring
the continuity of the wave function along the superlattice structure as well as the conservation of the transverse
wave vector k, = g, we can relate the wave function coefficients of the left semi-infinite region AL and AL with
the corresponding ones to the right semi-infinite region AR and AR through the so-called transfer matrix

(he) = (3t ©

where

MBSL — [Muc} N )
M" being the transfer matrix of the superlattice unit-cell. With the help of Eq. (6) the transmission probability
or transmittance can be written as

2 1

= 4’MFISL|2 >

R
_ |4+
A

(8)

with MBS the (1,1) element of MBSL, By using the relationships between the transfer matrix elements*' we can
write the transmittance as

1
T=——,
1+ MBS ©
where MBS is the (1,2) element of MBSL. Now, by considering the Chebyshev’s identity***
N
[ uc]N _ (M M5\ _ ( M{{Un-1—Un-2 M{5UN—1 (10)
M3T My; M3{Un—1 My5Un-1 = Un—2

where

sin ((N + I)QBLdBL)
Uy = s
N sin (QBLdBL) (1)

it is possible to write the transmittance in the form
1

- ucl|2 sin? (NqBLdBL) ' (12)
1+ ’Mlz sin? (qprdpr)

Here, qpr. and dpy, are the Bloch wave vector and the size of the superlattice unit-cell, respectively. gp; is given
by the trace of M",

1
cos (qprdpL) = 3 Tr [M*]. (13)

We can obtain a more elaborated expression for the transmittance by developing explicitly M*°. In this regard,
M"€ can be written as
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MY = MpMw1MpMw>, (14)

where Mg, My and My, are the transfer matrices of the barriers, first and second well of the superlattice unit-
cell, respectively. These matrices are given by

Mp =Dy ' (DpPsDg")Dy, (15)
Mw1 =Pw1, (16)
My =Pw, (17)
where
1 1
o-( 1)
18
(1 (18)
W uy u
and

e~iaxds
Pg =( 0 eiqde )’
e~ tkxedwn 0
Py =< 0 eikxdWl )’ (19)

e—ikxdwz 0
PWZ = 0 eikxdWZ

are the dynamic and propagation matrices of the barrier and well regions of the superlattice unit-cell. After
some algebra, see Appendix A in the Supplementary Information, we arrive to a more elaborate expression for
the transmittance:

1

T_

_ _ )
1 | MEBP[ Tr (MpMyyy)]2 S (N don) (20)

sin? (qardsL)

where Mllf is the (1,2) element of Mp, given by

k (k — ik ) sqlql
MiB = O THY) 0 S -
12 kxdx skl ) o1 (as) @D

and Tr (MM ) the trace of the transfer matrix of the first barrier and well of the superlattice unit-cell, namely:

(k2 = ssqlKllal)

Tr (MpMyw1) = 24 cos(gxdp) cos(kxdw1) +
kx‘]x

sin(qxdp) sin(kxdw1) ;. (22)

Here, s; = sgn (E — V) and s; = sgn (E) are the energy-dependent sign functions of the barriers and wells,
respectively.
Likewise, the trace of M¥¢ can be written as

Tr [M"‘] = Tr (MpMw) Tr (MpM) — 2 cos (ke (dw1 — dw2)), (23)

where Tr (MpMyy2) is given in similar fashion as Eq. (22), but what enters in the expression is dw instead of dw1.
The details of this derivation for the Tr [M““] can be found in the Appendix A of the Supplementary Information.
This set of expressions allows us to compute the transmittance of BPGGSLs. More importantly, they give us
the possibility to know the origin of the different resonances in the transmittance.
The transport calculations are based on the Landauer-Biittiker formalism. In particular, the linear-regime
conductance at zero temperature is computed with the formula

/2
G(Ep) = Go/ T(EFp,0) cos6d0, (24)
—/2

where Gy = 2e2L),E r/h?vE is the fundamental conductance factor, with L, the width of the graphene sheet and
Er the Fermi energy of the charge carriers.

Results and discussion

Here, we will show firstly the general characteristics of the transmission properties of BPGGSLs, paying special
attention to the dependence of transparent states on the angle of incidence, the width of the quantum wells,
and the character of the charge carriers. Then, we will proceed to analyze the origin of transparent states based
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Figure 2. Transmittance as a function of the energy for BPGGSLs with dy; > dw. Different incident

angles have been considered: (a) § = 15°, (b) 0 = 30°, (c) 6 = 45°and (d) 6 = 60°. In all cases the perfect
transmission at normal incidence & = 0° (dashed-red curve) is a manifestation of the Klein tunneling. Here, the
superlattice parameters are: V) = 0.1eV, dg = 50a, dw; = 60a, dy, = 50aand N = 3.

on an analytic expression for the transmission coeflicient. In addition, we will analyze the band structure and
group velocity characteristics of transparent states in single and double periodic GGSLs. Finally, we will address
the transport properties of BPGGSLs. Specifically, we will analyze the impact of the biperiodicity on the linear-
regime conductance at zero temperature. It is also important to mention that throughout the study the height
of the barriers will be Vy = 0.1 eV. For this value of the potential there is no room for extra Dirac points®*’. So,
the formation of extra Dirac points is not relevant for our analysis.

General transmission characteristics of BPGGSLs. In Fig. 2, we show the transmittance of BPGGSLs
when dw; > dw: for different angles of incidence: (a) & = 15°, (b) & = 30°, (c) & = 45° and (d) 6 = 60°. The
dashed-red lines correspond to normal incidence & = 0°, manifesting the well-known Klein tunneling of gated
graphene structures*’. As we can notice the minibands and minigaps are better defined as the angle of incidence
increases. Moreover, the minigaps get larger and the minibands tend to degenerate as the angle increases. We can
also see the splitting of the minibands as a consequence of the biperiodicity, however, the splitting is not the same
for all minibands as in the case of Schrédinger electrons®. Similar transmittance characteristics are obtained
when dw1 < dw?, as shown in Fig. 3. In Fig. 4 we show the splitting of some (first row) electron and (second
row) hole minibands when (first column) dw; > dw and (second column) dw; < dw>. The angle of incidence
considered is & = 45°, so the energy minibands are sufficiently defined such that we can identify the miniband
splitting and the different resonances within the subminibands. In fact, the splitting of electron minibands is
equivalent to the corresponding one of Schrédinger electrons, that is, the broad resonances are located in the
low-energy (high-energy) subminiband when dw > dwz (dw1 < dwz). In addition, the transparent state is
located at the edge of the subminiband of broad peaks, see the vertical dashed-blue arrows in Fig. 4a, b. Regard-
ing hole minibands, we can see that the splitting is not as marked as for electron minibands, due to the biperiodic
potential is on the electron energy side E > 0. The splitting is also reversed with respect to electron minibands,
that is, the broad resonances, including the transparent state, are in the high-energy (low-energy) subminiband
when dw; > dwz (dw1 < dw2), as shown in Fig. 4c, d. We can also notice that not all minibands follow the
splitting dynamic abovementioned for electron and hole minibands. For instance, the miniband around E = 0
does not present any splitting no matter if dw; > dwz or dw1 < dw?, as shown in Fig. 5a, b. Actually, it is like
a miniband of single-period GGSLs (SPGGSLs), with the resonances almost equally spaced and in number pro-
portional to the quantum wells in the structure. For other minibands the splitting dynamic is more intricate as in
the case of electron minibands at high energies, see Fig. 5¢, d. For these minibands, it is difficult to say that they
split in two subminibands of narrow and broad peaks located energetically according to the relation between
d w1 and d wW2.

In Fig. 6 we show the transmittance as a function of the energy for different dy; as indicated. The width of
the second well is fixed at 504 and the angle of incidence considered is @ = 45°. Figure 6a corresponds to SPGG-
SLs since dw; = 504, consequently, the number of resonances within the energy minibands is proportional to
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Figure 3. The same as Fig. 2, but for BPGGSLs with dw1 < dw. In particular, dy; = 50a and dy, = 60a.
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Figure 4. Transmission bands of BPGGSLs in which transparent states are clearly manifested. (a) and (b)
correspond to electron transmission bands, while (c) and (d) to hole transmission bands. The resonance
associated to the transparent state is indicated with the dashed-blue vertical arrow. The angle of incidence in all
cases is @ = 45°. The superlattice parameters of (a) and (c) are the same as in Fig. 2 and the ones of (b) and (d)
are the same as in Fig. 3.

the number of wells in the superlattice. Once biperiodicity is induced dw; = 554 the energy minibands split,
except the one around E = 0, as shown in Fig. 6b. As dyy increases the subminigap between the subminibands
increases, the subminibands shift to lower energies and the resonances get closer to each other, see Fig. 6¢, d. A
similar energy miniband dynamic is presented when we vary dy,, keeping fixed dw, as shown in Fig. 7. The
fundamental difference between Figs. 6 and 7 is the location of the narrow and broad resonances in the electron
and hole subminibands. In Fig. 8 we focus on the evolution of the low-energy electron miniband as dy varies.
In particular, we find that the minigap gets larger as dy; increases, going from 0 to 41 meV as dy increases
from 50a to 75a. The subminibands also shift to lower energies, about 12 meV for the same variation of dyy;.
Furthermore, the effective width of the miniband (subminibads+minigap) remains the same as dw varies,
about 70 meV. A similar evolution is obtained for the low-energy electron miniband as dw varies, with the roles
inverted between the narrow and broad resonance energy subminibands, as shown in Fig. 9.

Origin of transparent states. Now, it is turn to unravel the origin of transparent states. In order to do
so, we will analyze all ingredients involved in the determination of the transmittance, see Eqs. (13) and (20).
Specifically, the trace of the first barrier and well Tr (MM 1), the resonant tunneling condition of the first bar-
rier sin(gqxdp), the trace of the biperiodic unit-cell Tr (M*¢), and the transmittance itself. The dependence of all
these quantities with respect to the energy is shown in Fig. 10. Half of the trace of the biperiodic unit-cell gives
us the allowed and forbidden energy regions for the electron states, minibands and minigaps, respectively. In
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Figure 5. Transmission bands of BPGGSLs in which is not evident the contribution of transparent states. The
angle of incidence in all cases is & = 60°. The superlattice parameters of (a) and (c) are the same as in Fig. 2 and
the ones of (b) and (d) are the same as in Fig. 3.
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Figure 6. Transmittance of BPGGSLs as a function of the energy for different dyy; as indicated. In all cases the
other superlattices parameters are: 6 = 45°, dw, = 50a,Vy = 0.1eVand N = 3.

1 — = == === =
[5]
& W
s
‘Eo. 0.5
72}
=
g | U
&= 0 (b) | \d\’v \S
02 0 02 04
o 'TFrane T nT eI T T
Q
g [
s
‘205 05
72}
=
g I ]
= (o) dy, fF¢3a () U d = J:
| | | | 0 | | | |
02 0 02 04 02 0 02 04
Energy (eV) Energy (eV)

Figure 7. Transmittance of BPGGSLs as a function of the energy for different dy; as indicated. In all cases the
other superlattices parameters are: § = 45°, dw, = 50a,Vy = 0.1eVand N = 3.
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Figure 8. Main electron transmission band of BPGGSLs as a function of the energy for different dy as
indicated. The dashed-blue vertical arrows indicate the resonance associated to the transparent state. The other
superlattice parameters are the same as in Fig. 6.
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Figure 9. Main electron transmission band of BPGGSLs as a function of the energy for different dw as
indicated. The dashed-green vertical arrows indicate the resonance associated to the transparent state. The other
superlattice parameters are the same as in Fig. 7.

particular, the condition | Tr (M*¢) /2| < 1gives us the allowed energy regions, see the solid-red lines in Fig. 10.
We can notice that the resonant tunneling condition sin(gxdg) is not implicated in the low-energy electron and
hole minibands. It is also important to mention that the resonances that arise from this condition are independ-
ent of the degree of biperiodicity, that is, they are independent of dy; and dw. Once we defined g, and dp these
resonances are fixed, however, they are not arising at low-energy and consequently, they are not the reason for
transparent states. On the contrary, the transmittance and Tr (MpMw) are quantities that depend on the degree
of biperiodicity. In fact, as we described in the previous section the roles between the subminibands with narrow
and broad resonances are inverted according to the proportion between dy and dw,. Tr (MpMw1) depends
directly on dw, so if the proportion between the widths of the wells changes Tr (MpMyy1) changes as well. These
characteristics can be appreciated in the solid-black and solid-blue curves of Fig. 10a, b. More importantly, we
can see that transparent states are located exactly at the energies at which Tr (MpMy ;) = 0. This correspond-
ence between transparent states and Tr (MpMyy1) is better appreciated for different electron and hole minibands
in Figs. 11 and 12. Even, the resonance at the middle of the apparent regular miniband around E = 0 is related
to the Tr (MpMw1), as shown in Fig. 12a, b. In the case of electron minibands at high energies, the Tr (MpMw)
contributes with two and three resonances and an additional resonance is related to sin(g.dp), see Fig. 12¢, d.
This is the reason why we see a more intricate dynamic for these minibands.

As we can realize there are several characteristics of biperiodic graphene superlattices that were not prop-
erly addressed by Xu et al.*®. For instance, the role played by the charge carriers, the relevance of the angle of
incidence, and the impact of the details of the biperiodic unit-cell. Regarding the latter, Xu et al.*® talk about
unit-cell related peaks in generic terms, however, the resonant peaks associated to the unit-cell can be caused
either by sin(qxdp) and/or Tr (MpMyy1) as we have documented earlier. In fact, we found that transparent states
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Figure 10. (a) Transmittance, trace of the biperiodic unit-cell Tr (M*¢)/2, trace of the first barrier and well

Tr (MpMw 1) and sin(gxdp) as a function of the energy for BPGGSLs with dw > dw>. The angle of incidence is
0 = 45°. The other superlattice parameters are the same as in Fig. 2. (b) The same as (a) but for dy; < dw>. The
superlattice parameters are the same as in Fig. 3.
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Figure 11. The same as Fig. 4, but here Tr (MpMw) (solid-blue curve) and sin(gxdp) (solid-dark-green curve)
are included to unravel the origin of transparent states. The dashed-magenta lines help to identify the energies at
which Tr (MpMw 1) and sin(g,dp) are zero.

owe their origin to Tr (MpMyw) = 0 as resonant tunneling condition. In the case of sin(q,dg) = 0, it is well-
known that it represents the resonant tunneling condition of the barrier as resonant cavity. However, in the case
of Tr (MpMw1) = 0, it is not at all clear its physical meaning and its compatibility with the Sprung’s transparent
state interpretation®. So, we proceed to analyze this condition in more detail. Actually, Tr (MM ) is related
directly to the band structure of SPGGSLs through the fundamental relation

2cos(qf; dar) = Tr (MpMw1), (25)

where g5y and d5 are the Bloch wave vector and the size of the unit-cell of the single-period structure. In fact,
the electron states of a single-period superlattice that fulfill with the condition for transparent states are those
with a Bloch phase ¢3F = qyhdsy = /2. In Fig. 13 we show the dispersion relation for (a) § = 30°, (c) § = 45°
and (e) 0 = 60°. Taking into account the form of the energy minibands, we can realize that the electron states at

5P = 471 /2 are electron states with high group velocity within the energy miniband. Remember that the group
velocity can be computed through the derivative of the dispersion relation
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Figure 12. The same as Fig. 5, but here Tr (MpMyy 1) (solid-blue curve) and sin(g,dp) (solid-dark-green curve)
are included to unravel the origin of transparent states. The dashed-magenta lines help to identify the energies at
which Tr (MpMw ) and sin(g.dp) are zero.
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Figure 13. (First column) Low-energy dispersion relation and (Second column) group velocity vy of SPGGSLs
for different angles of incidence as indicated. The single-period superlattice parameters are: Vy = 0.1€V,
dp = 50a and dy; = 60a. A and A, represent the first and second electron energy minibands, respectively.

1 9E(q31,6)

(26)
h oqy

Vy =

The details of the expression for vx can be found in the Appendix B of the Supplementary Information. In Fig. 13b,
d, f the group velocities corresponding to the dispersion relation of Fig. 13a, c, e are shown. As we can notice
the electron states of the single-period structure that fulfill with the condition of transparent states have high
group velocities within a specific energy miniband. We can also see that as the angle of incidence increases the
mentioned states become states with maximum group velocity.

However, when these states are in the biperiodic environment they are not necessarily states with high group
velocity within electron energy minibands as shown in Fig. 14. The dispersion relation and the group velocity
can be obtained in similar fashion as in the case of single-period superlattices. The details are presented in the
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Figure 14. The same as Fig. 13, but for BPGGSLs. The biperiodic superlattice parameters are: Vo = 0.1eV,
dp = dwz = 50a and dw = 60a. A1, Ay, Azand A4 represent the first, second, third and fourth electron energy
minibands, respectively. The points and squares in color correspond to transparent states.

Appendix B of the Supplementary Information. Actually, by considering the condition for transparent states
Tr (MpMw1) = 0 in the equation for the dispersion relation of BPGGSLs we can obtain

cos(qprdpr) = — cos(kx(dw1 — dw2)), (27)
which solving for gp; yields
qgrdpr = kx(dw1 — dw2) + 7. (28)
Deriving this expression we can get readily the group velocity of transparent states

t:
Vi dpL ks

ve  dwi — dwa sklk|’

(29)

This expression tells us that as the difference between the widths of the wells, the degree of biperiodicity, is
reduced v¥ increases. Furthermore, as the degree of biperiodicity diminishes the transparent states are closer to
the boundary of the biperiodic Brillouin zone. These characteristics can be appreciated in Fig. 15. In particular,
see how the transparent states (points and squares in color) are moving as the degree of biperiodicity decreases.
It is also important to mention that as ky/|k| = cos 6, the angle of incidence is directly implicated in v%. In fact,
as the angle of incidence increases the group velocity decreases. Finally, if we consider dw1 < dw similar results
are obtained, however the energy subminibands that harbor transparent states are the high energy ones, results
not shown.

Impact of biperiodicity on the transport properties. Finally, we will analyze the impact of biperi-
odicity on the transport properties. Specifically, we want to see if an identifiable hallmark associated to the
biperiodic potential is manifested in the zero temperature linear-regime conductance. In Fig. 16 we show the
conductance outcomes for different degrees of biperiodicity when (first column) dw; > dw> and (second col-
umn) dw1 < dwz. We have considered different number of periods: (first row) N = 3, (second row) N = 6 and
(third row) N = 12. In all cases, the solid-black curve corresponds to the periodic case and serves as reference
contrasting the fundamental changes related to the biperiodicty. As we can notice the conductance of the peri-
odic case presents an oscillating ascending trend as the Fermi energy increases. This is a typical characteristic of
periodic GGSLs, related to the formation of energy minibands, as shown in the first column of the transmission
maps of Fig. 17. In fact, as the number of periods increases the minibands and minigaps are better defined and
the resonances within the minibands increase as well. These characteristics give rise to steeper conductance
curves as well as a peak structure within the main conductance peaks, see the second and third row in Fig. 16.
Once the biperiodicity is induced the main conductance peaks shift to lower energies and reduce with respect
to the periodic case, compare the solid-red and solid-black curves in Fig. 16. As the degree of biperiodicity
increases the shifting and reduction of the conductance peaks gets larger, resulting in practically two peaks at 70a
for either dw1 > dw2 or dw1 < dw». We can also note that these changes are more notorious in the conduct-
ance curves that correspond to dw1 > dw>. These differences are directly related to the splitting dynamics of
the energy minibands of BPGGSLs as shown in the transmission maps for dw; > dw; and dw1 < dw, second
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Figure 15. The same as Fig. 14, but here dyy is varied as indicated. The biperiodic superlattice parameters
are: Vo = 0.1eV, dp = dw, = 50aand 6 = 45°. Ay, Ay, Azand A4 represent the first, second, third and fourth
electron energy minibands, respectively. The points and squares in color correspond to transparent states.
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Figure 16. Conductance versus the Fermi energy of BPGGSLs for different number of periods N as indicated.
In the left column (dw; > dw?2) dw> is fixed to 50a and dy takes values of 504, 554, 60a and 70a, black, red,
blue and dark-green lines, respectively. In the right column (dw; < dw?>) the roles between dy and dy, are
reversed. In all cases, the other superlattice parameters are: dg = 50a and Vy = 0.13 eV.

and third column of Fig. 17, respectively. In fact, when dw > dw the low-energy subminibands cover a wider
angular range, practically nesting the high-energy subminibands. This results in marked changes in the conduct-
ance since this quantity is the result of averaging the transmittance over all angles of incidence while keeping
fixed the Fermi energy. In short, we have shown that biperiodicity effects can be identified on the transport
properties, opening the door to corroborate the splitting of the energy minibands through transport measure-
ments. Regarding transparent states, we cannot see their contribution directly on the transport properties. So,
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Figure 17. Transmission maps of BPGGSLs for different number of periods N as indicated. Here, the
superlattice parameters are: (Left) dw = dw, = 504, (Middle) dy; = 60a and dy, = 504, and (Right)

dw1 = 50a and dw, = 60a. In all cases dg = 50a and Vy = 0.13 eV. Here, the angle of incidence is normalized
to 8y = 90°.

additional external effects such as magnetic field and/or strain effects are necessary in order to observe its impact
directly on the transport and transport-related properties such as the conductance and the shot noise.

Conclusions

In summary, we have studied the transmission and transport properties of BPGGSLs. We paid special attention
to the characteristics and origin of the transparent states. The transfer matrix method and the Landauer-Biittiker
formalism were used to obtain the transmittance and the zero temperature linear-regime conductance, respec-
tively. We found that once the biperiodicity is incorporated the superlattice transmission bands are splitted and
transparent states arise in the edges of the splitted bands as in the case of Schrodinger electrons. However, the
splitted bands and the transparent states of BPGGSLs depend strongly on the angle of incidence and the character
of the charge carriers. More importantly, we obtained an analytic expression for the transmission coefficient that
allows us to unravel the origin of transparent states. In fact, transparent states owe their origin to the resonant
tunneling through single and double barriers. We also identify the fundamental changes caused by the biperio-
dicity and particularly by the transparent states on the band structure. In the case of the transport properties, we
found that the splitting of the transmission bands results in additional peaks in the conductance and a diminution
of it as the contrast between the width of the quantum wells increases, opening the door to corroborate experi-
mentally the fundamental effects of BPGGSLs. Finally, we would like to remark that further studies with other
external effects such as strain, interacting substrates, magnetic proximity effects, electromagnetic radiation, etc.
and other 2D materials such as silicene, transition metal dichalcogenides, and phosphorene are needed in order
to have a better understanding of biperiodic superlattices and transparent states for Dirac electrons.
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