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Biperiodic superlattices 
and transparent states in graphene
J. J. Alvarado‑Goytia1, R. Rodríguez‑González2, J. C. Martínez‑Orozco1 & 
I. Rodríguez‑Vargas2*

The transmission and transport properties of biperiodic graphene superlattices are studied 
theoretically. Special attention is paid to the so-called transparent states of biperiodic superlattices. A 
Dirac-like Hamiltonian is used to describe the charge carriers in graphene. The transfer matrix method 
and the Landauer–Büttiker formalism are implemented to obtain the transmittance and conductance, 
respectively. Similar results to those reported for Schrödinger electrons are obtained. However, in the 
case of Dirac electrons the splitted bands and the transparent states associated to the biperiodicity 
depend strongly on the angle of incidence as well as the character of the charge carriers. In fact, the 
dynamic of the splitted bands and transparent states is inverted for holes. The origin of transparent 
states is unveiled by obtaining an analytic expression for the transmittance. It is found that resonant 
transmission through single and double barriers gives rise to transparent states. Regarding the 
transport properties, it is possible to identify the fundamental changes caused by the biperiodicity. 
In particular, it is found a splitting, shifting, and diminishment of the conductance peaks with respect 
to the case of regular periodicity. This opens the door to corroborate experimentally the fundamental 
characteristics of biperiodic gated graphene superlattices through transport measurements.

Semiconductor superlattices have been fundamental to demonstrate quantum size effects in artificial structures1,2. 
Moreover, the plethora of phenomena intrinsic to these structures are the basis of multiple device applications, 
with quantum cascade lasers being a well-known example3. The vast majority of works are devoted to single-
period semiconductor superlattices. However, biperiodic or double period semiconductor superlattices have 
some characteristics that are interesting from both the fundamental and technological standpoint. In particular, 
the minibands are splitted into two subminibands, one of the subminibands presents narrow energy resonances 
and the other broad energy ones. In addition, a special energy resonance named transparent state arises at the 
edge of one of the subminibands. These characteristics were experimentally verified by Coquelin et al.4,5 in finite 
biperiodic GaAs/AlGaAs superlattices using hot electron spectroscopy. Later, Sprung et al.6 studied theoreti-
cally the origin of transparent states in biperiodic superlattices. They found that the Bragg resonance turns into 
a transparent state located close to the band edge of the low (high) energy subminiband when the first (second) 
well is wider. Furthermore, the transparent state occurs at a fixed energy, regardless of the number of unit-cells 
in the superlattice.

In the case of graphene, a periodic potential gives rise to extra Dirac points in the band structure and a highly 
anisotropic propagation of the charge carriers7,8. Extra Dirac points arise once the periodic electrostatic potential 
surpasses a critical value. The extra Dirac points are located at the Fermi energy for the case of equal barrier-
well widths, and present an energy shift for unequal barrier-well widths. Furthermore, the group velocity of the 
charge carriers in the extra Dirac points and even the original one is renormalized, becoming in extreme cases 
zero in one direction and unchanged in another. The extra Dirac points have been experimentally confirmed in 
lateral and moiré graphene superlattices9,10. This transition from isotropic to anisotropic properties is not exclu-
sive of the periodic modulation. For instance, graphene nanoribbons with different edge orientations exhibit 
edge-dependent electronic and optical properties11–14. Here, it is also important to mention that there are recent 
breakthroughs in the fabrication of the so-called gated (electrostatic) graphene superlattices (GGSLs)15,16. One of 
the most attractive aspects of this type of superlattice is the tunability that can be achieved through electrostatic 
gating in contrast to moiré graphene superlattices. As in the case of semiconductor superlattices, most of the 
works in graphene superlattices are devoted to the study of single-period structures. In fact, there are extensive 
studies in electrostatic17–20,20–23, magnetic24–29, and strain30–34 graphene superlattices. Regarding biperiodic super-
lattices in graphene the few works found in the literature address aspects related to the electron transport, band 
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structure, and resonant peak splitting35–38. For instance, Huo et al.35 investigated the transmission properties of 
biperiodic magnetic superlattices with asymmetric barriers, finding superior wave vector filtering characteristics 
of biperiodic magnetic superlattices over single periodic ones. The same authors36 studied the transport properties 
of asymmetric biperiodic magnetic graphene superlattices for parallel and antiparallel magnetic configurations. 
They found a giant magnetoresistance effect with a strong dependence on the asymmetry and interval of the 
magnetic barriers. The superior wave filtering characteristics and the giant magnetoresistance effect of biperiodic 
magnetic graphene superlattices are attractive for electron wave filters and magnetic reading devices, respectively. 
Tashima et al.37 studied the generation of new Dirac cones in graphene under double-periodic potentials. They 
found that the Dirac cones are generated sporadically following the Diophantine equation, in contrast to the 
consecutive appearance of the Dirac cones in single-periodic potentials. They also found that the energy cutoff 
of the linear dispersion relation in graphene is directly implicated in the generation of the sporadic Dirac cones. 
Xu et al.38 investigate the resonant peak splitting in finite biperiodic magnetic graphene superlattices. General 
expressions for the transmission probability and the resonant peaks were derived. They also found resonant peaks 
splitting induced by the periodicity and a resonant peak related to the unit-cell of two barriers and two wells. The 
unit-cell related peak unchanged as the period varies and drops quickly as the unit-cell asymmetry increases. 
The splitting characteristics are also confirmed in the conductance and shot-noise. As it is documented there is 
some progress in the understanding of the resonant peaks splitting in biperiodic magnetic graphene superlattices. 
However, we consider that transparent states have not been studied in detail in biperiodic GGSLs (BPGGSLs). 
Specifically, the role played by the angle of incidence, the character of the charge carriers (electrons–holes), and 
the resonant characteristics within the unit-cell. Taking into account the relevance of BPGGSLs from both the 
fundamental and technological standpoint, we consider that a thorough assessment of its characteristics, includ-
ing the transparent states, is necessary.

In this paper, we address biperiodic superlattices and transparent states in graphene. We first show the 
general characteristics of biperiodic superlattices and transparent states for Dirac electrons, highlighting the 
fundamental differences with respect to Schrödinger electrons. We then proceed to analyze the origin of the 
transparent states. Our analysis is based on an analytic expression for the transmission coefficient. Finally, we 
assess the impact of the biperiodic modulation on the transport properties. In particular, we analyze the linear-
regime conductance at zero temperature varying the degree of biperiodicity as well as correlating it with the 
contour maps of the transmission.

Theoretical model
In Fig. 1a we show a schematic representation of BPGGSLs. It consists of monolayer graphene placed on a 
supporting substrate such SiO2 and top gates (TGs) arranged in biperiodic fashion. Two TGs alternated with 
two free regions constitute the unit-cell of BPGGSLs. The biperiodic potential profile is shown in Fig. 1(b). As 
can be noticed the two barriers in the unit-cell have the same height V0 and the same width dB , while the wells 
have dissimilar widths dW1 and dW2 . The n and p type regions in the superlattice structure are also highlighted. 
Depending on the energy of the incident charge carriers Ei , it is possible to have transport mediated exclusively 
by electrons ( Ei > V0 ), electrons and holes ( 0 < Ei < V0 ), and exclusively by holes ( Ei < 0).

The charge carriers in BPGGSLs can be described by the low-energy effective Hamiltonian

where

(1)Ĥ = vF �σ · �p+ V(x),

Figure 1.   (a) Schematic representation of biperiodic graphene superlattices. Monolayer graphene is placed on 
a supporting substrate such SiO2 and nanostructured with metallic electrodes or top gates (TGs) in biperiodic 
fashion. (b) Biperiodic potential profile along the superlattice axis. The superlattice unit-cell is composed of two 
metallic electrodes (barriers) and two inequivalent free regions (wells). V0 and dB represent the height and width 
of barriers, while dW1 and dW2 the width of the first and second well in the superlattice unit-cell, respectively. 
Here, the number of superlattice periods is N = 3 . The n and p type regions in the superlattice structure are 
also highlighted. Depending on the energy of the incident charge carriers Ei , it is possible to have three different 
transport regions: for Ei > V0 transport mediated exclusively by electrons, for 0 < Ei < V0 the transport is 
owing to electrons and holes, and Ei < 0 the transport is mediated only by holes.
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Here, vF is the Fermi velocity, �p = (px , py) is the two-dimensional momentum and �σ = (σx , σy) is the vector of 
Pauli matrices related to the sublattice pseudospin.

The wave function and wave vector in the barriers are given as

where

and

In the case of the wells and the left and right semi-infinite regions the wave function and wave vector are 
given in similar fashion. Actually, we can obtain them by simply setting V0 = 0 . In this case, we will use W as 
superscript, u± as bispinor coefficients and �k = (kx , ky) as two-dimensional wave vector.

The transmission properties can be obtained with the help of the transfer matrix method. In fact, by requiring 
the continuity of the wave function along the superlattice structure as well as the conservation of the transverse 
wave vector ky = qy , we can relate the wave function coefficients of the left semi-infinite region AL

+ and AL
− with 

the corresponding ones to the right semi-infinite region AR
+ and AR

− through the so-called transfer matrix

where

Muc being the transfer matrix of the superlattice unit-cell. With the help of Eq. (6) the transmission probability 
or transmittance can be written as

with MBSL
11  the (1,1) element of MBSL . By using the relationships between the transfer matrix elements41 we can 

write the transmittance as

where MBSL
12  is the (1,2) element of MBSL . Now, by considering the Chebyshev’s identity39,40

where

it is possible to write the transmittance in the form

Here, qBL and dBL are the Bloch wave vector and the size of the superlattice unit-cell, respectively. qBL is given 
by the trace of Muc,

We can obtain a more elaborated expression for the transmittance by developing explicitly Muc . In this regard, 
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where MB , MW1 and MW2 are the transfer matrices of the barriers, first and second well of the superlattice unit-
cell, respectively. These matrices are given by

where

and

are the dynamic and propagation matrices of the barrier and well regions of the superlattice unit-cell. After 
some algebra, see Appendix A in the Supplementary Information, we arrive to a more elaborate expression for 
the transmittance:

where M1B
12  is the (1,2) element of MB , given by

and Tr (MBMW1) the trace of the transfer matrix of the first barrier and well of the superlattice unit-cell, namely:

Here, sq = sgn (E − V0) and sk = sgn (E) are the energy-dependent sign functions of the barriers and wells, 
respectively.

Likewise, the trace of Muc can be written as

where Tr (MBMW2) is given in similar fashion as Eq. (22), but what enters in the expression is dW2 instead of dW1 . 
The details of this derivation for the Tr [Muc

] can be found in the Appendix A of the Supplementary Information.
This set of expressions allows us to compute the transmittance of BPGGSLs. More importantly, they give us 

the possibility to know the origin of the different resonances in the transmittance.
The transport calculations are based on the Landauer–Büttiker formalism. In particular, the linear-regime 

conductance at zero temperature is computed with the formula

where G0 = 2e2LyEF/h
2vF is the fundamental conductance factor, with Ly the width of the graphene sheet and 

EF the Fermi energy of the charge carriers.

Results and discussion
Here, we will show firstly the general characteristics of the transmission properties of BPGGSLs, paying special 
attention to the dependence of transparent states on the angle of incidence, the width of the quantum wells, 
and the character of the charge carriers. Then, we will proceed to analyze the origin of transparent states based 
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on an analytic expression for the transmission coefficient. In addition, we will analyze the band structure and 
group velocity characteristics of transparent states in single and double periodic GGSLs. Finally, we will address 
the transport properties of BPGGSLs. Specifically, we will analyze the impact of the biperiodicity on the linear-
regime conductance at zero temperature. It is also important to mention that throughout the study the height 
of the barriers will be V0 = 0.1 eV. For this value of the potential there is no room for extra Dirac points8,37. So, 
the formation of extra Dirac points is not relevant for our analysis.

General transmission characteristics of BPGGSLs.  In Fig. 2, we show the transmittance of BPGGSLs 
when dW1 > dW2 for different angles of incidence: (a) θ = 15◦ , (b) θ = 30◦ , (c) θ = 45◦ and (d) θ = 60◦ . The 
dashed-red lines correspond to normal incidence θ = 0◦ , manifesting the well-known Klein tunneling of gated 
graphene structures42. As we can notice the minibands and minigaps are better defined as the angle of incidence 
increases. Moreover, the minigaps get larger and the minibands tend to degenerate as the angle increases. We can 
also see the splitting of the minibands as a consequence of the biperiodicity, however, the splitting is not the same 
for all minibands as in the case of Schrödinger electrons6. Similar transmittance characteristics are obtained 
when dW1 < dW2 , as shown in Fig. 3. In Fig. 4 we show the splitting of some (first row) electron and (second 
row) hole minibands when (first column) dW1 > dW2 and (second column) dW1 < dW2 . The angle of incidence 
considered is θ = 45◦ , so the energy minibands are sufficiently defined such that we can identify the miniband 
splitting and the different resonances within the subminibands. In fact, the splitting of electron minibands is 
equivalent to the corresponding one of Schrödinger electrons, that is, the broad resonances are located in the 
low-energy (high-energy) subminiband when dW1 > dW2 ( dW1 < dW2 ). In addition, the transparent state is 
located at the edge of the subminiband of broad peaks, see the vertical dashed-blue arrows in Fig. 4a, b. Regard-
ing hole minibands, we can see that the splitting is not as marked as for electron minibands, due to the biperiodic 
potential is on the electron energy side E > 0 . The splitting is also reversed with respect to electron minibands, 
that is, the broad resonances, including the transparent state, are in the high-energy (low-energy) subminiband 
when dW1 > dW2 ( dW1 < dW2 ), as shown in Fig. 4c, d. We can also notice that not all minibands follow the 
splitting dynamic abovementioned for electron and hole minibands. For instance, the miniband around E = 0 
does not present any splitting no matter if dW1 > dW2 or dW1 < dW2 , as shown in Fig. 5a, b. Actually, it is like 
a miniband of single-period GGSLs (SPGGSLs), with the resonances almost equally spaced and in number pro-
portional to the quantum wells in the structure. For other minibands the splitting dynamic is more intricate as in 
the case of electron minibands at high energies, see Fig. 5c, d. For these minibands, it is difficult to say that they 
split in two subminibands of narrow and broad peaks located energetically according to the relation between 
dW1 and dW2.

In Fig. 6 we show the transmittance as a function of the energy for different dW1 as indicated. The width of 
the second well is fixed at 50a and the angle of incidence considered is θ = 45◦ . Figure 6a corresponds to SPGG-
SLs since dW1 = 50a , consequently, the number of resonances within the energy minibands is proportional to 
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the number of wells in the superlattice. Once biperiodicity is induced dW1 = 55a the energy minibands split, 
except the one around E = 0 , as shown in Fig. 6b. As dW1 increases the subminigap between the subminibands 
increases, the subminibands shift to lower energies and the resonances get closer to each other, see Fig. 6c, d. A 
similar energy miniband dynamic is presented when we vary dW2 , keeping fixed dW1 , as shown in Fig. 7. The 
fundamental difference between Figs. 6 and 7 is the location of the narrow and broad resonances in the electron 
and hole subminibands. In Fig. 8 we focus on the evolution of the low-energy electron miniband as dW1 varies. 
In particular, we find that the minigap gets larger as dW1 increases, going from 0 to 41 meV as dW1 increases 
from 50a to 75a. The subminibands also shift to lower energies, about 12 meV for the same variation of dW1 . 
Furthermore, the effective width of the miniband (subminibads+minigap) remains the same as dW1 varies, 
about 70 meV. A similar evolution is obtained for the low-energy electron miniband as dW2 varies, with the roles 
inverted between the narrow and broad resonance energy subminibands, as shown in Fig. 9.

Origin of transparent states.  Now, it is turn to unravel the origin of transparent states. In order to do 
so, we will analyze all ingredients involved in the determination of the transmittance, see Eqs. (13) and (20). 
Specifically, the trace of the first barrier and well Tr (MBMW1) , the resonant tunneling condition of the first bar-
rier sin(qxdB) , the trace of the biperiodic unit-cell Tr (Muc) , and the transmittance itself. The dependence of all 
these quantities with respect to the energy is shown in Fig. 10. Half of the trace of the biperiodic unit-cell gives 
us the allowed and forbidden energy regions for the electron states, minibands and minigaps, respectively. In 
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particular, the condition | Tr (Muc)/2| < 1 gives us the allowed energy regions, see the solid-red lines in Fig. 10. 
We can notice that the resonant tunneling condition sin(qxdB) is not implicated in the low-energy electron and 
hole minibands. It is also important to mention that the resonances that arise from this condition are independ-
ent of the degree of biperiodicity, that is, they are independent of dW1 and dW2 . Once we defined qx and dB these 
resonances are fixed, however, they are not arising at low-energy and consequently, they are not the reason for 
transparent states. On the contrary, the transmittance and Tr (MBMW1) are quantities that depend on the degree 
of biperiodicity. In fact, as we described in the previous section the roles between the subminibands with narrow 
and broad resonances are inverted according to the proportion between dW1 and dW2 . Tr (MBMW1) depends 
directly on dW1 , so if the proportion between the widths of the wells changes Tr (MBMW1) changes as well. These 
characteristics can be appreciated in the solid-black and solid-blue curves of Fig. 10a, b. More importantly, we 
can see that transparent states are located exactly at the energies at which Tr (MBMW1) = 0 . This correspond-
ence between transparent states and Tr (MBMW1) is better appreciated for different electron and hole minibands 
in Figs. 11 and 12. Even, the resonance at the middle of the apparent regular miniband around E = 0 is related 
to the Tr (MBMW1) , as shown in Fig. 12a, b. In the case of electron minibands at high energies, the Tr (MBMW1) 
contributes with two and three resonances and an additional resonance is related to sin(qxdB) , see Fig. 12c, d. 
This is the reason why we see a more intricate dynamic for these minibands.

As we can realize there are several characteristics of biperiodic graphene superlattices that were not prop-
erly addressed by Xu et al.38. For instance, the role played by the charge carriers, the relevance of the angle of 
incidence, and the impact of the details of the biperiodic unit-cell. Regarding the latter, Xu et al.38 talk about 
unit-cell related peaks in generic terms, however, the resonant peaks associated to the unit-cell can be caused 
either by sin(qxdB) and/or Tr (MBMW1) as we have documented earlier. In fact, we found that transparent states 
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owe their origin to Tr (MBMW1) = 0 as resonant tunneling condition. In the case of sin(qxdB) = 0 , it is well-
known that it represents the resonant tunneling condition of the barrier as resonant cavity. However, in the case 
of Tr (MBMW1) = 0 , it is not at all clear its physical meaning and its compatibility with the Sprung’s transparent 
state interpretation6. So, we proceed to analyze this condition in more detail. Actually, Tr (MBMW1) is related 
directly to the band structure of SPGGSLs through the fundamental relation

where qSPBL and dSPBL are the Bloch wave vector and the size of the unit-cell of the single-period structure. In fact, 
the electron states of a single-period superlattice that fulfill with the condition for transparent states are those 
with a Bloch phase φSP

BL = qSPBLd
SP
BL = ±π/2 . In Fig. 13 we show the dispersion relation for (a) θ = 30◦ , (c) θ = 45◦ 

and (e) θ = 60◦ . Taking into account the form of the energy minibands, we can realize that the electron states at 
φSP
BL = ±π/2 are electron states with high group velocity within the energy miniband. Remember that the group 

velocity can be computed through the derivative of the dispersion relation

(25)2 cos(qSPBLd
SP
BL) = Tr (MBMW1),
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The details of the expression for vx can be found in the Appendix B of the Supplementary Information. In Fig. 13b, 
d, f the group velocities corresponding to the dispersion relation of Fig. 13a, c, e are shown. As we can notice 
the electron states of the single-period structure that fulfill with the condition of transparent states have high 
group velocities within a specific energy miniband. We can also see that as the angle of incidence increases the 
mentioned states become states with maximum group velocity.

However, when these states are in the biperiodic environment they are not necessarily states with high group 
velocity within electron energy minibands as shown in Fig. 14. The dispersion relation and the group velocity 
can be obtained in similar fashion as in the case of single-period superlattices. The details are presented in the 
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1
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Figure 13.   (First column) Low-energy dispersion relation and (Second column) group velocity vx of SPGGSLs 
for different angles of incidence as indicated. The single-period superlattice parameters are: V0 = 0.1 eV, 
dB = 50a and dW1 = 60a . �1 and �2 represent the first and second electron energy minibands, respectively.
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Appendix B of the Supplementary Information. Actually, by considering the condition for transparent states 
Tr (MBMW1) = 0 in the equation for the dispersion relation of BPGGSLs we can obtain

which solving for qBL yields

Deriving this expression we can get readily the group velocity of transparent states

This expression tells us that as the difference between the widths of the wells, the degree of biperiodicity, is 
reduced vtsx  increases. Furthermore, as the degree of biperiodicity diminishes the transparent states are closer to 
the boundary of the biperiodic Brillouin zone. These characteristics can be appreciated in Fig. 15. In particular, 
see how the transparent states (points and squares in color) are moving as the degree of biperiodicity decreases. 
It is also important to mention that as kx/|k| = cos θ , the angle of incidence is directly implicated in vtsx  . In fact, 
as the angle of incidence increases the group velocity decreases. Finally, if we consider dW1 < dW2 similar results 
are obtained, however the energy subminibands that harbor transparent states are the high energy ones, results 
not shown.

Impact of biperiodicity on the transport properties.  Finally, we will analyze the impact of biperi-
odicity on the transport properties. Specifically, we want to see if an identifiable hallmark associated to the 
biperiodic potential is manifested in the zero temperature linear-regime conductance. In Fig. 16 we show the 
conductance outcomes for different degrees of biperiodicity when (first column) dW1 > dW2 and (second col-
umn) dW1 < dW2 . We have considered different number of periods: (first row) N = 3 , (second row) N = 6 and 
(third row) N = 12 . In all cases, the solid-black curve corresponds to the periodic case and serves as reference 
contrasting the fundamental changes related to the biperiodicty. As we can notice the conductance of the peri-
odic case presents an oscillating ascending trend as the Fermi energy increases. This is a typical characteristic of 
periodic GGSLs, related to the formation of energy minibands, as shown in the first column of the transmission 
maps of Fig. 17. In fact, as the number of periods increases the minibands and minigaps are better defined and 
the resonances within the minibands increase as well. These characteristics give rise to steeper conductance 
curves as well as a peak structure within the main conductance peaks, see the second and third row in Fig. 16. 
Once the biperiodicity is induced the main conductance peaks shift to lower energies and reduce with respect 
to the periodic case, compare the solid-red and solid-black curves in Fig.  16. As the degree of biperiodicity 
increases the shifting and reduction of the conductance peaks gets larger, resulting in practically two peaks at 70a 
for either dW1 > dW2 or dW1 < dW2 . We can also note that these changes are more notorious in the conduct-
ance curves that correspond to dW1 > dW2 . These differences are directly related to the splitting dynamics of 
the energy minibands of BPGGSLs as shown in the transmission maps for dW1 > dW2 and dW1 < dW2 , second 

(27)cos(qBLdBL) = − cos(kx(dW1 − dW2)),

(28)qBLdBL = kx(dW1 − dW2)+ π .

(29)
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=
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Figure 14.   The same as Fig. 13, but for BPGGSLs. The biperiodic superlattice parameters are: V0 = 0.1 eV, 
dB = dW2 = 50a and dW1 = 60a . �1 , �2 , �3 and �4 represent the first, second, third and fourth electron energy 
minibands, respectively. The points and squares in color correspond to transparent states.
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and third column of Fig. 17, respectively. In fact, when dW1 > dW2 the low-energy subminibands cover a wider 
angular range, practically nesting the high-energy subminibands. This results in marked changes in the conduct-
ance since this quantity is the result of averaging the transmittance over all angles of incidence while keeping 
fixed the Fermi energy. In short, we have shown that biperiodicity effects can be identified on the transport 
properties, opening the door to corroborate the splitting of the energy minibands through transport measure-
ments. Regarding transparent states, we cannot see their contribution directly on the transport properties. So, 

Figure 15.   The same as Fig. 14, but here dW1 is varied as indicated. The biperiodic superlattice parameters 
are: V0 = 0.1 eV, dB = dW2 = 50a and θ = 45

◦ . �1 , �2 , �3 and �4 represent the first, second, third and fourth 
electron energy minibands, respectively. The points and squares in color correspond to transparent states.

Figure 16.   Conductance versus the Fermi energy of BPGGSLs for different number of periods N as indicated. 
In the left column ( dW1 > dW2 ) dW2 is fixed to 50a and dW1 takes values of 50a, 55a, 60a and 70a, black, red, 
blue and dark-green lines, respectively. In the right column ( dW1 < dW2 ) the roles between dW1 and dW2 are 
reversed. In all cases, the other superlattice parameters are: dB = 50a and V0 = 0.13 eV.
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additional external effects such as magnetic field and/or strain effects are necessary in order to observe its impact 
directly on the transport and transport-related properties such as the conductance and the shot noise38.

Conclusions
In summary, we have studied the transmission and transport properties of BPGGSLs. We paid special attention 
to the characteristics and origin of the transparent states. The transfer matrix method and the Landauer–Büttiker 
formalism were used to obtain the transmittance and the zero temperature linear-regime conductance, respec-
tively. We found that once the biperiodicity is incorporated the superlattice transmission bands are splitted and 
transparent states arise in the edges of the splitted bands as in the case of Schrödinger electrons. However, the 
splitted bands and the transparent states of BPGGSLs depend strongly on the angle of incidence and the character 
of the charge carriers. More importantly, we obtained an analytic expression for the transmission coefficient that 
allows us to unravel the origin of transparent states. In fact, transparent states owe their origin to the resonant 
tunneling through single and double barriers. We also identify the fundamental changes caused by the biperio-
dicity and particularly by the transparent states on the band structure. In the case of the transport properties, we 
found that the splitting of the transmission bands results in additional peaks in the conductance and a diminution 
of it as the contrast between the width of the quantum wells increases, opening the door to corroborate experi-
mentally the fundamental effects of BPGGSLs. Finally, we would like to remark that further studies with other 
external effects such as strain, interacting substrates, magnetic proximity effects, electromagnetic radiation, etc. 
and other 2D materials such as silicene, transition metal dichalcogenides, and phosphorene are needed in order 
to have a better understanding of biperiodic superlattices and transparent states for Dirac electrons.
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