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Measurement‑device‑independent 
quantum key distribution 
with leaky sources
Weilong Wang1,2,3*, Kiyoshi Tamaki4 & Marcos Curty1

Measurement-device-independent quantum key distribution (MDI-QKD) can remove all detection 
side-channels from quantum communication systems. The security proofs require, however, that 
certain assumptions on the sources are satisfied. This includes, for instance, the requirement that 
there is no information leakage from the transmitters of the senders, which unfortunately is very 
difficult to guarantee in practice. In this paper we relax this unrealistic assumption by presenting 
a general formalism to prove the security of MDI-QKD with leaky sources. With this formalism, we 
analyze the finite-key security of two prominent MDI-QKD schemes—a symmetric three-intensity 
decoy-state MDI-QKD protocol and a four-intensity decoy-state MDI-QKD protocol—and determine 
their robustness against information leakage from both the intensity modulator and the phase 
modulator of the transmitters. Our work shows that MDI-QKD is feasible within a reasonable time 
frame of signal transmission given that the sources are sufficiently isolated. Thus, it provides an 
essential reference for experimentalists to ensure the security of implementations of MDI-QKD in the 
presence of information leakage.

In theory, quantum key distribution (QKD)1–4 provides an information-theoretically secure way to distribute 
secret keys between two distant parties (commonly known as Alice and Bob). In practice, however, this is not 
the case. This is so because real devices do not typically conform to the requirements imposed by the security 
proofs. Indeed, various types of quantum hacking attacks have been proposed and experimentally demonstrated 
recently, which exploit device’ imperfections in practical QKD systems4. To tackle these implementation security 
loopholes, many efforts have been made, among which device-independent (DI) QKD5–7 and measurement-
device-independent (MDI) QKD8 are two prominent approaches. The security of DI-QKD relies on the violation 
of a Bell inequality9,10 and no knowledge about the inner working of the quantum apparatuses is needed given 
that the apparatuses are ‘honest’11, i.e., given that they follow the prescriptions of the protocol and not those of 
Eve. DI-QKD is, however, difficult to implement experimentally with current technology, especially for long 
distances12–14. On the other hand, thanks to its feasibility, MDI-QKD has attracted great attention and has been 
widely experimentally demonstrated in recent years15–22. In terms of security, MDI-QKD closes all side-channels 
in the detection unit, which significantly simplifies the path towards achieving implementation security in 
QKD, as now one only needs to secure the source. MDI-QKD requires, however, that certain assumptions on 
the sources are satisfied.

A common assumption is that Alice’s and Bob’s transmitters do not leak any unwanted information out of 
their security zones. Inspired by the results introduced in23–25, which study the information leakage problem 
in standard decoy-state QKD systems, here we relax such an unrealistic requirement and perform a finite-key 
security analysis of MDI-QKD with leaky sources. In particular, we focus on information leakage from two main 
apparatuses within the transmitters, the intensity modulator (IM), which is used to generate decoy states, and the 
phase modulator (PM), which is used to encode the basis and bit information. For instance, such information 
leakage might be due to a Trojan-horse attack (THA)26 performed by Eve. In this framework, we evaluate the 
security of two prominent MDI-QKD protocols: the symmetric three-intensity decoy-state MDI-QKD scheme27, 
and the efficient four-intensity decoy-state MDI-QKD protocol introduced in28, which has recently been imple-
mented over a distance of 404 km20. As expected, our results show that MDI-QKD is more sensitive to informa-
tion leakage than standard decoy-state QKD. Still, we show that MDI-QKD is feasible within a reasonable time 
frame of signal transmission given that Alice’s and Bob’s sources are sufficiently isolated.
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Methods
The symmetric three‑intensity decoy‑state MDI‑QKD protocol.  We begin by describing the spe-
cific steps of the symmetric three-intensity decoy-state MDI-QKD protocol. Here, we consider a sifting strategy 
which protects the protocol against the sifting attack29. This is so because the total number of pulses sent by Alice 
and Bob is fixed a priori and, moreover, the termination condition is basis independent30. The assumptions that 
we make on the users’ devices in the absence of information leakage can be found in the Supplementary Infor-
mation 1. The steps of the protocol are as follows: 

1.	 State preparation: The first two steps of the protocol are repeated N times, where N is a prefixed number. In 
each round, Alice and Bob select a basis χ ∈ {Z, X} with probabilities pZ and pX = 1− pZ , and select an 
intensity setting γ jA and γ jB with jA, jB ∈ {s,v,w} , with probability pjA and pjB , respectively. Afterwards, each 
of them encodes a random bit in a phase-randomized WCP of the chosen intensity in the chosen basis by 
using, for instance, the polarization encoding scheme employed in Ref.8 and sends it to the untrusted relay 
via the quantum channel. Note that our analysis is valid for any other encoding scheme.

2.	 Measurement: The untrusted relay is supposed to perform a Bell state measurement (BSM) on the states 
received from Alice and Bob and then record the measurement outcomes. For concreteness, below we shall 
assume that the untrusted relay uses the BSM introduced in Ref.8, which is based on linear optical elements 
and can distinguish two Bell states. In reality, however, the relay can behave as Eve decides.

3.	 Announcement of the measurement outcomes and random data post-selection: Once the N rounds of steps 1 
and 2 have finished, the relay announces in which rounds he obtained successful measurements together 
with the corresponding measurement outcomes. For each successful measurement event, Alice selects a 
fictitious basis ZAc or XAc with probability pZAc and pXAc

= 1− pZAc , respectively, and then she announces 
her fictitious basis choices.

4.	 Sifting: If Alice’s choice is the XAc basis, Bob announces his state preparation basis choice but Alice does not 
announce hers and then they discard the corresponding data. If Alice’s choice is the ZAc basis, both Alice 
and Bob announce their state preparation basis choices as well as their intensity settings. We denote by ZjAjB 
( XjAjB ) the set of indexes that identify the successful measurement events when Alice and Bob select the 
intensity settings γ jA and γ jB , respectively, Alice chooses the fictitious basis ZAc , and both of them select the 
Z (X) basis. If the sifting conditions |ZjAjB | ≥ N

jAjB
Z  and |XjAjB | ≥ N

jAjB
X  are satisfied for all jA, jB ∈ {s,v,w} , 

where NjAjB
Z  and NjAjB

X  are prefixed threshold values, Alice and Bob proceed to execute the next steps of the 
protocol. If the sifting conditions are not satisfied, the protocol aborts.

5.	 Parameter estimation: Alice and Bob estimate a lower bound, which we denote by NL
click,00,ss|Z ( NL

click,11,ss|Z ), 
on the number of successful measurement events in the sifted key data set Zss , in which both of them sent 
vacuum (single-photon) pulses. Also they use all the data in the sets ZkAkB and XjAjB , except that in the set 
Zss , to estimate an upper bound on the single-photon phase error rate in the sifted key data set Zss , which 
we denote by eUph.

6.	 Information reconciliation and privacy amplification: Alice and Bob perform an error correction step for a 
predetermined quantum bit error rate (QBER), which we denote by EssZ  . Then Alice computes a hash of the 
sifted key data in Zss by using a random universal2 hash function31 and sends Bob the hash value together 
with the hash function. Bob uses the hash function to compute a hash of his corrected sifted key data and 
checks if the hash value coincides with that of Alice. If both hash values coincide, this error verification step 
guarantees that they share identical keys after error correction except for an exponentially small probability. 
Moreover, if this step succeeds, then they perform a privacy amplification step by applying a random uni-
versal2 hash function to distill the final secret key.

Note that the sifting condition in Step 4 of the above protocol is only for data processing, and it is not related to 
the termination of the quantum communication steps, i.e., Steps 1 and 2, which is basis independent. Therefore, 
as indicated above, the protocol is secure against the sifting attack30.

Parameter estimation method for the three‑intensity protocol with leaky sources.  In this sec-
tion we briefly explain the general idea of our method to estimate the relevant parameters that are required to 
evaluate the secret key rate formula in the presence of information leakage. For concreteness, we consider the 
security analysis introduced in32, which provides a lower bound on the secret key length, ℓ , given by

where H(x) = −xlog2(x)− (1− x)log2(1− x) is the binary Shannon entropy function. The parameter leakEC 
is the amount of syndrome information declared by Alice in the error correction step of the protocol, given 
by leakEC = |Zss|fECH(EssZ ) for simplicity, where the parameter fEC is the efficiency of the error correction 
code. The quantities εsec and εcor are the secrecy and correctness parameters of the protocol, respectively, and 
ε ≤ 1− εZ,00εZ,11εph,11 with εZ,00 , εZ,11 and εph,11 being defined as the success probabilities when estimating the 
quantities NL

click,00,ss|Z , NL
click,11,ss|Z and eUph , respectively. In other words, ε denotes the failure probability that at 

least one of the estimations of NL
click,00,ss|Z , NL

click,11,ss|Z and eUph is incorrect.
In the following we explain how to estimate the quantities NL

click,00, ss|Z , NL
click,11,ss|Z and eUph in the pres-

ence of information leakage. The detailed calculations can be found in the Supplementary Information 1. For 

(1)ℓ ≥ NL
click,00,ss|Z + NL

click,11,ss|Z

[

1−H
(

eUph

)]

− leakEC − log2
2

ε2sec − ε
− log2

2

εcor
,
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concreteness, we shall assume that the information leakage is due to a THA performed by an active Eve. In this 
THA against the MDI-QKD system, Eve separately sends bright light into Alice’s and Bob’s devices and then 
measures the back-reflected light. In so doing, she can obtain partial information about Alice’s and Bob’s internal 
settings for each experimental trial. See Fig. 1 for an illustration of Eve’s THA. We remark, however, that our 
method is general and can be applied to analyze passive information leakage scenarios as well.

THA against the intensity modulator.  Here, we briefly indicate the key ideas to analyze a THA targeted against 
the intensity modulator (IM), which is used to generate decoy states. The detailed calculations can be found in 
the Supplementary Information 1. In particular, we first consider an asymptotic scenario where Alice and Bob 
send an infinite number of pulses. In this scenario, we mainly apply the trace distance argument24,25,33 to relate 
the detection and error events arising from different intensity settings of Alice and Bob and obtain some linear 
relations between them. Then, by applying Azuma’s inequality34, the relations can be extended to the realistic 
regime where Alice and Bob send a finite number (N) of pulses. Finally, given the constraints provided by the 
mathematical relations obtained in the previous step, the relevant parameters which are needed to evaluate 
Eq. (1) can be estimated by using, for instance, linear programming techniques35.

THA against the phase modulator.  A THA against the phase modulator (PM) might render Alice’s and Bob’s 
output states (which now also contain Eve’s systems due to the THA) basis dependent. As a result, Eve might be 
able to learn partial information about Alice’s and Bob’s basis and bit value choices each given time. The security 
of the standard BB84 protocol with a basis-dependent flaw has been analyzed in a previous work36 by using the 
idea of a quantum coin37,38. This idea was then generalized to phase encoding schemes for MDI-QKD where 
both Alice and Bob have basis-dependent flaws39. Here, to estimate the phase error rate in the presence of a THA 
against the PM, we apply the method introduced in Ref39 to our protocol.

More specifically, to simplify the analysis, we first consider a scenario where Alice’s and Bob’s light sources 
are both ideal single-photon sources. Also, we assume that Alice’s and Bob’s basis choices are random and do not 
depend on the IM or on the state of previous emitted pulses. Precisely, we consider a virtual entanglement sce-
nario where each of Alice and Bob prepares a bipartite entangled state and then measures one of the two systems 
to actually prepare the states that are sent to the untrusted relay. We then apply the Bloch sphere bound40 to this 
fictitious scenario and obtain the mathematical relation between the expected number of events, which contains 
the expected number of phase errors in the asymptotic limit. Next, we extend it to the finite-key regime by using 
Azuma’s inequality, which contains the actual number of phase errors. Finally, the upper bound on the number 
of phase errors can be numerically estimated by simply using the optimization toolbox of Matlab, and thus we 
obtain the upper bound on the phase error rate. More details can be found in the Supplementary Information 1.

The four‑intensity decoy‑state MDI‑QKD protocol.  We now consider the four-intensity decoy-state 
MDI-QKD protocol introduced in28, which has been recently implemented over a distance of 404 km20. In this 
protocol, each of Alice and Bob uses one intensity setting γ s for the Z basis states, and three intensity settings 
γ v , γ w and γ 0 = 0 for the X basis states. This is motivated by the fact that in order to increase the number of 
single-photon pulses emitted in the Z basis used for key generation, the intensity of the signal states, γs , needs 
to be close to one, while in order to have a tight estimation of the relevant parameters, the intensities in the X 

Figure 1.   Each of Alice and Bob uses a photon source to prepare phase-randomised WCPs. Decoy states are 
generated by means of an intensity modulator (Decoy IM). The bit and basis information of the pulses are 
encoded with a state encoding setup (Encoding PM). The relay is supposed to perform a Bell state measurement 
on the incoming pulse pairs. In a THA, Eve actively sends bright light pulses (thick blue arrows) into Alice’s 
and Bob’s devices to trigger the emission of side-channel signals. Then, Eve measures the back-reflected light 
(thin blue arrows) to extract information about Alice’s and Bob’s internal settings. Note that since the relay is 
untrusted (i.e., it can be even Eve), in this figure we consider that it is the relay who performs the THA.
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basis used for parameter estimation need to be much weaker. With the four-intensity decoy-state MDI-QKD 
protocol, one can optimize the intensities for key generation and parameter estimation independently. The prob-
abilities to select the corresponding intensities are ps , pv , pw and p0 , respectively, with ps + pv + pw + p0 = 1 . 
Note that the probability to choose the Z basis is now pZ = ps and the probability to choose the X basis is given 
by pX = pv + pw + p0.

Parameter estimation method for the four‑intensity protocol with leaky sources.  The security 
analysis of this protocol against information leakage from the IM and the PM is slightly different from that in 
the previous section. This is because of the following. Since now the intensity setting in the Z basis is unique and 
it is typically different from the intensity settings in the X basis, by analyzing the information leakage from the 
IM Eve can also learn partial information about the users’ basis choices. Similarly, by analyzing the information 
leakage from the PM Eve can learn partial information about the users’ intensity settings as well. That is, the 
information leakage from the IM and the PM of each user is now correlated. Fortunately, a general procedure to 
estimate the relevant parameters has already been briefly introduced in Ref24. Here, we adapt it to the scenario of 
the four-intensity decoy-state MDI-QKD protocol.

Note that, in general, when the IM and the PM are correlated, the yields associated with different photon 
number states can also depend on the bit value24. However, for simplicity, in the model above we assume that 
the back-reflected light does not carry information about the bit value but only about the basis. The specific 
calculations for the relevant parameters to evaluate Eq. (1) can be found in the Supplementary Information 1.

Results
The secret key rates in the presence of information leakage can be simulated given the security analysis summa-
rized above. In this section, we show and compare the results for the three-intensity and four-intensity protocols.

Simulation results for the three‑intensity decoy‑state MDI‑QKD protocol.  In the simulation, 
only for illustration purposes, we assume a particular example of THA, which is shown in Fig. 2. Eve sends Alice 
(Bob) two high intensity single-mode coherent pulses, each of which is denoted by 

∣

∣βEe
iθE
〉

 , with βE representing 
the amplitude and θE the phase of the coherent state. One of them targets the IM and the other one targets the 
PM. For simplicity, we shall also assume that the back-reflected light from both the IM and the PM to Eve is still 
a coherent state. In so doing, as we show in the Supplementary Information 1, we can obtain simply analytical 
expressions for those quantities where we apply the trace distance argument. Moreover, we further assume that 
the back-reflected light from the IM has the form 

∣

∣βre
iθr
〉

 , where the values of the parameters βr and θr depend 
on Alice’s and Bob’s intensity settings each given time with r ∈ {s,v,w} , and the back-reflected light from the PM 
is given by 

∣

∣

√
Imaxe

iθχ
〉

 , where Imax is the maximum intensity of the back-reflected light and χ ∈ {Z, X} refers 
to the basis choice. Note that, here, for simplicity, and in order to compare our simulation results to those in25, 
we assume that Eve’s back-reflected light from the PM only contains the basis information, as already men-
tioned above. That is, we assume that |� i

0,Z�A’,E = |� i
0,Z�A’ ⊗ |φZ�E and |� i

1,Z�A’,E = |� i
1,Z�A′ ⊗ |φZ�E , where 

the state |φZ�E= |
√
Imaxe

iθZ� of Eve’s back-reflected light is the same for both bit values (and similarly for the X 
basis). Here, the state |� i

0,Z�A’,E ( |� i
1,Z�A’,E ) denotes the joint state of Alice and Eve when Alice uses the Z basis 

to encode the bit value 0 (1) in the ith round of the protocol and the state |� i
0,Z�A′ ( |� i

1,Z�A′ ) denotes the state of 
Alice in such scenario. Likewise, we assume a similar situation at Bob’s side. Further details can be found in the 
Supplementary Information 1. To learn partial information about the intensity settings, Eve can measure the 
state 

∣

∣βre
iθr
〉

 , and to learn partial information about the basis choices, Eve can measure the state 
∣

∣

√
Imaxe

iθχ
〉

 . 
We emphasize, however, that this is just a particular model of a THA that we use it as an example to evaluate the 
secret key rate in a simple way. It is important to emphasize, however, that our security analysis can be applied to 
any THA. It remains a very important open question to determine the optimal state that Eve can send to Alice 
and Bob, as well as to experimentally characterize the identity of the back-reflected light. These questions are 
generally setup dependent and are beyond the scope of this paper.

In the presence of information leakage, the actual secret key length, ℓ′ , is bounded by

Figure 2.   Example of a THA against the IM and the PM of Alice (Bob). For simplicity, we assume that Eve 
sends Alice (Bob) two high intensity single-mode coherent pulses, each of which is denoted by 

∣

∣βEe
iθE

〉

 . One 
of them targets the IM and the other one targets the PM. We further assume also for simplicity that the back-
reflected light from the IM and the PM to Eve is in a product state of two coherent states. One comes from the 
IM, which we denote by 

∣

∣βre
iθr
〉

 , and the other comes from the PM, which has the form 
∣

∣

√
Imaxe

iθχ
〉

 , where r 
and χ refer to the intensity setting and basis choice, respectively, with r ∈ {s,v,w} and χ ∈ {Z,X} . Eve can learn 
partial information about the intensity settings and the basis choices by separately measuring the states 

∣

∣βre
iθr
〉

 
and 

∣

∣

√
Imaxe

iθχ
〉

.
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where ℓ is given by Eq. (1). Here, ŴAB and ŴE denote the spaces of the parameters controlled by Alice and Bob, 
and by Eve, respectively. In the simulation, we assume a practically reasonable value for the weakest decoy state, 
γ w = 5× 10−4 , and, without loss of generality, we assume that θs = 0 . The experimental parameters used in the 
simulations are listed in Table 1. Below we present the simulation results of the secret key rates in three practical 
cases within the framework of the THA described above. Each case corresponds to a particular model for the 
back-reflected light.

Case 1.  In the framework of the THA considered, it is clear that the higher the intensity of the back-reflected 
light is, the more information Eve can extract. In this first example, we evaluate a worst-case scenario, where 
Alice and Bob may overestimate the intensity of the back-reflected light leaked to Eve. In particular, we suppose 
that the intensity βr2 is always upper bounded by a certain value Imax for all r and we conservatively assume that

The simulation result of the secret key rate, ℓ′/N , as a function of the transmission distance between Alice and 
Bob in this case is shown in Fig. 3a for a fixed value of the total number of transmitted pulses, N = 1014 . In this 
figure, the black solid line represents the key rate in the situation where there is no information leakage, namely 
Imax = 0 , and the different colored lines correspond to different amounts of information leakage. More precisely, 
the colored solid lines represent the key rates in the presence of a THA against only the IM. If we compare these 
results to the longest achievable distance without information leakage, which is about 88 km, we find that now 
the secret key rate vanishes at about 48 km even when Imax is as small as 10−13 . The colored dotted lines repre-
sent the secret key rates in the presence of a THA against both the IM and the PM. Now the secret key rates are 
obviously lower than the ones corresponding to a THA against only the IM. For example, when Imax = 10−13 
the secret key rate now vanishes at only 30 km. These results highlight the strong effect that information leakage 
(even when is very tiny) can have on the performance of MDI-QKD.

As already observed in the finite-key analysis for decoy-state QKD25, here we also find that in MDI-QKD 
Alice and Bob need to discard part of their data (on average about NpXAc

 pulse pairs) to estimate the phase error 
rate when there is information leakage from the PM. In our simulation, we find that the optimal value of pZAc 
typically lies in the interval [0.65, 0.9] . Note that, compared to the simulation result in25, we have that the value 
of pZAc is typically smaller in the MDI-QKD protocol, which means that MDI-QKD has to sacrifice a bigger 
proportion of data than in the case of the standard decoy-state QKD protocol to estimate the phase error rate.

Also, we find that MDI-QKD seems to be more sensitive to information leakage. In order to obtain a certain 
performance, the value of Imax in MDI-QKD is roughly the square of that in standard decoy-state QKD due to 
the fact that in MDI-QKD there are two leaky sources (Alice and Bob) instead of only one leaky source. Thus, to 

(2)ℓ′ ≥ max
ŴAB

min
ŴE

ℓ,

(3)βs
2 = βv

2 = βw
2 = Imax .

Table 1.   Experimental parameters used in the simulations. The parameter ed is the intrinsic error rate due to 
the misalignment of the MDI-QKD system; pd is the dark count rate of the relay’s detectors, which we assume 
is equal for all of them; ηdet is the overall detection efficiency of the relay’s receiver; α is the loss coefficient of 
the channel measured in dB/km; and fEC is the efficiency of the error correction code.

ed pd ηdet α fEC
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Figure 3.   The secret key rate in logarithmic scale as a function of the distance in Case 1 for the three-intensity 
protocol. (a) Here we consider a fixed value of the total number of transmitted pulses, N = 1014 and various 
values for the intensity Imax . (b) Here we fix Imax = 10−16 and consider various values for N. Moreover, we 
evaluate information leakage from the IM only.
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implement the MDI-QKD protocol, both Alice and Bob need to carefully isolate their devices from the external 
environment to guarantee the security of the system.

In Fig. 3b, the different colored lines show the secret key rate as a function of the distance for a fixed value 
Imax = 10−16 and for different total numbers of transmitted pulses. Here, for simplicity, we only plot the key rates 
against information leakage from the IM and omit the results when there is also information leakage from the 
PM as they are similar to those shown in Fig. 3b. That is, in this figure we can see the effect of the information 
leakage as a function of the number of transmitted pulses. For example, when Imax = 10−16 , the longest achiev-
able distance is about 84 km when the total number of transmitted pulses is N = 1015 . However, when N = 1012 , 
this distance decreases to 32 km. Our results indicate that the finite-key effect has a much bigger impact on the 
secret key rate in the presence of information leakage27. The reason for this is mainly that, in order to estimate 
the statistical fluctuations for a finite sampling size in the presence of information leakage from the IM, our 
methodology relies on applying Azuma’s inequality34 to the total number of transmitted pulses. In contrast, when 
there is no information leakage from the IM, one can apply Azuma’s inequality to the number of pulses detected. 
This is so because in this latter case, one can assume a counterfactual scenario where Alice and Bob select their 
intensity settings a posteriori, i.e., after the relay has detected the successful events. As a consequence, the per-
formance of MDI-QKD in the finite-key regime is comparatively worse in the presence of information leakage 
from the IM. Note that for the case of information leakage from the PM, we actually apply Azuma’s inequality 
to the number of the detected events.

To further illustrate how the information leakage affects the secret key rate as a function of the number of 
transmitted pulses, in Fig. 4 we plot the ratio ( ℓ′Imax>0/ℓ

′
Imax=0 ) between the secret key rates for two fixed positive 

values of information leakage, Imax = {10−13, 10−20} and those when Imax = 0 (i.e., when there is no information 
leakage) for different values of N. Here, for simplicity, we disregard again the information leakage from the PM. 
From Fig. 4 one can see that given a fixed distance and a fixed value of N, the ratio when Imax = 10−13 is at least 
one order of magnitude lower than that when Imax = 10−20 . And the ratio when Imax = 10−13 drops faster as 
the distance increases than that when Imax = 10−20 . For instance, if we focus on the red lines, from 0 to 30 km, 
the ratio drops from about 10−1 to 10−3 when Imax = 10−13 (i.e., two orders of magnitude) while the ratio drops 
only from 0.71 to 0.49 (i.e., of the same order of magnitude) when Imax = 10−20 . This suggests that the effect 
of information leakage increases when N decreases, and the finite-size effect is amplified when the amount of 
information leakage increases. We remark that the simulation results for the other two cases that we consider 
next are analogous to those of Fig. 4 and thus we omit them in the next two subsections.

Case 2.  In the previous case, we considered a conservative scenario for Alice and Bob, where the intensity of 
the back-reflected light is maximal and independent of the settings of the IM. Thus, the amount of informa-
tion leaked might be overestimated, which results in a relatively pessimistic lower bound on the secret key rate. 
However, in practice, the input light of Eve may also go through the IM. As a consequence, the back-reflected 
light could be modulated in the same manner as the senders’ pulses during the state preparation process. In this 
case, we have that

That is, here we assume that the maximum amount of information leakage comes from the largest intensity setting 
of the senders, namely Imax = βs

2 . The intensity of the back-reflected light corresponding to the other intensity 
settings fulfills the conditions: βs2/βv2 = γ s/γ v and βs2/βw2 = γ s/γ w.

The simulation results of the secret key rate are shown in Fig. 1 in the  Supplementary Information. The 
behavior of the curves is very similar to those in Case 1, and in the simulation we find that the optimized value 
of pZAc is similar as well. One main difference is that with the same experimental parameters the secret key rate 
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is now a little bit higher and can go a bit further than that in Case 1. For example, when the total number of 
transmitted pulses is 1014 and the maximum intensity of the back-reflected light is Imax = 10−13 , we find that 
the secret key is positive up to about 54 km while in Case 1 this distance is 48 km in the presence of information 
leakage only from the IM.

Case 3.  In this case we consider a more favorable situation for Alice and Bob where they implement an addi-
tional step to randomize the phase of each signal going out of their transmitters including the back-reflected 
light to Eve. Moreover, we optimistically assume that there is no information leakage from this phase randomiza-
tion step. Furthermore, we suppose that the amplitudes βk still satisfy Eq. (4) like in the previous case. Then, we 
have that the state of Eve’s back-reflected light from the IM and the PM are given by:

respectively.
This means that the information about Alice’s and Bob’s inner settings can only be leaked via the amplitudes 

of the back-reflected light but Eve cannot obtain any information from its phase. We remark, however, that here 
we consider a model which is slightly different from the ones considered in previous works24,25. To be precise, in 
Refs.24,25 the authors consider that the phase randomization step is only applied to the back-reflected light from 
the IM. However, here we consider that this step is applied to the back-reflected light from both the IM and the 
PM. This means that, now Eve cannot exploit any information leakage from the PM, but only information leak-
age from the IM as the state ρImax does not depend on the basis choice.

The simulation results of the secret key rate are shown in Fig. 2 in the Supplementary Information. Here, we 
find that the typical interval where pZAc lies is [0.71, 0.93] . Compared to the secret key rate shown in the previous 
two cases, now the secret key rate is obviously improved. For example, when the total number of transmitted 
pulses is N = 1014 and Imax = 10−7 , the secret key rate remains positive up to about 62 km. In comparison, the 
maximum achievable distance with the same number of transmitted pulses and assuming an Imax as low as 10−13 
is only about 36 km in Case 2, and it is even worse in Case 1.

In practice, however, Eve might also perform a THA against the phase randomization step to obtain some 
information about the random phase applied by Alice and Bob each given time. This will obviously reduce the 
benefit of the phase randomization step. One could also analyze this last scenario with the techniques in this 
paper, but for simplicity we omit it here.

Simulation results for the four‑intensity decoy‑state MDI‑QKD protocol.  In what follows, for 
illustration purposes we consider a particular example of the THA considered in the previous section, which 
is shown in Fig. 5. Now, however, the back-reflected light from the IM has the form 

∣

∣βre
iθr
〉

 with r ∈ {s,v,w,0} . 
Moreover, since the IM and the PM are correlated, Eve can jointly measure the states 

∣

∣βre
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〉

 and 
∣

∣

√
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iθχ
〉

 , 
which is the back-reflected light from the PM with χ ∈ {Z,X} , to extract partial information about both the 
intensity settings and the basis choices. Particularly, we shall consider that Eve splits the joint back-reflected light 
∣

∣βre
iθr
〉

⊗
∣

∣

√
Imaxe

iθχ
〉

 into two parts by means of a 50:50 beamsplitter, one part is used to learn partial informa-
tion about the intensity settings and the other part is used to learn partial information about the basis choices. 
We remark, however, that our method to estimate the phase error rate could be applied to any strategy applied by 
Eve. Importantly, to have a fair comparison with the simulation results shown in the previous section, we assume 
that the amount of information leaked to Eve in both protocols is the same. That is, we assume that the intensity 
of the back-reflected light is equal in both cases.

Note that since the information leakage from the IM and the PM is correlated, in the following figures, we 
plot the secret key rates in the presence of information leakage from both devices.

Case 1.  The simulation result of the secret key rate, ℓ′/N , as a function of the transmission distance between 
Alice and Bob in this case is shown in Fig. 6a for a fixed value of the total number of transmitted pulses, N = 1014 . 
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Figure 5.   Example of a THA against correlated IM and PM of Alice (Bob). The simulation is similar to that in 
Fig. 2 but now r ∈ {s,v,w,0} . Moreover, we assume that Eve splits the joint back-reflected light into two parts by 
means of a 50:50 beamsplitter, one part is to learn information about the intensity settings and the other part is 
used to learn information about the basis choices.
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The black solid line represents the key rate in the situation where there is no information leakage, and the dif-
ferent colored lines correspond to different amounts of information leakage. The longest achievable distance 
without information leakage is about 96 km. When Imax = 10−13 , the secret key rate vanishes at about 52 km. In 
the simulation, we find that in this case the optimized value of pZAc typically lies in the interval [0.75, 0.94] . That 
is, in this protocol Alice and Bob can sacrifice a smaller proportion of the data than that in the symmetric three-
intensity decoy-state MDI-QKD protocol (where, as we have shown in the previous section, the typical interval 
of the optimized value of pZAc is [0.65, 0.9]).

Figure 6b shows the secret key rates as a function of the distance for a fixed value Imax = 10−16 for different 
total numbers of transmitted pulses. For example, the longest achievable distance is about 84 km when the total 
number of transmitted pulses is N = 1015 . However, when N = 1012 , this distance decreases to 21 km.

To further compare the effect of the information leakage on the secret key rate in the two MDI-QKD pro-
tocols that we consider, we plot the ratio ( ℓ′Imax>0/ℓ

′
Imax=0 ) between the secret key rates for different positive 

values of information leakage, Imax , and the secret key rate when there is no information leakage, i.e., Imax = 0 , 
given a fixed total number of transmitted pulses, say, N = 1014 in Fig. 7. The solid and dotted lines represent the 
ratios in the symmetric three-intensity decoy-state MDI-QKD protocol and in the four-intensity decoy-state 
MDI-QKD protocol, respectively. In the following, for simplicity, let us denote these two protocols by ‘3-int’ and 
‘4-int’, respectively. The result in Fig. 7 indicates that when the amount of information leakage is small enough, 
for instance, Imax = 10−20 , the impact of the information leakage on the 3-int protocol is smaller than that on 
the 4-int protocol as the green solid line is always above the green dotted line. However, the key rate ratio drops 
much faster as the amount of information leakage increases in the 3-int protocol than that in the 4-int protocol. 
From Fig. 7, we find that when Imax = 10−16 and Imax = 10−13 , the ratio in the 4-int protocol is bigger than that 
in the 3-int protocol. That is, when Imax increases, the effect of information leakage becomes more relevant on 
the 3-int protocol than that on the 4-int protocol given a fixed total number of transmitted pulses.

The intuition for this behaviour could be the following: from Figs. 2 and 5, we can see that the back-reflected 
light from the PM is the same for the 3-int and 4-int protocol. Now suppose that in the 4-int protocol Eve meas-
ures the back-reflected light from the IM and the PM independently instead of splitting the back-reflected light 
with a 50:50 BS. Then she learns the same information from the PM in both protocols. However, it may be more 
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difficult for Eve to learn the information from the IM in the 4-int protocol than in the 3-int protocol because 
she needs to distinguish between four states in the former but she only needs to distinguish between three states 
in the latter. In this case, the 4-int protocol is more robust against information leakage than the 3-int protocol 
for all values of Imax . Nevertheless, if Eve exploits the correlations between the back-reflected light from the IM 
and the PM, then which protocol is more robust seems to depend on the value of Imax . In addition, note that 
the results illustrated in Fig. 7 consider the case where Eve splits the back-reflected light with a 50:50 BS, which 
might not be the optimal option for the example of THAs evaluated.

Case 2.  The simulation results of the secret key rate as a function of the transmission distance are shown in 
Fig. 3 in the Supplementary Information. The behavior of the curves is very similar to those in case 1, and in 
the simulation we find that the optimized value of pZAc is also similar. One main difference is that with the 
same experimental parameters the secret key rate is a little higher and the achievable distance is a little longer 
than those in Case 1. For example, when the total number of transmitted pulses is N = 1014 and the maximum 
intensity of the back-reflected light is Imax = 10−13 , now we find that the secret key is positive up to about 57 km 
while in Case 1 this distance is 52 km.

Here we omit the comparison of the key rate ratios between the two protocols as the result in this case is 
similar to that shown in Fig. 7. And for the same reason, we omit such comparison in Case 3 as well.

Case 3.  The simulation results of the secret key rate as a function of the transmission distance are shown in 
Fig. 4 in the Supplementary Information. Here, we find that the typical interval that pZAc lies in is [0.86, 0.99] . 
Compared to the secret key rates shown in the previous two cases, now it is obviously improved. For example, 
when the total number of transmitted pulses is N = 1014 and Imax = 10−7 , the secret key rate remains positive 
up to about 66 km. In comparison, the maximal achievable distance with the same number of transmitted pulses 
and assuming an Imax as low as 10−13 is only about 57 km (52 km) in Case 2 (Case 1). As discussed previously, 
this is because the phase randomization step removes the information leaked in the phase of the output states 
to Eve.

Conclusion and discussion
In this paper, we have quantitatively analyzed the security of two decoy-state MDI-QKD protocols with leaky 
sources in the finite-key regime. Specially, we have simulated the secret key rate under three particular examples 
of THA, where Eve sends coherent pulses of light to probe the intensity modulators and phase modulators of the 
legitimate parties. Similar to the analysis presented in25, we have introduced an additional post-processing step in 
the actual protocol where Alice and Bob sacrifice part of their data. This step is necessary for the security proof to 
go through. Our simulation results suggest that MDI-QKD is more sensitive to information leakage than standard 
decoy-state QKD, but is possible to distill secure keys from leaky sources within a reasonable time frame of signal 
transmission given that Alice’s and Bob’s sources are sufficiently isolated. Furthermore, we have found that when 
the amount of information leakage is small enough, the effect of information leakage has a bigger impact on the 
four-intensity decoy-state MDI-QKD protocol than on the symmetric three-intensity decoy-state MDI-QKD 
protocol. However, when the amount of information leakage increases, the four-intensity MDI-QKD protocol 
becomes more robust against information leakage than the symmetric three-intensity MDI-QKD protocol.

We note that Ref.41 introduced a security analysis for MDI-QKD which does not have to characterize the states 
emitted by only assuming that the generated signals live in a qubit space. While this analysis might certainly have 
some advantages in some scenarios (e.g., when evaluating state preparation flaws), it cannot be applied to the 
situation we study here with leaky sources. Indeed, due to the presence of side-channels, the emitted signals are 
not qubits but higher dimensional signals. This means that, in its current formulation the work in Ref.41 does not 
apply to the scenario that we evaluate and cannot take information leakage into consideration.

We emphasize that the methods introduced in this paper are completely general and can be applied to any 
information leakage, not necessarily in the form of coherent states. We have assumed this particular model only 
for simplicity in order to perform simulations.

In this context it would be interesting to consider a stronger THA, where Eve sends entangled probe states to 
Alice’s and Bob’s sources instead of sending them independent bright pulses. In such a scenario, by performing a 
joint measurement on the outgoing states as well as on her ancilla system, Eve might be able to extract more infor-
mation about Alice’s and Bob’s internal settings than what has been presented in this paper. This case, however, is 
beyond the scope of this work but could be evaluated with the techniques that have been introduced in this paper.
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