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Irreversible work and Maxwell
demon in terms of quantum
thermodynamic force

B. Ahmadi'?™, S. Salimi* & A. S. Khorashad*

The second law of classical equilibrium thermodynamics, based on the positivity of entropy
production, asserts that any process occurs only in a direction that some information may be lost
(flow out of the system) due to the irreversibility inside the system. However, any thermodynamic
system can exhibit fluctuations in which negative entropy production may be observed. In particular,
in stochastic quantum processes due to quantum correlations and also memory effects we may

see the reversal energy flow (heat flow from the cold system to the hot system) and the backflow

of information into the system that leads to the negativity of the entropy production which is an
apparent violation of the Second Law. In order to resolve this apparent violation, we will try to
properly extend the Second Law to quantum processes by incorporating information explicitly into
the Second Law. We will also provide a thermodynamic operational meaning for the flow and backflow
of information. Finally, it is shown that negative and positive entropy production can be described by a
quantum thermodynamic force.

Thermodynamics and information have intricate inter-relations. Soon after establishing the second law of ther-
modynamics by Rodulf Clausius, Lord Kelvin and Max Planck!™, in his 1867 thought experiment, "Maxwell’s
Demon’, James Clerk Maxwell attempted to show that thermodynamics is not strictly reducible to mechanics®”.
Although Maxwell introduced his demon to question the Second Law his demon, in fact, revealed that informa-
tion can be used to perform more work than what is expected by the Second Law. Maxwell illustrated that by
using information about the positions and momenta of the particles restrictions imposed by the Second Law
can be relaxed thus demanding to take into account information in the Second Law explicitly. In order to do this
we must elucidate the physical nature of information so that the Second Law includes information as a physical
entity. In 1929 Léo Szildrd®, inspired by Maxwell’s idea, designed an engine working in a cycle, interacting with a
single thermal reservoir, which used information (gained by the measurement on the system) to perform work.

In equilibrium classical thermodynamics the Clausius’ statement of the Second Law implies that heat only
flows from a hot object to a cold one'™. This is actually equivalent to the fact that in an irreversible deterministic
process the entropy production of a system is always positive which means that due to irreversibility inside the
system information always flows out of the system. This can be readily proved as follows. Clausius showed that
the total change in the entropy of a thermodynamic system can be written in the form'™*

ds = dTQ +dss, (1)

where dQ is the heat that the system exchanges with the environment and T the temperature of the system and
d;S the entropy produced in the interior of the system which is referred to as entropy production. Now consider
two classical thermodynamic systems A and B which are in equilibrium states with temperatures T4 and T3,
respectively. The two systems start exchanging heat quasi-statically, i.e., they remain in equilibrium state while
exchanging heat. Assume that the whole system AB is closed therefore dQap = 0. Thus using Eq. (1) the change
in the entropy of the total system AB reads

dQas
'AB

dSap = + diSap = d;Sas. (2)

Since entropy is an extensive property we have!™
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d d
dSagp = dSs + dSg = 7QA + 7QB; (3)
Ty Ty
where dQ4 ) is the heat that system A(B) exchanges with system B(A). Note that temperatures of both systems are
not constant over time but since the process happens quasi-statically the temperatures of both systems are well-
defined at any time. Now since the whole system AB is closed then dQ4 = —dQpandif T4 < TgEq. (3) becomes

1 1
dSap = dQA(TA - ?B) > 0. (4)

Therefore using Eq. (2) for a closed system we get
diSap > 0. (5)

It is worth mentioning that the Second Law already implicitly contained the role of information. The positivity of
entropy production of a system implies that the system always tends to lose information about its internal energy
and this loss of information does not let us to extract the maximum work. This is formulated as'~*

dF =dU — TdS = dW — Td;S, (6)

where the change in Helmholtz energy dF is the maximum extractable work from the system and dU the change
in the internal energy of the system and dW the extracted work and d;S the entropy production of the system dur-
ing the process. The second equality in Eq. (6) is derived using the first law of thermodynamics dU = dW + dQ
and dS = dQ/T + d;S. As can be seen from Eq. (6) positive entropy production d;S (loss of information) does not
let the extracted work dW be equal to the maximum extractable work dF. But in quantum processes the reversal
of energy flow may occur, i.e., heat may flow from the cold system to the hot system that is a violation of the
Second Law. In Ref%, using initial quantum correlations between two qubits, the reversal of energy flow between
two quantum-correlated qubits is investigated. In quantum stochastic processes there also exist processes, called
non-Markovian processes, in which information can backflow into the system therefore it is expected that
entropy production of the system becomes negative and consequently again a violation of the Second Law may
occur for these processes. These results highlight the subtle interplay of quantum mechanics, thermodynamics
and information theory. In this work, we aim to resolve this issue by properly extending the Second Law from
equilibrium classical thermodynamics into non-equilibrium quantum thermodynamics such that these violations
never occur. For this purpose, we will try to incorporate information explicitly into the Second Law. We will
also clarify why and how backflow of information can affect the efficiency of a quantum heat engine. Our results
also provide a thermodynamic operational meaning for negative entropy production, which until now only had
information-theoretical interpretations; for example, it witnesses the non-Markovianity of a process'’. It will
also be shown that a quantum thermodynamic force'? is responsible for the flow and backflow of information.

Classical engine and its limitation
In this section we examine a classical engine (see Fig. 1) which gives us the motivation of investigating a quantum
heat engine in the presence of backflow of information. For this engine we obtain (see Supplementary Note 1)

T-A;S
AQy

wheren, = 1 — T3/T1is the engine efficiency, nc = 1 — T,/ T}, the Carnot efficiency and A;S = A;S; + A;S the
entropy production of the total system (the engine plus the reservoirs) during a cycle. Based on the second law of
classical thermodynamics the entropy production is always positive thus 1, can never exceed nc. This is, in fact,
equivalent to the relation T, < T3 < T < Tj, which always holds for classical engines. Now the question is: does
this relation also always hold for quantum heat engines? In the following sections we will address this question.

Ne —NC = — (7)

Reversible and Irreversible work
The work done by a thermodynamic system, in the weak coupling limit, can always be appropriately partitioned
into two parts: reversible work and irreversible work (see Supplementary Note 2),

AW = AWrev + AWirh (8)
in which
AWy = BAI + AFP, It = S(pllog )s )
and
1
AW = EAis. (10)

It is seen that the total work can always be partitioned into two parts, the reversible part and the irreversible part.
The reversible work defined in Eq. (9) is different from the definition of reversible work in the literature by the

1
term E AI. Quantum relative entropy I(t) = S(po¢ || pf} ) is a measure of distinguishability between two quantum
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Figure 1. A classical engine working between two reservoirs at temperatures Ty, > T. Irreversibility occurs
between the engine and the reservoirs not in the interior of the engine.

states'!, here between the state of the system p; at time f and its instantaneous Gibbs state pf . Quantum relative
entropy is in fact the quantum mechanical analog of Kullback-Leibler divergence'!. In other words, it is a measure
of information about the state of the system relative to its instantaneous Gibbs state. Classical thermodynamics
is the equilibrium thermodynamics and the minimal work can be extracted only in equilibrium processes, hence
the minimal work equals the equilibrium work, i.e., AW, = AF . We must note that A W,,, and AW;,, in Eq.
(8) are not done by the system during the process. The work which is done by the system is AW.|AW,,,|is the
maximal amount of internal energy which is supposed to be spent by the system as work if there was no irrevers-
ibility during the process and positive A W, is the amount of internal energy which is not allowed to be spent
by the system as work due to irreversibility (loss of information) inside the system. From now on we will refer
to positive A Wi, as the encoded internal energy because the system does not access this amount of energy to use
it as work. This encoded internal energy is always directly related to entropy production via Eq. (10). In other
words, we can say

A;S = B x (encoded internal enery). (11)

We can go further and define a non-equilibrium free energy for a generic statistical state p of a quantum system
in contact with a thermal bath as

F(p,H) =E — TS = tr{pH} — TS(p), (12)

and we find
1
EAiSZAWirr =AW — AF. (13)

As can be seen from Eq. (13) the minimal work necessary to drive the system from one arbitrary state to another
is the difference between the non-equilibrium free energies AF. If the entropy production is positive, A;S > 0,
then the generalized minimal work formulation (the generalized second law) for an isothermal process with
given initial and final non-equilibrium distributions is obtained as

1
AW > AFP + EAI. (14)

The generalized minimal work formulation of thermodynamics for non-equilibrium distributions gives an impor-
tant relation between two major concepts in physics, energy and information. In the following we will see that
in non-equilibrium quantum thermodynamics the internal energy can also be decoded (negative irreversible
work) to be used by the system to perform more work than what is expected.

Irreversible work and the Second Law

Let us consider a system in state pg at time t = 0 attached to a bath of temperature T. After a finite-time 7, let
the state of the system be p;. The Hamiltonian H of the system remains unchanged during the evolution. The
irreversible work after time t reads (see Supplementary Note 3)
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__1 By _ B
AWipy ﬂ[S(Poll,O ) = S(ocllp™)]. (15)

During a Markovian evolution A W, is always positive but for a non-Markovian evolution it can be negative
and this may lead to results not encountered in classical thermodynamics. In the following we focus our attention

on two special cases to elucidate the physical meaning of the relation AW, = 5 A;S in non-equilibrium quan-
tum thermodynamics:

(a) Consider a reversible cycle with a quantum engine operating between two heat reservoirs at tem-
peratures Ty, and T, with T, > T. Since all the processes are reversible then the work done by the system is
AW = AW,,. For a machine to work as an engine we should have AW,,, < 0and since the cycle is reversible,
AWpey = T ASy + T, AS,, the efficiency of the engine equals the Carnot efficiency,

-AW ) T,
AQy Ty

n= ne, (16)
where AQy, is the heat absorbed from the hot reservoir. Eq. (16) holds for all reversible cycles with classical or
quantum heat engines'. In equilibrium thermodynamics the Clausius’ statement of the Second Law leads to the
fact that of all the heat engines working between two given temperatures, none is more efficient than a Carnot
engine'™. As can be seen from Eq. (9) the reason behind this is that in equilibrium thermodynamics, due to the
Clausius’ statement of the Second Law, the entropy production A;S can never be negative, thus it can never help
—AW to increase, i.e., the production of entropy is an indication of a reduction in the thermal efficiency of the
engine. The Clausius’ statement of the Second Law means that information can never be decoded in deterministic
thermodynamics. As we will show below, in stochastic quantum thermodynamics, this is also true as long as the
process is Markovian. But if the process is non-Markovian the rate of entropy production can be negative §; < 0
1014 consequently we may have negative entropy production for such processes, i.e.,

T
A;S =/ dt S,‘ <0. (17)
0

This means that some of the internal energy can be decoded to be used by the system to do more work. (b)
Consider a quantum engine operating in a cycle between two heat reservoirs at temperatures T, and T, with
Ty > T¢. In step I, as depicted in Fig. 2, the engine interacts with a hot reservoir at temperature T}, from point
A(po, Hp) to point B(p1, Hy) while the Hamiltonian remains unchanged. The heat absorbed by the engine is
AQy = tr{Hp(p1 — po)}. In step II the engine is decoupled from the hot reservoir and undergoes an adiabatic
evolution from point B(p;, Hp) to point C(p;, Hy). In step IIT it interacts with a cold reservoir at temperature T,
from point C(p;, H}) to point D(pg, H;) while the Hamiltonian remains unchanged. The heat rejected to the cold
reservoir is AQ, = tr{H;(po — p1)}. Finally in step IV the engine is decoupled from the cold reservoir and, in an
adiabatic evolution, goes back to its initial point by going from point D(pg, H) to point A(pg, Hp) and complete
the cycle. Now the whole work done by the system during the cycle, as in Eq. (9), is AW = AWjy, + AW,
Since during the adiabatic processes no entropy is produced in the interior of the system'>!> thus

AWipy = %Aish + éAiSc- (18)
Then the efficiency becomes
AiSp | AiSc
o AW B A 19)
AQy AQy

Equation (19) is a generic form for the efliciency of any engine working in a cycle. In the case of a reversible
cycle the second term on the right hand side vanishes and it simply reduces to Eq. (16). Now as is clear from Eq.
(19) the second term on the right hand side shows the contributions of the Markovianity and non-Markovianity
of the processes to the efficiency. If the evolution of the system during steps I and III is Markovian then A;Sy,
and A;S are positive and consequently the efficiency decreases which would be less than Carnot efficiency. This
means that some information is encoded hence the system cannot use this encoded energy as work during the
evolution. But if the evolution of the system during steps I and III is non-Markovian then A;S, and A;S; can be
negative and consequently the efficiency increases which can become greater than that of Carnot. This means
that information is decoded and the system uses this decoded information to perform additional work and as
a result the efficiency increases. Thus, as was mentioned before, one way to exceed the Carnot efficiency is to
have non-Markovian processes during the cycle. As an example, consider a spin-1/2 system'>'*® working in an
Otto cycle, as depicted in Fig. 2. The system is in an initial state po, diagonal in the eigenbasis of the Hamiltonian
Hy = (wo/2)0, where wy = « B and o, is the Pauli matrix. Here « is a constant and B is the constant magnetic
field applied in the z direction on the system. The efficiency of the engine reads (see Supplementary Note 4)

_1-% D 20
n=1-s1=ag (20)
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Figure 2. As a visual aid points, between which the quantum system operates as the working substance in an
Otto cycle, in dynamical configuration space are depicted in a (p, H)-coordinate system. From A to B the heat
AQy is absorbed from the hot reservoir at temperature T, and from C to D the heat AQ, is rejected to the cold
reservoir at temperature T.. The processes from B to C and from D to A occur adiabatically.

For a Markovian process in order to absorb heat from the hot reservoir and reject heat to the cold reservoir we
must have T, < T3 < T} < Tp. Thus1 — T3/T) < 1 — T/ Ty, i.e., the efficiency is less than Carnot efficiency,
and the Second Law is preserved. But in the case of non-Markovian baths, since the effective temperature of the
system may not approach the temperature of the bath monotonically therefore during the interaction with the hot
bath the temperature of the system can become higher than that of the hot bath and during the interaction with
the cold bath its temperature can become lower than that of the cold bath, i.e., we may have T3 < T, < T, < T}
18-23 which can lead to an engine more efficient than that of Carnot, resulting in the violation of the Second Law.
This violation, in non-equilibrium quantum thermodynamics, occurs due to the memory effects of the baths
which is never observed in classical equilibrium thermodynamics. In classical macroscopic thermodynamics no
memory effects are present thus no negative entropy production may occur and this leads to the fact that Carnot
efficiency is the maximum efficiency. It should be noted that decoupling the system from the reservoir might
cause some energy cost but since we are in the weak coupling limit and turning on and off the interaction occurs
very fast compared to the time of the step, this energy cost is negligible, i.e, Eiy = tr{pH;n:} = 0. It should also
be noted that in the example above we did not use any device to make any measurement to gain information
from the state of the system and store this information. We left the system and the bath to themselves.

It must be mentioned that if we use a device to gain and store information from the state of the system then
according to the Landauer principle in erasing each bit of information Kg T In 2 of heat is produced®* (K is Boltz-
man constant) which compensates for the negative entropy production saving the Second Law. For instance if
N bit of information is used by the device we will have

AiS + ASgevice = AiS+ NKgTIn2 > 0, (21)

which is in agreement with the Second Law?®. In Ref.*° a device interacting with two heat reservoirs, a work
reservoir, and an information reservoir, which exchanges information but not energy with the device, was inves-
tigated. They have found that for cyclic processes in which information is systematically written to the memory,
the efficiency can exceed the Carnot limit. In this case the system and the bath are not left to themselves, i.e.,
the information reservoir acts as Maxwell’s demon which intervenes in the process from the outside to decode
information. But for the case of non-Markovian bath, in our model above, nothing intervenes in the process
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from the outside, i.e., no device is used for gaining and storing information. We leave the system and the non-
Markovian bath to themselves and information is decoded just due to the memory effects of the bath.

The two cases considered above help to understand the physical nature of information. In 1991 Rolf Landauer
declared that information is physical”*. Since then, information has come to be seen by many physicists as a
fundamental component of the physical world*’=*. In deterministic equilibrium thermodynamics we could also
have negative entropy production. Szilard showed that information can be used to do work if one permits an
intelligent being (demon) to intervene in the process of a thermodynamic system®. What Maxwell’s demon does
is decoding information and the system uses this decoded information to output more work. Decoding informa-
tion causes the entropy production of the system to be negative, therefore as we have shown above this causes the
system to perform more work and, in turn, this leads to having an efficiency greater than that of Carnot. Del Rio
et. al’! have shown that erasing a system, which is coupled strongly with another system (a quantum memory),
may cause the conditional entropy of the system to be negative and this negative entropy will lead to extracting
work from the system, thus cooling the environment. Our results provide a thermodynamic operational meaning
for negative entropy production, which until now only had information-theoretical interpretations; for example,
it witnesses the non-Markovianity. The significance of a general Szilard engine is that it conjoins thermodynam-
ics and information theory. It shows the usefulness of information for performing some thermodynamic task.
Given the important link between the task of work extraction and information theory, as appears in the examples
of Maxwell’s demon?, the Szilard engine®, and Landauer’s erasure principle®, it is becoming more common to
consider the nature of information as physical. In classical thermodynamics if we leave the system to itself (i.e.
no demon is allowed to intervene) it is impossible to have negative entropy production thus the Carnot engine
becomes the most possible efficient engine. But in the quantum realm, due to the existence of the landmark
quantum features, even if the system is left to itself, in non-Markovian processes the entropy production of the
system can be negative thus the system, working in a cycle, can be more efficient than a Carnot engine.

The second law of thermodynamics
We are now in a position to properly extend the second law of thermodynamics to quantum thermodynamic
processes:

“In a quantum thermodynamic process information can be encoded and also decoded for the system to
do work and this encoded (decoded) work equals temperature T times entropy production of the system, i.e.,

1

—A;S > 0 information is encoded
AVvir‘r =

BAZS < 0 information is decoded

where 8 = 1/T is the temperature of the reservoir with which the system interacts.”

As can be seen this definition of the Second Law emphasizes on the connection between thermodynamics
(work as a thermodynamic variable) and information not on a specific direction for the arrow of time because
unlike deterministic classical thermodynamics in stochastic quantum thermodynamics the entropy produc-
tion can be both positive and negative. This way of defining the Second Law covers both classical and quantum
thermodynamics and also incorporates information explicitly into the Second Law, i.e., it is never violated in
the quantum realm nor in the presence of a demon intervening in the process. For classical macroscopic deter-
ministic thermodynamics it reduces to the encoded part, i.e., A;S > 0. Therefore Carnot’s, Clausius’ and the
Kelvin-Planck statements of the Second Law come just as a part of the Second Law, i.e., the encoded part. As we
have shown in quantum thermodynamic systems information can be decoded spontaneously without any demon
intervening in the process and consequently more work than what is expected can be output. In next section
we will show that there is a thermodynamic force which is responsible for decoding and encoding information.

Maxwell’s demon and quantum thermodynamic force
In Ref.!? it was shown that a thermodynamic force is responsible for the flow and backflow of information in
quantum processes. For a system, interacting with a bath initially at temperature 8 = 1/T, the rate of the entropy
production can be expressed as'?

diS

ar = tr{Fn Vs (22)

1

where Vy, = ot pf is the thermodynamic flow and Fy, = i [In pf — In p;] the thermodynamic force. Using Egs.
0
(10) and (22) we get g

dw; 1
dtm = Btr{Fth Vin}. (23)

Since it was shown in Ref.!? that the thermodynamic force Fy, is responsible for the flow (encoding) and backflow
(decoding) of information in Markovian and non-Markovian dynamics, respectively, Eq. (23) suggests that, if
the system is left to itself, Fy, actually encodes energy, during the flow, not to be used as work by the system and
decodes energy, during the backflow, to be used as work by the system. In classical thermodynamics De Donder
found a similar relation for chemical reactions®. Let us now consider the case in which the system is not left to
itself, i.e., someone or something outside the system (as a demon) intervenes in the process. Szilard argued that
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negative work AW can be extracted from an isothermal cycle if Maxwell’s demon plays the role of a feedback
controller®®. When the statistical state of a system changes from p (x) to p(x|m), due to the measurements made
by the demon on the system, the change in the entropy of the system can be expressed as***’

ASmeas = HX|M) — HX) = —I(X : M), (24)

where H(X) = — ), p(x)In p(x) is the Shanon entropy of the system and I(X; M) the mutual information
between the state of the system and the measurement outcome M. Since I(X; M) is always positive thus the
demon causes the entropy of the system to decrease. This is similar to the case of non-Markovianity in which the
entropy decreases. Therefore the presence of the demon is also expected to lead to extracting more work from
the system than what is expected. Now the role of the demon can be incorporated into the Second Law as®***

AW > AF — %I(X M. (25)

In Ref.*? a practical way was offered, as an alternative to the Szildrd engine, to physically realize Maxwell’s demon.
They have shown that using a feedback contoller (the demon) which makes measurements on the engine they are
capable of extracting more work from the heat reservoirs than is otherwise possible in thermal equilibrium. For
a system, initially and finally in equilibrium states with temperature 8 = 1/T, which can contact heat reservoirs
Bi, By, ..., By at respective temperatures Ty, T5, ..., T, they have found that

AW > AFP — él(pl . X), (26)
and
1
I(p1: X) = B[S(m) — H({p}) + H(p1 : X)],

where p is the state of the system at some time t1, S(p1) the Von Neumann entropy, H({px}) = — >_ px In px the

Shannon information content and H(p; : X) = — > tr{</Dkp1+/Dk In o/ Dk p1+/Di}. {Dy} are positive opera-
tor valued-measure (POVM) defined by Dy = M,IMk and px = tr{Dgp}. It is seen that the sum of the last three
terms on the right hand side of the inequality (26) is the irreversible work due to the presence of the feedback
controller (the demon). Thus if we take the time derivative of these three terms we have

dwdem 1 .
irr :E[tr{pl In o1} —‘,—Zpk lnpk
k

dt
= tr{\/Dip1\/ Dy In \/Dip1\/Di)l.
k

(27)

Comparing Eq. (27) with Eq. (23) it is observed that there are three quantum thermodynamic forces responsible
for the extra work done during the process,

Ao In p; P20 _ In py P20 _ In /Dy p1+/Dx
th="pg>tm T T pg>Fth T T B : (28)
P1 Pk Py
Thus we may write
tot 1 2 3
Fy, =Fth@Fth®Fth' (29)
There are also three thermodynamic flows associated with these three thermodynamic forces above,
. 2(k : 3(k .
Vi = piofs Vil = il Vi = v/Diir/Deof. (30)
and it may be written
1 2 3
Vttl?t = Vth@vth@vth' (31)

We must notice that Egs. (29) and (31) should not be taken too literally, i.e., these equations just indicate the
fact that there are three thermodynamic forces and flows involved due to the presence of the feedback control-
ler and we cannot add them up like the way we do about typical vectors. We note that Fiy = 0 if and only if
Dy is proportional to the identity operator for all k*2, which means that nothing is interveningin the process,
therefore no information is decoded to be used to perform additional work by the system. On the other hand,
Fi* = F? if and only if Dy is the projection operator satisfying [ o1, Dx] = 0 for all k*2, which means that the
measurement on p is classical, hence th‘” is classical. In Refs.?®3*0 similar results have been found. Therefore
we have shown that intervention (the demon) from the outside in the process of a system may be represented
by a thermodynamic force.
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Summary

In this work we have appropriately divided the work done by a thermodynamic system into two parts: reversible
work and irreversible work. This partitioning seems plausible since whenever the process is reversible all the
work is reversible and there exists no irreversible work as expected. Using this partitioning we have derived a
generic form for the efficiency of an engine operating in an arbitrary cycle. It was shown that negative entropy
production, which can occur in non-Markovian processes or by intervening in the process of the system (Max-
well’s demon), means that the internal energy is decoded to be used by the system to perform more work than
what is expected and this additional work leads to having quantum engines with efficiencies greater than that of

Carnot. We have investigated two special cases to elucidate the physical meaning of AWj,, = —A;Sin quantum

1
thermodynamics. We have also shown that the relation AWj,, = — A is the link between thermodynamics and

information in both classical and quantum thermodynamics. Based on this analysis we have introduced a new
definition of the second law of thermodynamics such that it covers both classical and quantum thermodynamics
and incorporates information well into the Second Law. At last, we have shown that a quantum thermodynamic
force is responsible for encoding and decoding information even when a feedback controller outside the system
is involved in the process.
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