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Irreversible work and Maxwell 
demon in terms of quantum 
thermodynamic force
B. Ahmadi1,2*, S. Salimi1 & A. S. Khorashad1

The second law of classical equilibrium thermodynamics, based on the positivity of entropy 
production, asserts that any process occurs only in a direction that some information may be lost 
(flow out of the system) due to the irreversibility inside the system. However, any thermodynamic 
system can exhibit fluctuations in which negative entropy production may be observed. In particular, 
in stochastic quantum processes due to quantum correlations and also memory effects we may 
see the reversal energy flow (heat flow from the cold system to the hot system) and the backflow 
of information into the system that leads to the negativity of the entropy production which is an 
apparent violation of the Second Law. In order to resolve this apparent violation, we will try to 
properly extend the Second Law to quantum processes by incorporating information explicitly into 
the Second Law. We will also provide a thermodynamic operational meaning for the flow and backflow 
of information. Finally, it is shown that negative and positive entropy production can be described by a 
quantum thermodynamic force.

Thermodynamics and information have intricate inter-relations. Soon after establishing the second law of ther-
modynamics by Rodulf Clausius, Lord Kelvin and Max Planck1–4, in his 1867 thought experiment, ”Maxwell’s 
Demon”, James Clerk Maxwell attempted to show that thermodynamics is not strictly reducible to mechanics5–7. 
Although Maxwell introduced his demon to question the Second Law his demon, in fact, revealed that informa-
tion can be used to perform more work than what is expected by the Second Law. Maxwell illustrated that by 
using information about the positions and momenta of the particles restrictions imposed by the Second Law 
can be relaxed thus demanding to take into account information in the Second Law explicitly. In order to do this 
we must elucidate the physical nature of information so that the Second Law includes information as a physical 
entity. In 1929 Léo Szilárd8, inspired by Maxwell’s idea, designed an engine working in a cycle, interacting with a 
single thermal reservoir, which used information (gained by the measurement on the system) to perform work.

In equilibrium classical thermodynamics the Clausius’ statement of the Second Law implies that heat only 
flows from a hot object to a cold one1–4. This is actually equivalent to the fact that in an irreversible deterministic 
process the entropy production of a system is always positive which means that due to irreversibility inside the 
system information always flows out of the system. This can be readily proved as follows. Clausius showed that 
the total change in the entropy of a thermodynamic system can be written in the form1–4

where dQ is the heat that the system exchanges with the environment and T the temperature of the system and 
diS the entropy produced in the interior of the system which is referred to as entropy production. Now consider 
two classical thermodynamic systems A and B which are in equilibrium states with temperatures TA and TB , 
respectively. The two systems start exchanging heat quasi-statically, i.e., they remain in equilibrium state while 
exchanging heat. Assume that the whole system AB is closed therefore dQAB = 0 . Thus using Eq. (1) the change 
in the entropy of the total system AB reads

Since entropy is an extensive property we have1–4

(1)dS =
dQ

T
+ diS,

(2)dSAB =
dQAB

TAB
+ diSAB = diSAB.
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where dQA(B) is the heat that system A(B) exchanges with system B(A). Note that temperatures of both systems are 
not constant over time but since the process happens quasi-statically the temperatures of both systems are well-
defined at any time. Now since the whole system AB is closed then dQA = −dQB and if TA < TB Eq. (3) becomes

Therefore using Eq. (2) for a closed system we get

It is worth mentioning that the Second Law already implicitly contained the role of information. The positivity of 
entropy production of a system implies that the system always tends to lose information about its internal energy 
and this loss of information does not let us to extract the maximum work. This is formulated as1–4

where the change in Helmholtz energy dF is the maximum extractable work from the system and dU the change 
in the internal energy of the system and dW the extracted work and diS the entropy production of the system dur-
ing the process. The second equality in Eq. (6) is derived using the first law of thermodynamics dU = dW + dQ 
and dS = dQ/T + diS . As can be seen from Eq. (6) positive entropy production diS (loss of information) does not 
let the extracted work dW be equal to the maximum extractable work dF. But in quantum processes the reversal 
of energy flow may occur, i.e., heat may flow from the cold system to the hot system that is a violation of the 
Second Law. In Ref.9, using initial quantum correlations between two qubits, the reversal of energy flow between 
two quantum-correlated qubits is investigated. In quantum stochastic processes there also exist processes, called 
non-Markovian processes, in which information can backflow into the system therefore it is expected that 
entropy production of the system becomes negative and consequently again a violation of the Second Law may 
occur for these processes. These results highlight the subtle interplay of quantum mechanics, thermodynamics 
and information theory. In this work, we aim to resolve this issue by properly extending the Second Law from 
equilibrium classical thermodynamics into non-equilibrium quantum thermodynamics such that these violations 
never occur. For this purpose, we will try to incorporate information explicitly into the Second Law. We will 
also clarify why and how backflow of information can affect the efficiency of a quantum heat engine. Our results 
also provide a thermodynamic operational meaning for negative entropy production, which until now only had 
information-theoretical interpretations; for example, it witnesses the non-Markovianity of a process10. It will 
also be shown that a quantum thermodynamic force12 is responsible for the flow and backflow of information.

Classical engine and its limitation
In this section we examine a classical engine (see Fig. 1) which gives us the motivation of investigating a quantum 
heat engine in the presence of backflow of information. For this engine we obtain (see Supplementary Note 1)

where ηe = 1− T3/T1 is the engine efficiency, ηC = 1− Tc/Th the Carnot efficiency and �iS = �iS1 +�iS2 the 
entropy production of the total system (the engine plus the reservoirs) during a cycle. Based on the second law of 
classical thermodynamics the entropy production is always positive thus ηe can never exceed ηC . This is, in fact, 
equivalent to the relation Tc ≤ T3 ≤ T1 ≤ Th which always holds for classical engines. Now the question is: does 
this relation also always hold for quantum heat engines? In the following sections we will address this question.

Reversible and Irreversible work
The work done by a thermodynamic system, in the weak coupling limit, can always be appropriately partitioned 
into two parts: reversible work and irreversible work (see Supplementary Note 2),

in which

and

It is seen that the total work can always be partitioned into two parts, the reversible part and the irreversible part. 
The reversible work defined in Eq. (9) is different from the definition of reversible work in the literature by the 
term 

1

β
�I . Quantum relative entropy I(t) = S(ρt�ρβ

t ) is a measure of distinguishability between two quantum 

(3)dSAB = dSA + dSB =
dQA

TA
+

dQB

TB
,

(4)dSAB = dQA(
1

TA
−

1

TB
) ≥ 0.

(5)diSAB ≥ 0.

(6)dF = dU − TdS = dW − TdiS,

(7)ηe − ηC = −
Tc�iS

�Qh
,

(8)�W = �Wrev +�Wirr ,

(9)�Wrev ≡
1

β
�I +�Fβ , I(t) = S(ρt�ρβ

t ),

(10)�Wirr ≡
1

β
�iS.
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states11, here between the state of the system ρt at time t and its instantaneous Gibbs state ρβ
t  . Quantum relative 

entropy is in fact the quantum mechanical analog of Kullback–Leibler divergence11. In other words, it is a measure 
of information about the state of the system relative to its instantaneous Gibbs state. Classical thermodynamics 
is the equilibrium thermodynamics and the minimal work can be extracted only in equilibrium processes, hence 
the minimal work equals the equilibrium work, i.e., �Wmin = �Fβ . We must note that �Wrev and �Wirr in Eq. 
(8) are not done by the system during the process. The work which is done by the system is �W . |�Wrev| is the 
maximal amount of internal energy which is supposed to be spent by the system as work if there was no irrevers-
ibility during the process and positive �Wirr is the amount of internal energy which is not allowed to be spent 
by the system as work due to irreversibility (loss of information) inside the system. From now on we will refer 
to positive �Wirr as the encoded internal energy because the system does not access this amount of energy to use 
it as work. This encoded internal energy is always directly related to entropy production via Eq. (10). In other 
words, we can say

We can go further and define a non-equilibrium free energy for a generic statistical state ρ of a quantum system 
in contact with a thermal bath as

and we find

As can be seen from Eq. (13) the minimal work necessary to drive the system from one arbitrary state to another 
is the difference between the non-equilibrium free energies �F . If the entropy production is positive, �iS ≥ 0 , 
then the generalized minimal work formulation (the generalized second law) for an isothermal process with 
given initial and final non-equilibrium distributions is obtained as

The generalized minimal work formulation of thermodynamics for non-equilibrium distributions gives an impor-
tant relation between two major concepts in physics, energy and information. In the following we will see that 
in non-equilibrium quantum thermodynamics the internal energy can also be decoded (negative irreversible 
work) to be used by the system to perform more work than what is expected.

Irreversible work and the Second Law
Let us consider a system in state ρ0 at time t = 0 attached to a bath of temperature T. After a finite-time τ , let 
the state of the system be ρτ . The Hamiltonian H of the system remains unchanged during the evolution. The 
irreversible work after time τ reads (see Supplementary Note 3)

(11)�iS = β × (encoded internal enery).

(12)F(ρ,H) ≡ E − TS = tr{ρH} − TS(ρ),

(13)
1

β
�iS = �Wirr = �W −�F.

(14)�W ≥ �Fβ +
1

β
�I .

Figure 1.   A classical engine working between two reservoirs at temperatures Th > Tc . Irreversibility occurs 
between the engine and the reservoirs not in the interior of the engine.
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During a Markovian evolution �Wirr is always positive but for a non-Markovian evolution it can be negative 
and this may lead to results not encountered in classical thermodynamics. In the following we focus our attention 
on two special cases to elucidate the physical meaning of the relation �Wirr =

1

β
�iS in non-equilibrium quan-

tum thermodynamics:
(a) Consider a reversible cycle with a quantum engine operating between two heat reservoirs at tem-

peratures Th and Tc with Th > Tc . Since all the processes are reversible then the work done by the system is 
�W = �Wrev . For a machine to work as an engine we should have �Wrev < 0 and since the cycle is reversible, 
�Wrev = Th�Sh + Tc�Sc , the efficiency of the engine equals the Carnot efficiency,

where �Qh is the heat absorbed from the hot reservoir. Eq. (16) holds for all reversible cycles with classical or 
quantum heat engines13. In equilibrium thermodynamics the Clausius’ statement of the Second Law leads to the 
fact that of all the heat engines working between two given temperatures, none is more efficient than a Carnot 
engine1–3. As can be seen from Eq. (9) the reason behind this is that in equilibrium thermodynamics, due to the 
Clausius’ statement of the Second Law, the entropy production �iS can never be negative, thus it can never help 
−�W to increase, i.e., the production of entropy is an indication of a reduction in the thermal efficiency of the 
engine. The Clausius’ statement of the Second Law means that information can never be decoded in deterministic 
thermodynamics. As we will show below, in stochastic quantum thermodynamics, this is also true as long as the 
process is Markovian. But if the process is non-Markovian the rate of entropy production can be negative Ṡi ≤ 0
10,14 consequently we may have negative entropy production for such processes, i.e.,

This means that some of the internal energy can be decoded to be used by the system to do more work. (b) 
Consider a quantum engine operating in a cycle between two heat reservoirs at temperatures Th and Tc with 
Th > Tc . In step I, as depicted in Fig. 2, the engine interacts with a hot reservoir at temperature Th from point 
A(ρ0,H0) to point B(ρ1,H0) while the Hamiltonian remains unchanged. The heat absorbed by the engine is 
�Qh = tr{H0(ρ1 − ρ0)} . In step II the engine is decoupled from the hot reservoir and undergoes an adiabatic 
evolution from point B(ρ1,H0) to point C(ρ1,H1) . In step III it interacts with a cold reservoir at temperature Tc 
from point C(ρ1,H1) to point D(ρ0,H1) while the Hamiltonian remains unchanged. The heat rejected to the cold 
reservoir is �Qc = tr{H1(ρ0 − ρ1)} . Finally in step IV the engine is decoupled from the cold reservoir and, in an 
adiabatic evolution, goes back to its initial point by going from point D(ρ0,H1) to point A(ρ0,H0) and complete 
the cycle. Now the whole work done by the system during the cycle, as in Eq. (9), is �W = �Wirr +�Wrev . 
Since during the adiabatic processes no entropy is produced in the interior of the system13,15 thus

Then the efficiency becomes

Equation (19) is a generic form for the efficiency of any engine working in a cycle. In the case of a reversible 
cycle the second term on the right hand side vanishes and it simply reduces to Eq. (16). Now as is clear from Eq. 
(19) the second term on the right hand side shows the contributions of the Markovianity and non-Markovianity 
of the processes to the efficiency. If the evolution of the system during steps I and III is Markovian then �iSh 
and �iSc are positive and consequently the efficiency decreases which would be less than Carnot efficiency. This 
means that some information is encoded hence the system cannot use this encoded energy as work during the 
evolution. But if the evolution of the system during steps I and III is non-Markovian then �iSh and �iSc can be 
negative and consequently the efficiency increases which can become greater than that of Carnot. This means 
that information is decoded and the system uses this decoded information to perform additional work and as 
a result the efficiency increases. Thus, as was mentioned before, one way to exceed the Carnot efficiency is to 
have non-Markovian processes during the cycle. As an example, consider a spin-1/2 system13,16–18 working in an 
Otto cycle, as depicted in Fig. 2. The system is in an initial state ρ0 , diagonal in the eigenbasis of the Hamiltonian 
H0 = (ω0/2)σz , where ω0 = κB and σz is the Pauli matrix. Here κ is a constant and B is the constant magnetic 
field applied in the z direction on the system. The efficiency of the engine reads (see Supplementary Note 4)

(15)�Wirr =
1

β
[S(ρ0�ρβ)− S(ρτ�ρβ)].

(16)η ≡
−�W

�Qh
= 1−

Tc

Th
= ηC ,

(17)�iS =
∫ τ

0

dt Ṡi ≤ 0.

(18)�Wirr =
1

βh
�iSh +

1

βc
�iSc .

(19)
η =

−�Wrev

�Qh
−

�iSh

βh
+

�iSc

βc

�Qh
.

(20)η = 1−
ω1

ω0

≤ 1−
T3

T1

.
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For a Markovian process in order to absorb heat from the hot reservoir and reject heat to the cold reservoir we 
must have Tc ≤ T3 ≤ T1 ≤ Th . Thus 1− T3/T1 ≤ 1− Tc/Th , i.e., the efficiency is less than Carnot efficiency, 
and the Second Law is preserved. But in the case of non-Markovian baths, since the effective temperature of the 
system may not approach the temperature of the bath monotonically therefore during the interaction with the hot 
bath the temperature of the system can become higher than that of the hot bath and during the interaction with 
the cold bath its temperature can become lower than that of the cold bath, i.e., we may have T3 ≤ Tc ≤ Th ≤ T1
18–23 which can lead to an engine more efficient than that of Carnot, resulting in the violation of the Second Law. 
This violation, in non-equilibrium quantum thermodynamics, occurs due to the memory effects of the baths 
which is never observed in classical equilibrium thermodynamics. In classical macroscopic thermodynamics no 
memory effects are present thus no negative entropy production may occur and this leads to the fact that Carnot 
efficiency is the maximum efficiency. It should be noted that decoupling the system from the reservoir might 
cause some energy cost but since we are in the weak coupling limit and turning on and off the interaction occurs 
very fast compared to the time of the step, this energy cost is negligible, i.e, Eint = tr{ρHint} ≃ 0 . It should also 
be noted that in the example above we did not use any device to make any measurement to gain information 
from the state of the system and store this information. We left the system and the bath to themselves.

It must be mentioned that if we use a device to gain and store information from the state of the system then 
according to the Landauer principle in erasing each bit of information KBT ln 2 of heat is produced24 ( KB is Boltz-
man constant) which compensates for the negative entropy production saving the Second Law. For instance if 
N bit of information is used by the device we will have

which is in agreement with the Second Law25. In Ref.26 a device interacting with two heat reservoirs, a work 
reservoir, and an information reservoir, which exchanges information but not energy with the device, was inves-
tigated. They have found that for cyclic processes in which information is systematically written to the memory, 
the efficiency can exceed the Carnot limit. In this case the system and the bath are not left to themselves, i.e., 
the information reservoir acts as Maxwell’s demon which intervenes in the process from the outside to decode 
information. But for the case of non-Markovian bath, in our model above, nothing intervenes in the process 

(21)�iS +�Sdevice = �iS + NKBT ln 2 ≥ 0,

Figure 2.   As a visual aid points, between which the quantum system operates as the working substance in an 
Otto cycle, in dynamical configuration space are depicted in a (ρ,H)-coordinate system. From A to B the heat 
�Qh is absorbed from the hot reservoir at temperature Th and from C to D the heat �Qc is rejected to the cold 
reservoir at temperature Tc . The processes from B to C and from D to A occur adiabatically.
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from the outside, i.e., no device is used for gaining and storing information. We leave the system and the non-
Markovian bath to themselves and information is decoded just due to the memory effects of the bath.

The two cases considered above help to understand the physical nature of information. In 1991 Rolf Landauer 
declared that ”information is physical”24. Since then, information has come to be seen by many physicists as a 
fundamental component of the physical world27–30. In deterministic equilibrium thermodynamics we could also 
have negative entropy production. Szilárd showed that information can be used to do work if one permits an 
intelligent being (demon) to intervene in the process of a thermodynamic system8. What Maxwell’s demon does 
is decoding information and the system uses this decoded information to output more work. Decoding informa-
tion causes the entropy production of the system to be negative, therefore as we have shown above this causes the 
system to perform more work and, in turn, this leads to having an efficiency greater than that of Carnot. Del Rio 
et. al31 have shown that erasing a system, which is coupled strongly with another system (a quantum memory), 
may cause the conditional entropy of the system to be negative and this negative entropy will lead to extracting 
work from the system, thus cooling the environment. Our results provide a thermodynamic operational meaning 
for negative entropy production, which until now only had information-theoretical interpretations; for example, 
it witnesses the non-Markovianity. The significance of a general Szilárd engine is that it conjoins thermodynam-
ics and information theory. It shows the usefulness of information for performing some thermodynamic task. 
Given the important link between the task of work extraction and information theory, as appears in the examples 
of Maxwell’s demon32, the Szilárd engine8, and Landauer’s erasure principle33, it is becoming more common to 
consider the nature of information as physical. In classical thermodynamics if we leave the system to itself (i.e. 
no demon is allowed to intervene) it is impossible to have negative entropy production thus the Carnot engine 
becomes the most possible efficient engine. But in the quantum realm, due to the existence of the landmark 
quantum features, even if the system is left to itself, in non-Markovian processes the entropy production of the 
system can be negative thus the system, working in a cycle, can be more efficient than a Carnot engine.

The second law of thermodynamics
We are now in a position to properly extend the second law of thermodynamics to quantum thermodynamic 
processes:

“In a quantum thermodynamic process information can be encoded and also decoded for the system to 
do work and this encoded (decoded) work equals temperature T times entropy production of the system, i.e.,

where β = 1/T is the temperature of the reservoir with which the system interacts.”
As can be seen this definition of the Second Law emphasizes on the connection between thermodynamics 

(work as a thermodynamic variable) and information not on a specific direction for the arrow of time because 
unlike deterministic classical thermodynamics in stochastic quantum thermodynamics the entropy produc-
tion can be both positive and negative. This way of defining the Second Law covers both classical and quantum 
thermodynamics and also incorporates information explicitly into the Second Law, i.e., it is never violated in 
the quantum realm nor in the presence of a demon intervening in the process. For classical macroscopic deter-
ministic thermodynamics it reduces to the encoded part, i.e., �iS ≥ 0 . Therefore Carnot’s, Clausius’ and the 
Kelvin-Planck statements of the Second Law come just as a part of the Second Law, i.e., the encoded part. As we 
have shown in quantum thermodynamic systems information can be decoded spontaneously without any demon 
intervening in the process and consequently more work than what is expected can be output. In next section 
we will show that there is a thermodynamic force which is responsible for decoding and encoding information.

Maxwell’s demon and quantum thermodynamic force
In Ref.12 it was shown that a thermodynamic force is responsible for the flow and backflow of information in 
quantum processes. For a system, interacting with a bath initially at temperature β = 1/T , the rate of the entropy 
production can be expressed as12

where Vth ≡ ρ̇tρ
β
t  is the thermodynamic flow and Fth ≡

1

ρ
β
t

[ln ρβ
t − ln ρt ] the thermodynamic force. Using Eqs. 

(10) and (22) we get

Since it was shown in Ref.12 that the thermodynamic force Fth is responsible for the flow (encoding) and backflow 
(decoding) of information in Markovian and non-Markovian dynamics, respectively, Eq. (23) suggests that, if 
the system is left to itself, Fth actually encodes energy, during the flow, not to be used as work by the system and 
decodes energy, during the backflow, to be used as work by the system. In classical thermodynamics De Donder 
found a similar relation for chemical reactions34. Let us now consider the case in which the system is not left to 
itself, i.e., someone or something outside the system (as a demon) intervenes in the process. Szilárd argued that 

�Wirr =











1

β
�iS ≥ 0 information is encoded

1

β
�iS ≤ 0 information is decoded

(22)
diS

dt
= tr{FthVth},

(23)
dWirr

dt
=

1

β
tr{FthVth}.
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negative work �W can be extracted from an isothermal cycle if Maxwell’s demon plays the role of a feedback 
controller35. When the statistical state of a system changes from ρ(x) to ρ(x|m) , due to the measurements made 
by the demon on the system, the change in the entropy of the system can be expressed as36,37

where H(X) = −
∑

x ρ(x) ln ρ(x) is the Shanon entropy of the system and I(X; M) the mutual information 
between the state of the system and the measurement outcome M. Since I(X; M) is always positive thus the 
demon causes the entropy of the system to decrease. This is similar to the case of non-Markovianity in which the 
entropy decreases. Therefore the presence of the demon is also expected to lead to extracting more work from 
the system than what is expected. Now the role of the demon can be incorporated into the Second Law as36,38

In Ref.32 a practical way was offered, as an alternative to the Szilárd engine, to physically realize Maxwell’s demon. 
They have shown that using a feedback contoller (the demon) which makes measurements on the engine they are 
capable of extracting more work from the heat reservoirs than is otherwise possible in thermal equilibrium. For 
a system, initially and finally in equilibrium states with temperature β = 1/T , which can contact heat reservoirs 
B1,B2, ...,Bn at respective temperatures T1,T2, ...,Tn they have found that

and

where ρ1 is the state of the system at some time t1 , S(ρ1) the Von Neumann entropy, H({pk}) = −
∑

k pk ln pk the 
Shannon information content and H(ρ1 : X) = −

∑

k tr{
√
Dkρ1

√
Dk ln

√
Dkρ1

√
Dk} . {Dk} are positive opera-

tor valued-measure (POVM) defined by Dk = M†
kMk and pk = tr{Dkρ} . It is seen that the sum of the last three 

terms on the right hand side of the inequality (26) is the irreversible work due to the presence of the feedback 
controller (the demon). Thus if we take the time derivative of these three terms we have

Comparing Eq. (27) with Eq. (23) it is observed that there are three quantum thermodynamic forces responsible 
for the extra work done during the process,

Thus we may write

There are also three thermodynamic flows associated with these three thermodynamic forces above,

and it may be written

We must notice that Eqs. (29) and (31) should not be taken too literally, i.e., these equations just indicate the 
fact that there are three thermodynamic forces and flows involved due to the presence of the feedback control-
ler and we cannot add them up like the way we do about typical vectors. We note that Ftotth = 0 if and only if 
Dk is proportional to the identity operator for all k32, which means that nothing is interveningin the process, 
therefore no information is decoded to be used to perform additional work by the system. On the other hand, 
Ftotth = F2th if and only if Dk is the projection operator satisfying [ρ1,Dk] = 0 for all k32, which means that the 
measurement on ρ1 is classical, hence Ftotth  is classical. In Refs.36,39,40 similar results have been found. Therefore 
we have shown that intervention (the demon) from the outside in the process of a system may be represented 
by a thermodynamic force.

(24)�Smeas = H(X|M)−H(X) = −I(X : M),

(25)�W ≥ �F −
1

β
I(X : M).

(26)�W ≥ �Fβ −
1

β
I(ρ1 : X),

I(ρ1 : X) =
1

β
[S(ρ1)−H({pk})+H(ρ1 : X)],

(27)

dWdem
irr

dt
=
1

β
[tr{ρ̇1 ln ρ1} +

∑

k

ṗk ln pk

−
∑

k

tr{
√

Dkρ̇1
√

Dk ln
√

Dkρ1
√

Dk}].

(28)F1th =
ln ρ1

ρ
β
1

, F
2(k)
th =

ln pk

p
β

k

, F
3(k)
th = −

ln
√
Dkρ1

√
Dk

ρ
β
1

.

(29)Ftotth = F1th

⊕

F2th

⊕

F3th.

(30)V1
th = ρ̇1ρ

β
1 , V

2(k)
th = ṗkp

β

k , V
3(k)
th =

√

Dkρ̇1
√

Dkρ
β
1 ,

(31)Vtot
th = V1

th

⊕

V2
th

⊕

V3
th.
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Summary
In this work we have appropriately divided the work done by a thermodynamic system into two parts: reversible 
work and irreversible work. This partitioning seems plausible since whenever the process is reversible all the 
work is reversible and there exists no irreversible work as expected. Using this partitioning we have derived a 
generic form for the efficiency of an engine operating in an arbitrary cycle. It was shown that negative entropy 
production, which can occur in non-Markovian processes or by intervening in the process of the system (Max-
well’s demon), means that the internal energy is decoded to be used by the system to perform more work than 
what is expected and this additional work leads to having quantum engines with efficiencies greater than that of 
Carnot. We have investigated two special cases to elucidate the physical meaning of �Wirr =

1

β
�iS in quantum 

thermodynamics. We have also shown that the relation �Wirr =
1

β
� is the link between thermodynamics and 

information in both classical and quantum thermodynamics. Based on this analysis we have introduced a new 
definition of the second law of thermodynamics such that it covers both classical and quantum thermodynamics 
and incorporates information well into the Second Law. At last, we have shown that a quantum thermodynamic 
force is responsible for encoding and decoding information even when a feedback controller outside the system 
is involved in the process.
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