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Characterisation, identification, 
clustering, and classification 
of disease
A. J. Webster1*, K. Gaitskell1,2, I. Turnbull1, B. J. Cairns1,3 & R. Clarke1

The importance of quantifying the distribution and determinants of multimorbidity has prompted 
novel data-driven classifications of disease. Applications have included improved statistical power 
and refined prognoses for a range of respiratory, infectious, autoimmune, and neurological diseases, 
with studies using molecular information, age of disease incidence, and sequences of disease onset 
(“disease trajectories”) to classify disease clusters. Here we consider whether easily measured 
risk factors such as height and BMI can effectively characterise diseases in UK Biobank data, 
combining established statistical methods in new but rigorous ways to provide clinically relevant 
comparisons and clusters of disease. Over 400 common diseases were selected for analysis using 
clinical and epidemiological criteria, and conventional proportional hazards models were used to 
estimate associations with 12 established risk factors. Several diseases had strongly sex-dependent 
associations of disease risk with BMI. Importantly, a large proportion of diseases affecting both sexes 
could be identified by their risk factors, and equivalent diseases tended to cluster adjacently. These 
included 10 diseases presently classified as “Symptoms, signs, and abnormal clinical and laboratory 
findings, not elsewhere classified”. Many clusters are associated with a shared, known pathogenesis, 
others suggest likely but presently unconfirmed causes. The specificity of associations and shared 
pathogenesis of many clustered diseases provide a new perspective on the interactions between 
biological pathways, risk factors, and patterns of disease such as multimorbidity.

John Graunt’s pioneering epidemiological studies in the 1600s required the identification and clustering of 
symptoms into disease types with similar aetiologies1. Clusters needed to be fine enough to distinguish different 
underlying causes, but coarse enough to allow meaningful statistical study. The modern International Classifica-
tion of Diseases (ICD)2,3 assigns each disease a hierarchical code in which successive digits provide increasing 
detail about the cause, pathology, or anatomical site of the disease, and it continues to evolve4.

Data-driven classification of disease is a recent idea, made possible by access to large population studies, such 
as UK Biobank5. Examples include using molecular or imaging data to identify and classify subtypes of disease 
such as metabolic syndrome6, amyotrophic lateral sclerosis (ALS)7, cancer8,9, arthritis10,11, and dengue fever 
severity12. The subtypes allow more accurate prognoses for disease severity12, co-morbidities13, outcomes7,14, and 
response to treatment15. More general studies intend to better characterise the phenotype6,9,13,16–26, using either 
molecular or genomic data6,9,13,17–19, or the times and sequences of disease incidence (“disease trajectories”)20–26. 
Opportunities include improved aetiological understanding13,16,19,27, more rapid and accurate diagnoses15–17, 
more detailed prognoses15–17,20,21,23,24, improved statistical power28, improved care19,20,22, and facilitating drug 
development15,29. Improved classification schemes are widely expected to improve our understanding of 
disease7–13,16,27 and the precision of drug targets and clinical trial design15,28,29, accelerating advances such as 
personalised medicine29 and improving our ability to understand and prevent, both individual and multiple 
diseases including multi-morbidity30.

Previous data-driven classifications have considered molecular data, the time of disease onset, or the 
sequences of diagnosed diseases (“disease trajectories”). Here we explore whether easily measured, well-known 
risk factors such as height and body mass index can be used to usefully characterise, identify, and cluster diseases.
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Methods
Data sources.  Data are from the UK Biobank cohort of over 500,000 men and women aged between 40 and 
69 years, recruited during 2006–2010. For inclusion, diseases were the primary clinical diagnosis recorded in 
hospital records with an ICD-10 code between 31 March 1996 and 31 March 2017, that refer to a clear diagnosis 
of a health-related disease, as described in “Clinical considerations” below. UK Biobank data can be accessed by 
application through www.ukbio​bank.ac.uk, along with relevant code and the disease selection dataset.

Coding and diagnosis of disease.  The National Clinical Coding Standards31 define the primary diagno-
sis as the main symptom or disease treated, and arguably this primary cause of hospital admission provides the 
most reliable diagnosis. Additional diagnoses made after admission to hospital can correspond to less severe 
complaints diagnosed by chance, or occurring in association with either the primary or a different disease. Cod-
ing standards require that only diseases that affect the patient’s management should be recorded31, which will not 
necessarily include all existing diseases. They are also biased by medical practice, with diagnoses limited to those 
that are investigated. Therefore the present study was restricted to the smaller number of primary diagnoses that 
were expected to have passed a threshold of severity, and were more likely to be unrelated to undiagnosed or 
co-occurring disease.

Clinical considerations.  Not all diagnosed and coded diseases are suitable for study. For example, a disease 
may have an uncertain diagnosis, or be unrelated to age or environmental exposures. Primarily we required that 
3-digit ICD codes refer to a clear diagnosis of an age-related disease. Random events including accidents or 
infections due to a chance exposure were excluded unless modified by an underlying, possibly age-related, con-
dition or predisposition. For example, some infectious diseases are more strongly influenced by chance lifestyle 
exposures than by age-related risks, but urinary tract and chest infections are influenced more by a weakened 
immune system than from a chance exposure alone, and were included. Diseases common before the start of the 
UK Biobank study such as pregnancy-related diseases were excluded due to insufficient cases. Any of the above, 
or related issues, can cause statistical models to fail or lose power, and we also excluded any diseases that failed 
any statistical test described later.

The above considerations led us to firstly exclude ICD-10 coded diseases beginning with: Z (factors influ-
encing health status)—because not disease specific, Q (congenital) and O, P (Diseases related to pregnancy and 
perinatal period), U (new and antibiotic resistant diseases), V, X, Y (external causes of morbidity and mortality), 
and T (multiple injuries, burns, and poisoning)—usually reflecting a chance exposure. An epidemiology-trained 
pathologist (KG) selected and categorised diseases as excluded, acute-onset, chronic, due to infection, due to 
injury, or unknown aetiology (R-coded diseases in ICD-10, retained to allow follow-up studies).

Selection at the 4‑digit ICD‑10 code level.  Incidence data may be more informative if a 3-digit ICD-10 
coded disease, is split into 4-digit coded disease subtypes. If these more accurately reflect the underlying aetiol-
ogy, then associations with risk factors are expected to be clearer (with for an equivalent number of cases, smaller 
confidence intervals and bigger effect sizes). Therefore the 3-digit selections were examined and revised by a 
physician with training in epidemiology (IT). Where substantial aetiopathological differences existed, 3-digit 
codings were split into smaller groups. Often one or more 4-digit codes were excluded from a 3-digit group 
for a reason listed previously. Occasionally, diseases were split into a combination of one or more 4-digit codes 
and a grouping of 4-digit codes (see Supporting Information). The 4-digit selection was reviewed and tested for 
self-consistency to prevent typographical input errors. Details of the ICD-10 code selection are included in the 
Supporting Information, Table 1.

Survival analysis.  The survival analysis used a proportional hazards model32,33 with age as the time variable, 
and the data were left-truncated at the age when participants attended the UK Biobank assessment centre. The 
data were right-censored if the end of the study period occurred before the disease of interest, or if there was 
any cancer other than non-melanoma skin cancer, because many cancers and cancer treatments are known to 
influence subsequent disease risk. Using age as the time variable allows strong age-dependencies to be accurately 
modelled through the baseline hazard. All calculations used R version 4.0.034, with packages “bit64”35, “data.
table”36, and “grr”37 for data manipulation, “survival”38 for fitting survival models, “xtable”39 for long tables in the 
Supplementary Material, “dendextend”40 and “gplots”41 for plots.

We considered the well-known risk factors of: diabetes, height, body mass index (BMI), smoking status, sys-
tolic blood pressure (SBP), alcohol consumption, and walking pace, and adjusted for the established confounders 
and female-specific risk factors of: deprivation tertile, education, hormone replacement therapy (HRT) (women 
only), and having one or more children (women only). We used numerical measures for height, BMI, and SBP, 
standardised using their joint mean and standard deviation across men and women. Smoking status was: never, 
previous, or current, alcohol consumption was: rarely (less than 3 times per month), sometimes (less than 3 times 
a week, but more than 3 per month), regularly (3 or more times each week), walking pace was: slow, average, 
brisk, and education was: degree level, post-16 (but below degree), to age 16 or unspecified. For women, we also 
adjusted for any previous HRT use (yes or no), and for having had one or more children (yes or no). Baseline 
was taken as: no diabetes, never smoker, rarely drink, brisk walking pace, degree-level education, minimum 
deprivation tertile, and women with no children or HRT use. Analyses were multiply adjusted to minimise the 
influence of correlations between risk factors and capture as much causal information in the fitted parameters 
as possible. To reduce confounding by age we stratified by year of birth (YOB), and adjusted by the age at which 
participants joined the study.

http://www.ukbiobank.ac.uk
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We assumed a linear response to the continuous measures of BMI, height, and SBP, so as to maximise the 
number of cases in each category. If associations were non-linear, it would reduce the accuracy of our model 
fits, leading us to argue against inferring causal associations with risk factors. Well-known and biologically 
meaningful variables were used to aid interpretation of disease clusters, but as measurable recognised physical 
characteristics used for characterising and clustering diseases, it would be acceptable if “risk factors” were symp-
toms. The measured risk factors had less than 1% missing values, allowing a complete case analysis. Because the 
risk factors are commonly measured, equivalent analyses in other datasets are possible. Sensitivity analyses with 
sex-dependent tertiles found similar results to those of the main text; see Supporting Information, Figs. 2 and 4.

Statistical inclusion criteria.  There is no general rule to determine how many cases are sufficient to 
ensure meaningful estimates for parameters and their covariances42. We excluded diseases if their parameters 
or covariance matrices were undefined, or their covariance matrices’ eigenvalues were unusually large, indicat-
ing excessively large confidence intervals for one or more parameter (see Supporting Information, Fig. 1). This 
was typically due to insufficient data in one or more category, and were usually diseases that occur at the older 
(or younger) extremes of age range (e.g. delirium or excessive menstruation respectively), with too few cases in 
the younger (or older) YOB tertiles. To select a smaller set of diseases that have the most statistically significant 
risk factors and are easier to study and discuss, we excluded diseases whose risk factors were not statistically sig-
nificant after a Bonferroni multiple-testing adjustment of a multivariate χ2 test for statistical significance of the 
fitted parameters. Finally the proportional hazards assumption was tested using a global χ2 test of the Schoenfeld 
residuals33, and diseases failing the test after an FDR multiple-testing adjustment43 were excluded. When testing 
for failure (and exclusion), an FDR adjustment is stricter than a Bonferroni adjustment and will exclude more 
diseases. The selection procedure is summarised in Table 1.

Strong, biologically meaningful comparisons.  To compare diseases, we were interested in strong 
biologically meaningful comparisons, for example between current smokers and a baseline of never smok-
ers, as opposed to a baseline of previous smokers. Such substantial differences are more likely to be associated 
with changes to biological pathways that can modify disease risk. Because the maximum likelihood estimates 
(MLEs) for parameters are normally distributed, the distribution for a subset of parameters is easily obtained by 
marginalisation44. The mean and covariance matrices of a subset are simply the rows and columns of the mean 
and covariance matrices that correspond to the parameters of interest44. These values are generally quite different 
than those obtained by fitting the subset of parameters directly. This allowed us to adjust for parameters that are 
known to influence disease risk, but for clustering and comparison we used marginalisation to solely consider: 
BMI, height, SBP, slow walking pace (versus fast walking pace), regular drinker (versus rarely drink), and current 
smoker (versus never smokers). The procedure also ensures that each risk factor is represented by a single vari-
able when clustering, reducing the potential for clustering to be dominated by a single risk factor (e.g. a categori-
cal variable with d levels would otherwise be represented by d parameters when clustering).

Multivariate statistical tests and clustering metrics.  Because maximum likelihood esti-
mates for parameters e.g. µ̂1 and µ̂2 are approximately normally distributed, statistical tests are easy to 
construct. For µ̂1 ∼ N(µ1,�1)   and   µ̂2 ∼ N(µ2,�2) ,   if they have the same mean with µ1 = µ2,   then   
(µ̂1 − µ̂2) ∼ N(0,�1 +�2) and (µ̂1 − µ̂2)

T (�1 +�2)
−1(µ̂1 − µ̂2) ∼ χ2(p) where p is the number of 

parameters42. This was used to test the null hypothesis that the fitted parameters of diseases in men and women 
are the same, using the MLE estimates for the covariance matrices (Figs. 3 and 4). We also tested the null hypoth-
esis that diseases in the same cluster have the same mean, by noting that,

where ng is the number of diseases in cluster g with members Cg , N is the number of groups, and p is the number 
of fitting parameters. After removing the 8 diseases in Fig. 4 with statistically significant differences between 
men and women at the 0.05 level after an FDR multiple-testing adjustment43, we plotted the left-hand side of 
Eq. 1 versus N to determine a minimum value of N = 63 where there is no longer a statistically significant dif-
ference at the 0.05 level (Fig. 1). However our main interest is in the similarity between risk factors for diseases, 
not whether they are statistically different. The left hand side of Eq. (1) falls rapidly until N ≃ 24 , suggesting 
that most of the variation is captured in the first 24 clusters. This “elbow criterion”45, was used in Figs. 1 and 5 . 
Presently there is no established method to determine how many clusters there should be42. The log-likelihood 
has recently been calculated for the clustering model considered here46, that uses the normally distributed MLEs 
and their covariances to assess the likelihood of diseases forming clusters with the same risk-factor associations 
(MLEs). For a normal (prior) distribution that places a low probability on large estimates for associations with 
risk factors, the hierarchical clustering model used here minimised the log-likelihood at between 22 and 25 
clusters depending on the prior’s assumed covariance.

The distance between fitted parameters must reflect both their values and the uncertainty in their estimates, 
so that distances are less if the same estimates have larger covariances. Ideally, it will also measure similarities 
between their covariance matrices, and have a clear mathematical interpretation. This is true of the Bhattacharyya 
coefficient, that measures the similarity between probability distributions through their overlap. The Battacharyya 
distance is the negative logarithm of the result, that for two multivariate normal distributions has,
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with � = (�1 +�2)/2 . The first term is proportional to the χ2(p) that was used to test the null hypothesis of 
equal means ( µ1 = µ2 ) in Figs. 3 and 4. As a consequence the largest p values will tend to coincide with the 
smallest Bhattacharyya distances, but DB also incorporates extra information from the estimated covariance 
matrices to compare the shape of the probability distributions. The minimum DB can be used to assign a partner 
to each disease (Fig. 3). We hierarchically clustered the 156 diseases using DB and the ward.D2 algorithm in the 

(2)DB = 1

8
(µ1 − µ2)

T�−1(µ1 − µ2)+
1

2
log

(

det�√
det�1 det�2

)

Figure 1.   The “elbow” in the weighted sum of squares of differences in the fitted parameters in each cluster 
(Eq. 1), at ≃ 24 clusters, qualitatively indicates how many clusters to keep. With 63 or more clusters there are no 
statistically significant differences at the 0.05 level between fitted parameters in each cluster (inset).

Table 1.   Selection criteria for clustering of diseases.

Clinical inclusion criteria Eligible hospital episodes

Prior disease Diseases were the first primary hospital diagnosis in each ICD-10 chapter
425,383 male

502,771 female

+ Clinical considerations Clinically distinct, age-related disease, or R-coded diseases of unknown 
aetiology

400,006 male

468,398 female

Statistical inclusion criteria Eligible diseases

Successful fit
At least 50 cases, and a covariance matrix with no unusually large or 
small eigen values that exceed the mean by 2.5 standard deviations when 
outliers were included

343 male

346 female

+ Statistically significant Statistically significant risk factors at the 0.05 level,after a multiple-test-
ing Bonferroni adjusted multivariate χ2 test

150 male

140 female

+ Proportional hazards Test of proportional hazards assumption—no statistically significant devia-
tion at the 0.05 level, after a multiple-testing FDR adjustment

138 male

127 female

+ Unisex The set must include the same disease in both men and women 86 male and female
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R software package. Diseases were assigned to 24 clusters, as suggested by the elbow criteria45 and Fig. 1. The 
clustering is shown in Fig. 5, along with a heat map for the coefficients of each risk factor associated with each 
disease mapped onto a 0–1 scale using an inverse logit function.

Sensitivity analysis.  Informative clusterings should be insensitive to small changes in the data or to the 
models used for analysis. In addition to visual comparisons, we quantified the differences between two cluster-
ings of disease by considering the pairs of diseases that remain in the same cluster, independent of the clustering 
algorithm. Specifically, consider clustering the same set of diseases into e.g. 24 groups by two different algo-
rithms A and B, such as using coefficients estimated from two different proportional hazards models. Take the 
observed number of all possible disease pairs within clusters in A as nA , the equivalent number in B as nB , and 
the number common to both as nAB . The maximum proportion of disease pairs that are clustered together by 
both A and B is pAB = nAB/min(nA, nB) . In practice, the sensitivity analyses produced clusterings with more 
disease pairs, and in this paper pAB is the proportion of all clustered disease pairs that remain clustered together 
in the sensitivity analysis. Similar clusterings have pAB ≃ 1 , and unrelated clusterings have pAB ≃ 0 . Individual 
diseases that are particularly sensitive to the clustering procedures can be identified as those with no other dis-
eases that are common to both their clusters (in A and B).

Results
Diseases were selected on the basis of statistical and clinical criteria, as outlined in the Methods and summarised 
in Table 1. All results describe diagnoses that were an individual’s first primary diagnosis in an ICD-10 chapter. 
This compromise between reducing the risk of confounding by prior disease and retaining sufficient cases was 
tested by a sensitivity analysis, as discussed later.

Figure 2 shows the number of diseases with statistically significant risk factors, that increase with the number 
of cases due to maximum likelihood estimates becoming increasingly accurate and identifying smaller effect 
sizes. Overall there were smaller proportions of statistically significant associations with injuries or symptoms 
of unknown origin. There were similar numbers of chronic and acute diseases with 230 or more cases, but rarer 
diseases with 49-230 cases were almost twice as likely to be acute than chronic disease. Despite infectious diseases 
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Figure 2.   689 diseases of men or women were categorised as acute, chronic, infectious, injuries, or symptoms of 
unknown cause (separate plots), and grouped by the number of cases (horizontal axes). We considered: whether 
associations were statistically significant at the 0.05 level after a Bonferroni multiple-testing adjustment?—no 
(orange), or if yes, whether proportional hazards test did (green) or did not (yellow) pass. The median number 
of cases was 214. The vertical axis for acute diseases has a different scale.
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needing exposure to an infectious agent to trigger an infection, there were clear associations of infectious diseases 
with risk factors, possibly because we have selected infectious diseases that are likely to reflect an underlying 
susceptibility. The proportion of diseases failing a proportional hazards test increased with the number of cases, 
presumably because the test became more sensitive. With larger datasets, it is possible that fewer diseases will 
satisfy the proportional hazards model, although the failure might be correctable with a different combination 
or increased number of risk factors.

Identification of disease.  Each disease present in both men and women were assigned to the one with 
minimum Bhattacharyya distance between their estimated associations with potential risk factors. The propor-
tion of diseases matched to their equivalent disease in the opposite sex are plotted in Fig. 3, grouped as acute, 
chronic, infectious diseases, and symptoms of unknown origin (R-codes). For 38% of the 172 diseases consid-
ered, the nearest disease measured by Bhattacharyya distance was the equivalent disease in the opposite sex, and 
for 80% of diseases the equivalent disease was among the nearest 8 diseases (the nearest 5%).

Differences between men and women.  The proportions of diseases with statistically significant differ-
ences in their associations with risk factors are shown in Fig. 3. Approximately 5% of diseases had statistically 
significant differences between men and women at the 0.05 level after an FDR multiple-testing adjustment43, and 
this dropped to ∼ 1% when BMI was excluded as a risk factor.

The risk factors responsible for statistically significant differences between men and women are considered 
in Fig. 4. The heat map indicates whether a risk-factor is associated with a higher risk for women (red), or lower 
risk (white), with orange neutral. Because BMI appeared to have different risk associations in men and women, it 
was removed and the analysis rerun. Removing BMI reduced the number of diseases with statistically significant 
risk factors (after a Bonferroni adjustment), from 172 to 156. Figure 3 shows that the proportion of diseases with 
statistically significant differences between men and women reduced from ∼ 5 to ∼ 1%, and Fig. 4 shows that 
those diseases were arthrosis of the knee and kidney stones. The differences did not appear to be solely due to 
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Bhattacharyya distance is plotted in green. The proportion of diseases with statistically significant differences 
between men and women are plotted in red. The differences are mainly due to different associations with BMI 
(inset).
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any particular risk factor. A sensitivity analysis with sex-dependent tertiles replacing continuous measurements, 
found similar results (see Supporting Information, Fig. 3). Overall we found strong evidence for sex-specific 
associations for some diseases affecting men and women, especially for BMI.

Clustering of disease.  Figure 3 shows that many diseases could be identified by their associations with 
well-known risk factors. Presuming the associations reflect common aetiological pathways, then clustering by 
them may yield clusters of diseases with similar aetiologies. Hierarchical clustering was used to capture and 
visualise similarities between the risk factors for disease, and generated a hierarchical structure of increasingly 
similar clusters. The dendrogram is coloured to indicate 24 groups. The clustering is shown in Fig. 5, along with a 
heat map for the risk factors associated with each disease. This allows us to simultaneously visualise how diseases 
cluster, and the associations responsible for the clusterings.

When considering Fig. 5 it is useful to note that: (1) Disease descriptions with the same first-digit of ICD-10 
code are coloured the same, e.g. I50 and I70 are both coloured black. (2) If the same disease in men and women 
cluster together, then it is likely to have a distinctive combination and magnitude of associations with risk fac-
tors. (3) Any diseases connected by a tree with small depth will have a quantitatively similar combination of 
associations. (4) The heatmap indicates a cluster’s association with risk factors, with red associated with higher 
risk, white with lower risk, and orange neutral. For example, considering Fig. 5, chronic obstructive pulmonary 
disease, lung cancer, arterial embolism, and atherosclerosis are clustered closely together (groups 1 and 2), and are 
being identified primarily by the increased risk associated with smoking and walking slowly, with the magnitude 
of associations producing the finer subgrouping.

Symptoms, signs, and abnormal clinical and laboratory findings, not elsewhere classi-
fied.  Chapter XVIII of ICD-10 is devoted to “Symptoms, signs, and abnormal clinical and laboratory find-
ings, not elsewhere classified”2,3, and accounted for 11% of primary hospital episodes in the UK Biobank data. 
Despite their uncertain aetiology, 60 of the 98 diseases in men or women had statistically significant risk factors 
at the 0.05 level after an FDR multiple-testing adjustment, and 36 were statistically significant at the 0.05 level 
after a Bonferroni adjustment. Ten diseases that satisfied the FDR-adjusted proportional hazards test and were 
also present in both men and women were included in the clustering studies, and for most of these their risk 
associations were similar in men and women (Fig. 5, R-coded disease descriptions).

Confounding by prior disease.  Because the same individual’s data can appear every time a hospital epi-
sode has a primary disease from a different ICD-10 chapter, there is potential for confounding by prior disease. 
To test whether this influenced the clustering results, we took the 24 clusters in Fig. 5 and refit the proportional 
hazards model for each disease, but now excluded data with any prior diseases from the same cluster as the dis-
ease being studied. This prevented the clustering of diseases from different chapters being influenced by repeat 
hospital episodes from the same individuals.

Despite having fewer cases, the resulting cluster is almost identical to Fig. 5 (see Supporting Information, 
Fig. 2), with all pairs of clustered diseases continuing to cluster with each other. This strongly suggests that the 
clusters were driven by similarities in risk factors as intended, not by sequences of prior diseases.

Figure 4.   Disease pairs with statistically significant differences in their associations with risk factors at the 
0.05 level after an FDR multiple-testing adjustment. With all associations (left), and without BMI (right). Red 
indicates an association with higher risk for women than men, white a lower risk, and orange neutral. Without 
BMI as a risk factor, only two diseases continue to have statistically significant differences. The figures were 
produced with R34 and the “gplots”41 package.
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Figure 5.   The estimated fitting parameters and their covariance matrices were used to calculate the 
Bhattacharyya distances between diseases, and clustered hierarchically using the Ward.D2 algorithm. 
Diseases in men and women tend to cluster adjacently. Labels are coloured by their first ICD-10 digit, and 
the dendrogram is coloured with the top 24 groups in the cluster (see Fig. 1). Associations with potential risk 
factors are indicated by the heat map, with red an association with higher risk, white with lower risk, and orange 
neutral. The figure was produced with R34 using packages “dendextend”40 and “gplots”41.
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Tertiles versus a continuous linear model.  By assuming a proportional hazards model with a simple 
linear relationship between continuous measurements for height, BMI, and SBP, it was possible to consider dis-
eases with fewer cases than needed by a more complex model. To test the sensitivity of clusterings to this linear 
approximation, we refit a proportional hazards model to the same set of diseases but with sex-specific tertiles 
for height, BMI, SBP, and year of birth. Before clustering we again used marginalisation to compare a baseline 
of non-smokers, non-diabetic, rarely drink, and minimum tertiles for height, BMI, and SBP, to parameters for 
regularly smoking, diabetes, regularly drinking, and maximum tertiles for height, BMI, and SBP. We did not 
require fits to satisfy any statistical tests because the fewer numbers of cases in each tertile were expected to make 
the fits poor for some diseases.

As shown in the Supporting Information Fig. 3, the resulting clusters are similar, with 54% of all pairs of 
clustered diseases remaining together after reanalysing with tertiles. Arterial embolism and thrombosis (I74) 
was not included because there were too few cases in women when the analysis used tertiles. Ten diseases were 
most sensitive to the model being fit, having no other disease clustered with them in both clusterings. These were: 
H25.8—Other senile cataract (men), K42—Umbilical hernia (men), K59—Constipation (men), K61—Abscess 
of anal and rectal regions (men), L97—Ulcer of lower limb (women), M15— Polyarthrosis (men), M51—Other 
intervertebral disk disorders (women), R11—Nausea and vomiting (men), R29.6—Tendency to fall (men), R69—
Undetermined causes of morbidity (men).

Diseases with statistically significant differences between men and women were also similar (see Support-
ing Information, figure 4). The differing analyses found 4 diseases common to both studies with statistically 
significant differences at the 0.05 level after an FDR multiple-testing adjustment43. Without BMI as a risk factor, 
both studies found that kidney stones (N20) continued to have different risk associations for men and women.

Discussion
The broad systematic study of sex-specific diseases, specificity of observed associations, and shared pathogen-
esis of many clustered diseases offers potential new insights into the clinical presentation and aetiopathology of 
disease, some of which are explored below.

Sex differences and epidemiological practice.  There is increasing recognition of differences between 
men and women for the incidence, diagnosis, prognosis, and treatment of disease25,47. Sex-dependent risk fac-
tors have also been found for associations with cardiovascular disease48. Here we find a substantial proportion of 
diseases with different risk associations between men and women, for BMI in particular (Figs. 3 and 4). Further 
work is needed to understand the causes and implications of different risk associations, but the sex-dependent 
differences for BMI in particular, are sufficiently clear that they should be accounted for in future studies.

The proportional hazards model failed more frequently as the number of cases increased (Fig. 2). For larger 
data sets in particular, the model should be tested, and modified as required. With sufficient data, alternative 
methods may need to be considered.

Specificity of associations.  Despite 5% of diseases having substantially different associations between risk 
factors in men and women, 38% of diseases were correctly identified with their equivalent disease in the opposite 
sex, and 80% had their equivalent disease among the nearest 8 (of 172) diseases. This would only be possible if 
men and women had similar quantitative associations with risk factors for a given disease, and if these are suf-
ficiently distinct from those for other diseases. The influence of risk factors on disease onset seems surprisingly 
specific in many cases, and with more risk factors this specificity may increase. For example, if the 7 risk factors 
had a trinary value of e.g. tertiles, there would be 37 = 2187 possible combinations, but if the number of risk 
factors were doubled from 7 to 14 the combinations would exceed 4 million. In principle, it may be possible to 
define diseases by their response to a specific set of risk factors.

Pathways for disease.  An objective was to explore whether clustering by common risk factors could help 
identify pathways for disease. For example, renal failure, hyperkalaemia, and ulcers of lower limbs in men are 
clustered in group 8, along with other septicaemia in women. Renal failure can increase the risk of ulcers of the 
lower limb49,50, and hyperkalemia can be caused by kidney disease. However, a sensitivity analysis excluded prior 
diseases from the same cluster prior to fitting the proportional hazards model, and produced an almost identical 
clustering of diseases, consistent with clusters being driven by associations with risk factors (as intended), not 
prior disease. One interpretation is that the disease cluster is driven by a common pathway such as atheroscle-
rosis, with some associations being risk factors for it, others symptoms of it, and the diseases a consequence of 
it. This could produce (non-causal) associations between subsequent hospital admissions for different diseases. 
In contrast, cardiovascular diseases such as arterial embolism, pulmonary embolism, and atrial fibrillation are 
from the same ICD-10 chapter, but have different underlying causes, and are found in different clusters with 
quantitatively different risk associations.

Cardiovascular diseases appear in several different clusters, suggesting they are influenced by a range of 
different pathways for disease onset or severity. Arterial embolism and atherosclerosis are clustered with lung 
cancer in group 1, and adjacent to chronic obstructive pulmonary disease (COPD) in group 2, suggesting a 
similar and possibly smoking-related cause. Pulmonary embolism is in a group of 9 diseases (group 4) that 
includes gallstones, pain in limb, and polyarthrosis in women. Gallstones have previously been associated with 
an higher risk of pulmonary embolism51, that was attenuated after cholecystectomy51. Heart failure and unspeci-
fied stroke in women appear in a large group (group 6) of 18 diseases, in which 11 of the remaining 15 diseases 
involve infections. Atrial fibrillation has sufficiently specific associations to be clustered on its own in group 
16. Non-rheumatic aortic valve disorders, angina pectoris, and cerebral infarction, appear in group 21, along 



10

Vol:.(1234567890)

Scientific Reports |         (2021) 11:5405  | https://doi.org/10.1038/s41598-021-84860-z

www.nature.com/scientificreports/

with spondylosis, other spondylopathies, and senile cataracts in men. Cervical spondylosis (CS) have previ-
ously been associated with a higher risk of posterior circulation infarcts52, and with acute coronary syndrome53. 
Unspecified stroke, hypotension, and oesophageal varices, all in men, are in the adjacent group 20, along with 
hypo-osmolarity and hyponatraemia, and ulcer of lower limbs in women.

The majority of diseases involving infections are in a large cluster (group 6), described above in the context of 
cardiovascular diseases. The clustering suggests that susceptibility or severity could be mediated by a common 
underlying pathway. There is nothing unusual about the associations with walking slowly, diabetes, high BMI, 
and smoking, suggesting that the specific strengths of those associations are producing the cluster. Four other 
types of infections affecting both men and women (eight diseases), are in groups 9 and 10, and appear to have 
weaker associations with smoking and BMI than those in group 6.

Identification and re‑classification of disease.  Many diseases of uncertain aetiology (R-coded dis-
eases in ICD-10), had statistically significant risk factors, often sufficiently specific for equivalent diseases in 
men and women to cluster adjacently (Fig. 5). This could be explained by hospital referrals being influenced by 
specific risk factors and symptoms, as specified by medical training or guidelines. Alternatively, the quantitative 
disease-specific patterns of associations between risk factors and R-coded diseases could reflect an underlying 
pathophysiological cause. From the perspective of the Bradford Hill criteria54,55: Strength of association, Consist-
ency, Specificity, and Temporality—there were strong, dose-related, statistically significant, disease-specific, sub-
sequent responses to risk factors in both men and women. Analogy, Plausibility, and Coherence—like all diseases, 
evidence of disease is sufficiently strong and specific for hospital admission and identification with one of nearly 
100 R-coded diseases.

R-coded diseases have rarely been discussed or studied, so it is worth examining the diseases with which 
they cluster in detail: (1) Nausea and vomiting clustered with specified intestinal infections, suggesting a pos-
sible infectious origin. The cluster also contains anaemia, and diseases in women-only of tendency to fall, other 
interstitial pulmonary diseases, hypotension, and viral infections of unspecified site. (2) Change in bowel habit 
was clustered with constipation in group 12. (3) Abnormal weight loss was clustered with fractures of the femur, 
bronchiectasis, and coeliac disease in group 15. Weight loss is a potential cause of fractures that are mediated 
by osteoporosis, but similar risk associations for weight loss and femoral fractures would suggest that weight 
loss could be a symptom of an unidentified underlying process. (4) Abnormal findings or imaging of lung, and 
haemoptysis, were clustered with pancreatic and bladder cancers, and rectal polyp, in group 19. (5) Other and 
unspecified abdominal pain were clustered with gastritis and duodenitis in group 15. We are unaware of any 
indirect reasons why the risk factors for diseases with such similar symptoms would coincide, but the group also 
contains four cataract diseases, that seem most likely due to coincidental similarities between the risk associa-
tions. (6) Other chest pain and undetermined causes of morbidity are in cluster 24, a group that also includes 
back pain, intervertebral disc disorders, other joint disorders not classified elsewhere, fractures of the lower 
leg, and benign neoplasms of the colon, rectum, and anus. The links between these undiagnosed causes of pain 
and morbidity, and diagnoses of back and intestinal problems may be relevant for improving the accuracy of 
diagnoses. (8) A few other R-coded diseases are included, but these diseases appear in different clusters for men 
and women, and are not discussed further.

Limitations.  Many of the limitations here are inherent to any cohort study, but some are accentuated by the 
need to simultaneously study multiple diseases. Disease selection: Uncertainty about the history of treatment 
decisions made it impractical to identify and exclude diseases whose hospital episode rates have geographical or 
temporal variations due to changes in diagnosis or treatment practices, such as a change in reported incidence of 
sepsis due to changes in coding56. Instead we relied on statistical tests to detect when large variations in episode 
rates were causing statistical models to fail or lose power. Cohort: Due to the minimum age of participants in 
UK Biobank, we can only study diseases of old age, and the UK Biobank cohort is not representative of the UK 
or global population. Hospital referrals, diagnoses, and recordings of diagnoses are all biased by clinical proce-
dures and training. Model: Although a sensitivity analysis suggested the clustering results were insensitive to the 
model, a larger cohort with more cases would allow a more complex statistical model, or the inclusion of more 
risk factors. Although the application of clustering methodologies to epidemiological data is becoming popular, 
methods to objectively determine the optimum number of clusters for a particular application have yet to be 
established. Most importantly, we found that disease identification and clustering was sensitive to the number of 
diseases, that in turn was surprisingly sensitive to the fitted model through the multiple-testing adjustments used 
to determine which diseases to include. Causal associations: We aimed to explore associations between diseases, 
but further work is needed to determine if the observed associations are causal.

Strengths of methodology.  Diseases were assessed and selected prior to the study, on the basis of clini-
cal and epidemiological criteria. Established and interpretable statistical methodologies were used in new but 
statistically rigorous ways. Risk associations were calculated before clustering, providing advantages in terms 
of modelling and interpretation of results. Proportional hazards methods provided access to several decades of 
epidemiological experience, and are familiar to the medical community. Analyses were sex-specific, used (left-
truncated) age as a time variable and multiple-adjustment to reduce the influence of correlations between risk 
factors, age in particular, and were censored by the first occurrence of cancer (other than non-melanoma skin 
cancers). Estimates were adjusted for likely confounders, and multiple adjustment will reduce the influence of 
correlations between risk factors on subsequent clustering. The resulting estimates are normally distributed, 
allowing rigorous (multivariate) statistical tests to compare the equivalence of risk factors for different diseases, 
and their marginal distributions are easy to calculate. This allowed adjustment for many known risk factors 
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but to subsequently focus on a subset of the most biologically relevant factors by using marginalisation43 to 
remove parameters of lesser interest. The procedure also ensured that each risk factor was represented by a single 
variable when clustering, avoiding clustering being dominated by e.g. a categorical variable with many different 
categories. Rigorous statistical tests were used to compare different diseases’ risk factors, clustering results were 
consistent with statistical tests, were relatively insensitive to changes in the proportional hazards model, and 
sensitivity analyses found no evidence that clustering was driven by prior disease. Distances between fits used 
estimated parameters and their covariance matrices, retaining as much information from the data as possible. 
Hierarchical clustering is easily visualised, and may help inform hierarchical disease classifications. Diseases 
were confirmed to cluster into clinically meaningful groups.

Summary
The associations of common risk factors with disease incidence were used to characterise over 400 diseases in 
men and women, and to identify clusters of 78 diseases that were present in both sexes with statistically signifi-
cant risk factors after a Bonferroni multiple-testing adjustment. We aimed to incorporate as much clinical and 
epidemiological knowledge as possible, and to adopt analyses that are easily interpretable, familiar to the medi-
cal community, and underpinned by a rigorous statistical methodology. The broad perspective gained from the 
simultaneous study of several hundred diseases emphasises that BMI can have a quantitatively different influence 
on disease risk for men and women, and that proportional hazards models are more likely to fail with more 
cases. Both of these important points should be considered in relevant epidemiological studies. We found that 
the associations of common risk factors with disease incidence were sufficiently specific to identify the equivalent 
disease in the opposite sex for 38% of 172 diseases studied here, and 80% have their opposite-sex pair among 
the nearest 8 diseases, suggesting that quantitatively similar risk factors may indicate similar underlying disease. 
This hypothesis was supported by hierarchical clustering, that tended to produce clinically similar clusters of 
diseases, and suggested several plausible but presently unconfirmed associations between disease. Some patterns 
of multimorbidity, such as a cluster of diseases linked to renal failure, are likely to be driven by common disease 
pathways and risk factors. All the diseases studied here are common causes of hospital admission, representing 
a substantial burden of ill health. We highlighted several symptoms of unknown causes (ICD-10 R-coded dis-
eases), that appear to be linked with more clearly diagnosed disease, and emphasised the potential for hospital 
admissions to be biased by known risk factors for disease.

Overall, we have developed a methodology and demonstrated a proof of principle for clustering diseases in 
terms of their associations with established and easily measured risk factors. Future work is intended to optimise 
the approach, benchmark it in different datasets, and explore applications in diagnosis, prognosis, aetiological 
understanding, and drug development.
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